
Termination Properties of Transition Rules for Indirect Effects

Mojtaba Elahi, Saurabh Fadnis, Jussi Rintanen
Aalto University, Helsinki, Finland

Mojtaba.Elahi@aalto.fi, Saurabh.Fadnis@aalto.fi, Jussi.Rintanen@aalto.fi

Abstract

Indirect effects of agent’s actions have traditionally been for-
malized as condition-effect rules that always fire whenever
applicable, after each action taken by the agent. In this work,
we investigate a core problem of indirect effects, the possibil-
ity of infinitely long sequences of rule firings. Specifically we
investigate the termination of rule firings, as well as their con-
fluence, that is, the uniqueness of the state that is ultimately
reached. Both problems are PSPACE-complete, and hence far
more challenging than what existing literature suggest. To
tackle this complexity, we devise practically interesting syn-
tactic and structural restrictions that guarantee polynomial-
time termination and confluence tests. Finally, in the context
of planning languages that support indirect effects, we pro-
pose new implementation technologies.

Introduction
Actions that an agent takes can have un-anticipated, complex
indirect effects. Formalizing them as part of the direct effects
can be impractical, requiring representing them separately.
Indirect effects can be formalized as condition-effect rules
similarly to agents’ actions, but with the requirement that
they are fired whenever their condition part is true (Kartha
and Lifschitz 1994).

Much of the expressive power of indirect effects, and the
conceptual and computational complexity that follows from
this power, has been earlier ignored. Earlier works either
pose strong syntactic restrictions on indirect effects, limiting
both their power and the complexity dramatically, or have
left the problem unexplored.

The two core questions, which are now addressed in this
work, are the possibility of infinitely long sequences of in-
direct effects, and the impact of different orderings in which
the rules for indirect effects are fired. These questions are
respectively known as termination and confluence.

Non-termination is the result of indirect effects generating
an infinitely long state sequence, in which the same rules for
indirect effects are fired repeatedly.

Confluence is the property of there being a unique termi-
nal state. Conflicting indirect effects may, but do not have
to, lead to two or more different terminal states. Indirect ef-
fects may override each other’s effects, or disable or enable

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each other, so that the order in which they are executed im-
pacts which terminal state is reached in the end. If there is
no unique terminal state, then it is unclear what is a correct
implementation of the indirect effects. Questions about con-
fluence (also known as the Church-Rosser property) have
been researched in connection with different types of rewrit-
ing systems (Rosen 1973; Sethi 1974; Keller 1974; Jensen
1980). Our work is the first one to address it explicitly and
in full generality for state-space search problems expressed
as precondition-effect rules, as used in planning, reasoning
about action, and related problems.

We first show that testing for both termination and con-
fluence are PSPACE-complete. This entails that compiling
away indirect effects by embedding them in actions that may
trigger them – which would require checking for both ter-
mination and confluence – is PSPACE-hard, which gives a
strong justification for introducing indirect effects as an ex-
plicit concept in modeling languages for planning and re-
lated problems, and motivating at looking at tractable meth-
ods to determine confluence and termination. Despite the
high worst-case complexity, many practically interesting
planning problems have indirect effects that can be effec-
tively analyzed and implemented. We investigate structural
properties of rule sets for indirect effects that can be tested
in polynomial-time and which yield sufficient conditions for
confluence and termination. The methods we propose are
based on graphs that represent relations between indirect
effects, and we obtain tractable termination and confluence
tests by limiting to such graphs that are acyclic, or even more
strictly, trees or chains.

To make our results as broadly applicable as possible,
we consider indirect effects in connection with the most ba-
sic model of acting and planning, the classical deterministic
planning model. Our results directly apply to more general
forms of planning that include the classical planning model.

The structure of the paper is as follows. We start by dis-
cussing related work. This is followed by formally defining
the planning problem that interleaves agent’s actions with
the execution of all applicable indirect effects. Then we de-
fine the termination and confluence properties, determine
their worst-case complexity, and then devise tractable suffi-
cient conditions for confluence and termination. We propose
two approaches to implement classical planning with indi-
rect effects, one based on heuristic state-space search, and

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

178

one based on the planning as satisfiability approach (Kautz
and Selman 1996). We report on experiments with imple-
mentations of both approaches, before concluding the paper.

Related Work
Indirect effects have first been investigated as a part of so-
lutions to the frame problem and the ramification problem
in artificial intelligence (Kartha and Lifschitz 1994). Many
works have assumed, for simplicity, that the indirect ef-
fects of an action are always mutually consistent, or that
conflicting indirect effects mean that an action cannot be
taken (Giunchiglia and Lifschitz 1998; Gelfond and Lifs-
chitz 1998).

Planning research has similarly adopted different notion
of indirect effects, often called (exogenous) events. Petrick
and Bacchus (2002) have update rules, which are essen-
tially indirect effects. Fox et al. (2005) require that a rule
for indirect effects is only fired once. Fox and Long (2006)
introduce event-deterministic events, which exclude simul-
taneously applicable conflicting indirect effects, but do not
give effective ways to achieve this. A variant of Theorem 1
shows that testing if indirect effects are event-deterministic
is PSPACE-complete.1 None of these works analyze the con-
cept of indirect effects deeper.

Indirect effects in the above works, similarly to ours,
are instantaneous. A different model, used in temporal
planning, assigns a temporal duration to indirect effects
(Gerevini, Saetti, and Serina 2006). Other works consider
unpredictable and non-deterministic exogenous events (Ioc-
chi, Nardi, and Rosati 2000; Fritz and McIlraith 2008).

Preliminaries
Next we define our formal framework. We consider planning
with Boolean state variables only.

Definition 1 (Effects) Let X be the set of state variables.
Then the following are effects over X .

• x if x ∈ X

• ¬x if x ∈ X

• ϕ ▷ x if ϕ is a propositional formula over X and x ∈ X

• ϕ▷¬x if ϕ is a propositional formula over X and x ∈ X

The notation ϕ ▷ l is for conditional effects: if ϕ is true,
the literal l will be made true.

Definition 2 (Actions) Let X be the set of state variables.
An action is a pair (p, e) where p is a propositional formula
over X for the precondition, and e is a finite set of effects
over X .

Assumption 1 For actions (p, e), {x,¬x} ̸⊆ e for all x ∈
X , and if (ϕ ▷ l) ∈ e, then l ̸∈ e and for any (ψ ▷ l) ∈ e, the
precondition satisfies p |= ¬(ϕ∧ψ). So no action can make
a state variable both true and false at the same time.

1The definition of event-deterministic is stated informally only,
and it could alternatively mean actions being mutex (Blum and
Furst 1997), in which case it is testable in polynomial time.

Define complement l of literals l by x = ¬x and ¬x = x.
As indirect effects are expressed as condition-effect pairs

similar to the agent’s actions, we call them forced actions, as
they must be executed whenever executable. Next we define
classical planning extended with forced actions.

Definition 3 (Problem instance) ⟨X, I,A, F,G⟩ is a prob-
lem instance if

• X is a finite set of state variables,
• I ⊆ X is the initial state description,
• A is a set of actions,
• F is a set of actions,
• G is a propositional formula over X for the goal states.

Here F are the forced actions which must be fired when-
ever their precondition is true. The initial state description I
denotes the unique state s0 such that s0 |= x for all x ∈ I
and s0 |= ¬x for all x ∈ X\I .

Assumption 2 There are no forced actions applicable in the
initial state.

This assumption is just to simplify the presentation, to
avoid separately talking about confluence and termination
when forced actions are being triggered before any actions
are taken. One could view the facts in the initial states as the
unconditional effects of a special initial state action, so there
is no loss of generality in this assumption.

Assumption 3 Every forced action makes its own precon-
dition immediately false, so that the forced action cannot be
fired multiple times in a sequence without other actions in
between. This can be often achieved with an effect literal l
such that l |= ¬p where p is the precondition.

There are other ways to prevent infinite firings of a single
action. First, an action could be fired only when its precon-
dition becomes true. Second, an action could be fired only
when it actually changes the value of at least one state vari-
able (but this would prevent multiple firings only for actions
that always have the same effects). But we do not investigate
this further.

Definition 4 (Successor state) s′ = execa(s) is the succes-
sor state of s with respect to action a = (p, e) such that

• s′ |= x if x ∈ e or (ϕ ▷ x) ∈ e and s |= ϕ,
• s′ |= ¬x if ¬x ∈ e or (ϕ ▷ ¬x) ∈ e and s |= ϕ,
• s(x) = s′(x) if x ̸∈ e, ¬x ̸∈ e, s ̸|= ϕ for any (ϕ▷x) ∈ e

and (ϕ ▷ ¬x) ∈ e.

The successor state is defined if s |= p.

We define execa1,...,an
(s) = execan

(· · · execa1
(s) · · ·).

Definition 5 (Executions) An execution of (forced) actions
in state s0 is a sequence a1, . . . , an of actions and a se-
quence s0, s1, . . . , sn of states such that s0 = s and for
all i ∈ {1, . . . , n}, si−1 |= pi (where ai = (pi, ei)) and
si = execai(si−1).

The execution of an agent’s action is followed by the exe-
cution of all applicable forced actions.

179

Definition 6 (Forced executions) For ⟨X, I,A, F,G⟩ a
forced execution in state s is any sequence a1, . . . , an
of actions with ai ∈ F for all i ∈ {1, . . . , n} such
that a1, . . . , an is an execution (as in Definition 5) and
execa1,...,an

(s) ̸|= p for all (p, e) ∈ F .

So a forced execution is an execution of forced actions
that ends in a state with no executable forced actions.

Definition 7 (Reachable states) We define reachable states
for problem instances ⟨X, I,A, F,G⟩ recursively.

• The initial state s0 for I is a reachable state.
• s′ is a reachable state if

– s is a reachable state,
– a ∈ A is an action,
– a1, . . . , an is a forced execution in execa(s), and
– s′ = execa,a1,...,an

(s).

So a state is reachable if it can be reached by a sequence
of actions from A interleaved with maximal sequences of
actions from F .

Termination and Confluence
Some sets of forced actions have infinitely long executions.

Example 1 Consider forced actions (a, {¬a}) and
(¬a, {a}). Starting from any state, these two actions have
one execution which is infinitely long.

So the question of termination of forced actions arises:
are all executions of forced actions finite?

Definition 8 (Termination) Forced actions in a problem
instance are terminating if every forced execution for all
states s that are reachable in ⟨X, I,A, F,G⟩ is finite.

Often one wishes that the state reached with the forced ac-
tions is unique, the ordering in which the actions have been
tried is therefore irrelevant, and therefore the implementa-
tion of the forced actions can use any ordering with no con-
cerns about it having an impact on the terminal state.

Example 2 Consider forced actions (a, {¬a, b}) and
(a, {¬a, c}) and a state s such that s |= a ∧ ¬b ∧ ¬c. There
are two forced executions of the actions, each consisting of
one forced action only, leading to two different states.

The property we are after is known as the confluence or
the Church-Rosser property (Rosen 1973; Sethi 1974), and
shows up prominently for example in the context of the
λ-calculus (Barendregt 1984) and other similar systems in
which tree-like syntactic expressions are transformed by a
sequence of rewriting steps. We adapt this concept to transi-
tion systems and planning.

Definition 9 (Confluence) Forced actions in a problem in-
stance are confluent if execσ1

(s) = execσ2
(s) for all forced

executions σ1 and σ2 and for all states s that are reachable
in ⟨X, I,A, F,G⟩.
Theorem 1 Testing for confluence of forced actions is
PSPACE-complete.

Proof: Idea: Construct actions for simulating deterministic
PSPACE Turing machines (Bylander 1994), with two addi-
tional actions, one going from the initial state to a special
end state (the short cut), and another going from accepting
state to the same special end state. The short-cut action is al-
ways applicable. If the Turing machine does not accept, then
the execution ends in a non-accepting state different from
the one reached by the short-cut action. Hence the forced
actions are confluent if and only if the Turing machine has
an accepting execution. This shows PSPACE-hardness.

PSPACE membership is by finding a reachable state from
which two different terminal states are reachable with forced
actions. This is by nested calls to the standard PSPACE
reachability test. □

Theorem 2 Testing for termination is PSPACE-complete.

Proof: Idea: Construct actions for simulating PSPACE Tur-
ing machines (Bylander 1994) with additional two actions
that can be repeated indefinitely (similarly to Example 1)
if reaching a non-accepting terminal state. Then the Turing
machine accepts if and only if the rules are terminating.

PSPACE-membership is by finding a reachable state from
which a sequence of forced actions form a cycle in the state
space. This is by nested calls to the standard PSPACE reach-
ability test. □

Sufficient Conditions for Confluence
We discuss sufficient conditions for confluence that can be
tested in polynomial time. The first condition is trivial and
familiar from earlier works, and is given only as a starting
point for the more broadly applicable conditions we develop.

We first formalize four binary relations Rc, Re, Rd, and
Ri, and then derive sufficient conditions for confluence.
These relations have the following meanings.

Rc the two actions have conflicting effects, that is, one can
make some state variable true, and the other action can
make it false.

Re One action can enable another action by making the lat-
ter’s precondition true.

Rd One action can disable another action by making the lat-
ter’s precondition false.

Ri One action can impact the effects of another action by
changing the truth-value of one of the conditions ϕ in a
conditional effect ϕ ▷ l of the latter.

Next we define the relations formally.

Definition 10 (Relation Rc) The relation Rc ⊆ (A ∪ F)×
F is defined by a0Rca1 whenever a0 ̸= a1 and atEffs(a0)∩
{l|l ∈ atEffs(a1)} ̸= ∅.

Here atEffs(a) denotes the atomic effects of an action
(p, e), defined as {x|x ∈ e} ∪ {¬x|¬x ∈ e} ∪ {x|(ϕ ▷ x) ∈
e} ∪ {¬x|(ϕ ▷ ¬x) ∈ e}.

The relation for enabling is based on a syntactic condition
that refers to the effects of the first action and the precondi-
tion of the second.

180

Definition 11 (Relation Re) a1Rea2 iff a1 ̸= a2 and
1. there is x ∈ atEffs(a1) that occurs positively in the pre-

condition of a2, or
2. there is ¬x ∈ atEffs(a1) that occurs negatively in the

precondition of a2.

The disabling relation is defined similarly.

Definition 12 (Relation Rd) a1Rda2 iff a1 ̸= a2 and
1. there is x ∈ atEffs(a1) that occurs negatively in the pre-

condition of a2, or
2. there is ¬x ∈ atEffs(a1) that occurs positively in the

precondition of a2.

Additionally, in the presence of conditional effects ϕ ▷ l,
we need to model the way an action may impact what ef-
fects another action actually has. The impact relation indi-
cates whether it is possible that an action changes the effects
another action can have.

Definition 13 (Relation Ri) a1Ria2 iff a1 ̸= a2 and x ∈
atEffs(a1) or ¬x ∈ atEffs(a1), and x occurs in ψ for some
effect ψ ▷ l of a2.

The simplest confluence test is the following.

Theorem 3 For a problem instance ⟨X, I,A, F,G⟩, the
forced actions are confluent if
1. Rc ∩ (F × F) = ∅,
2. Rd ∩ (F × F) = ∅, and
3. Ri ∩ (F × F) = ∅.

Proof: Idea: The conditions guarantee that no forced action
that is applicable in s or in any state s reached with forced
actions becomes inapplicable after firing other forced ac-
tions, and the effects of no forced action are overwritten by
other forced actions, and the conditional effects of no action
depend on whether other actions are fired before or after it.
Hence the same actions are fired and the same terminal state
is reached no matter what order the actions are fired in.

Proof sketch: Assume that there are two executions that
lead to different terminal states. Since none of the actions
override the effects of other actions and since the condi-
tions of the conditional effects have the same values in both,
the terminal states can only differ because one execution in-
cludes at least one action not included in the other.

Note that because of the requirement on Ri, the formu-
las ϕ in conditional effects ϕ ▷ l are not changed by any of
the forced actions, and hence they are evaluated in the state
where the application of the forced actions begins in.

Let a1, . . . , an and a′1, . . . , a
′
n′ be the two executions, and

by symmetry we assume that the first execution includes at
least one action not included in the other. Let ai be the first
such an action in that execution. Hence {a1, . . . , ai−1} ⊆
{a′1, . . . , a′n′}. Let j ∈ {1, . . . , n′} be such that a′j = ai−1.
Since the effects of a1, . . . , ai−1 are not overridden by any
action in the second execution, nor are any preconditions
of any actions made false, the precondition of ai must be
true right after a′j in the second execution. And later actions
a′k, k > j will not make the precondition of ai false. Hence
ai would continue to be applicable for the rest of the exe-
cution, and would have to be included in it. This contradicts

the assumption that ai is not part of the second execution.
Therefore it is not possible that there are two executions that
have different actions. □

These conditions are essentially what is required for ac-
tions at the same level in GraphPlan’s plans (Blum and Furst
1997) and also in the planning as satisfiability approach
(Kautz and Selman 1996). The conditions in Theorem 3 are
not necessary for confluence.

Example 3 Consider actions (p, {¬p, q}) and (q, {¬q, r}).
Since they have conflicting effects, the conditions of Theo-
rem 3 are not satisfied. Nevertheless, the rules are confluent,
always leading to the same terminal state. The conflict on
q between the actions is not important, as q will always be
made false by the second action.

Next we look at more powerful polynomial time tests for
confluence. The first issue with Theorem 3 is that it looks at
the set of forced actions as a whole, even though it would be
sufficient to limit to only those forced actions that are fired
when one of the agent’s actions is executed.

We denote the transitive closure of a relation R by R+.

Definition 14 (Enabled Forced Actions) Let A be a set of
actions, F a set of forced actions, and a an action. Then
Fa = {a1 ∈ F |(a, a1) ∈ (Re ∩ ((A ∪ F) × F))+} is the
set of enabled forced actions for a.

The enabled actions is an over-approximation of the set of
actions that possibly become executable after taking a and
some (possibly empty) sequence of actions.

Theorem 4 Let Π = ⟨X, I,A, F,G⟩ be a problem instance.
Π is confluent if for every a ∈ A, the set of enabled forced
actions for a has no pair of actions related byRc,Rd, orRi.

Proof: Like the proof of Theorem 3, restricted to the enabled
forced actions for a. □

The requirement of Theorem 4 that no two forced actions
conflict is sometimes too restrictive. Next we present a more
refined condition which is sufficient to determine confluence
for a broader class of problems, including one of our sample
problems that we will discuss later.

We identify a broader classes of enabling relations that
yields confluent planning problems even when actions dis-
able other actions or have conflicting effects. Two actions a0
and a1 respectively with conflicting effects ¬x and x in gen-
eral violate confluence because there could be two different
executions in which these two actions are taken in opposite
orders, either making x true first and then making it false, or
vice versa, leading to different terminal states.

But, we could allow two actions to have conflicting effects
if they are always executed in the same order, and other ac-
tions cannot impact their execution so that the conflicting
effects could play out in two different ways.

Definition 15 (Enabling Graph) An enabling graph for an
action a is a graph Ga = ⟨G,E⟩ where G = {a} ∪ Fa for
the set of enabled forced actions Fa for the action a, and
E = Re ∩ (({a} ∪ Fa)× Fa).

181

Cycles in enabling graphs are a potential indication of
non-termination of forced actions. Enabling graphs in prob-
lems such as the one in Example 1 are clearly cyclic. For
acyclic enabling graphs the executions of forced actions are
finite, but can be exponentially long.

Example 4 Consider the following forced actions for all
i ∈ {1, . . . , n}.

ai = (xi, {xi+1, x
′
i+1,¬xi})

a′i = (x′i, {xi+1, x
′
i+1,¬x′i})

For an action a with effects x1 and x′1, the graph Ga is
acyclic.

All of these forced actions are executed after x1 and x′1
become true, but there are several possible executions, and
on some of them some actions are executed an exponential
number of times.

After both an−1 and a′n−1 one can execute an, a
′
n.

Similarly, after both an−2 and a′n−2 one can execute
an−1, an, a

′
n, a

′
n−1, an, a

′
n. As n increases, the length of ex-

ecutions of this form increases exponentially as 2n+1 − 2.

A forced action occurs in an execution as many times as
its precondition becomes true, and this is bounded by the
number of paths in Ga that reach it. This suggests a pro-
cedure for finding an upper bound on the lengths of execu-
tions for a given acyclicGa: label forced actions a′ such that
there is no a′′ with a′Rea

′′ with 1 (to indicate that any exe-
cution starting from a′ has the length 1 at most.) After that,
repeatedly label any node a′ for which all children a′′ (with
a′Rea

′′) have been labeled. The label for such a′ is 1 plus
the sum of the labels of those a′′, corresponding to execut-
ing a′ and after that each of the successors and all of the
forced actions triggered by them, without interleaving these
executions.

After all forced actions inGa have a label, an upper bound
on the lengths of executions triggered by a is the sum of the
labels of a′ such that aRea

′.
The highest possible value is obtained for acyclic graphs

Ga that have the maximum possible number of directed
edges, that is, for nodes a, a1, . . . , an in Ga the set of di-
rected edges is {(a, ai)|1 ≤ i ≤ n}∪ {(ai, aj)|1 ≤ i < j ≤
n}. The bound obtained for acyclic graphsGa with n forced
actions this way is 2n.

Acyclicity of Ga only guarantees boundedness of execu-
tions, but does not guarantee the uniqueness of the terminal
state, as different paths in the graphs may be interleaved to
executions in different ways.

The same holds also if Ga is a tree: even if there are only
two branches in a tree-formed Ga (and the executions are
only polynomially long), the branches can be interleaved in
an exponential number of different ways, and they could
lead to an exponential number of different terminal states.
So, confluence requires either even stronger restrictions on
Ga, like it being a chain, or other additional restrictions.

Next we focus on graphs that are trees, and restrict the
properties of forced actions in different branches of the tree
so that confluence is achieved. Note that neither acyclicity
nor being a tree is a necessary condition for confluence or

termination, and we are here interested in practically use-
ful sufficient conditions for these properties, especially ones
that can be tested in low-polynomial time.

To guarantee confluence we require that any variation in
the order in which the forced actions are executed will never
impact which terminal state is reached. In an extreme case,
the tree consists of a single branch, a totally ordered se-
quence of forced actions, which can only be executed in
this particular order. Hence confluence trivially follows. If
the tree has several branches, then none of the branches are
allowed to impact how the execution in the other branches
proceeds, and hence interleaving the different branches in
arbitrary ways still always leads to the same terminal state.
This is achieved simply by requiring that there is no inter-
branch interaction corresponding to three of the relations we
have defined, Rd for disabling, Ri for changing the condi-
tions of conditional effects, and Rc for having conflicting
effects.

Theorem 5 Let Π = ⟨X, I,A, F,G⟩ be a problem instance.
Π is confluent if the enabling graph Ga of every a ∈ A
satisfies the following.
1. Ga is a tree, and
2. for every (a0, a1) ∈ (F × F) ∩ (Rd ∪Ri ∪Rc), there is

a directed path from a0 to a1 or from a1 to a0 in Ga.

Proof: Idea: The different maximal paths in the tree do not
interfere with each other (except of course they may share
parts of their initial segment), and attempting execution of
any total ordering of the partial order represented by the tree
– ignoring actions with a false precondition – leads to exe-
cuting exactly the same set of actions, with the same termi-
nal state for every execution.

Let s be any reachable state for Π and let a ∈ A be
an action applicable in s. Let σ1 = a11, . . . , a

1
n and σ2 =

a21, . . . , a
2
m be sequences of forced actions so that s10, . . . , s

1
n

and s20, . . . , s
2
m are their respective executions starting with

s10 = s = s20, and the sequences are maximal in the sense
that no forced actions are applicable in s1n and s2m.

We will next show that {a11, . . . , a1n} = {a21, . . . , a2m} so
that exactly the same forced actions are executed after taking
action a, and that s1n = s2m so that the resulting state is the
same in both cases.

To show that the same actions are in both, we assume that
is an action a1i that does not appear in σ2, and choose such
action with the least i. So forced actions a11, . . . , a

1
i−1 occur

also in σ2, including those on the path from the root action
a to a1i . These latter actions cannot interfere with any ac-
tion in σ2, because there is not inter-branch interaction of
the forced actions, and hence after the last of those actions
the precondition of a1i is true. But now none of the forced
actions following a1i in Ga can be in σ2 (as only a1i can
make them applicable) and therefore cannot falsify the pre-
condition of a1i , and also forced actions in other branches
in Ga cannot falsify the precondition of a1i , so a1i must be
included in σ2 as well, which is a contradiction with the as-
sumption that there is a forced action in σ1 that does not
occur in σ2. Hence all forced actions in σ1 must also be in
σ2. By symmetry, same holds for σ2 and σ1, so hence their
forced actions coincide.

182

It remains to show that σ1 and σ2 lead to the same termi-
nal state. We first prove an auxiliary result by induction on
the distance of forced actions from the root action a in Ga.

Induction hypothesis: For any (forced) action with dis-
tance i from the root of Ga that occurs in σ1 and σ2, in both
execution σ1 and in σ2 the action has the same (conditional
and unconditional effects).

Base case i = 0: This action is the root action a, being
executed in the same state s for both σ1 and σ2, and hence
has the same effects in both cases.

Inductive case i ≥ 1: Let a′ be an action in σ1 and σ2
with distance i from a. All (forced) actions that change state
variables in the conditions c of conditional effects c ▷ e of a′
before the execution of a′ in σ1 and σ2 have distance < i,
and hence have exactly the same conditional and uncondi-
tional effects in both σ1 and σ2. Hence the effects of a′ are
the same in both executions.

Finally, for every state variable x and every pair of actions
that change x in σ1 and σ2, these actions have the same or-
dering in both σ1 and σ2, as that ordering is determined by
Ga (actions that have conflicting effects cannot be unordered
in Ga, that is, reside in different branches of Ga.)

Hence the final value of x is the same in both executions
σ1 and σ2, and hence the terminal states are the same. □

Implementation
Often it can be guaranteed that taking an action can only
trigger the firing of a small number of forced actions (for
example by using the concept of enabled forced action in
Definition 14). In these cases it is possible to implement the
forced actions by reducing the whole planning problem to a
conventional classical planning problem. If there is only one
forced action that could become executable after an agent’s
chosen action, then simply compose them together, with the
precondition p of the forced action first moved to the con-
dition part of its effect ϕ ▷ l to obtain (p ∧ ϕ) ▷ l. However,
compiling the potentially applicable forced actions into the
enabling regular actions is infeasible if there are very many
of them. We have not experimented with this option further.

Next we consider general implementations in two main
frameworks, heuristic state space search (Bonet and Geffner
2000) and the planning as satisfiability approach (Kautz and
Selman 1996). An underlying assumption in both cases is
confluence. If a rule set does not have the confluence prop-
erty, the results of the rule firings are not uniquely deter-
mined by the starting state, and will be affected by the or-
dering in which forced actions are considered. In the state-
space search setting the most natural implementations would
follow an arbitrary ordering. SAT-based methods could be
implemented so that all possible firing orderings would be
covered, so that a planner would return a plan whenever a
plan exists for at least one firing ordering for every instance
of firings, but we will not look at this in more detail.

Heuristic State Space Search
Implementation state-space search planners such as HSP and
FF (Bonet and Geffner 2000; Hoffmann and Nebel 2001) is

straightforward. Followed by a regular action, all applicable
forced actions are applied until none are applicable. Given
confluence, the resulting state is unique.

For computing many well-known heuristics, a straightfor-
ward implementation is to treat forced actions and regular
actions alike, so not requiring any modification in the heuris-
tic at all. An intuitively plausible modification would be to
treat forced actions as having cost 0, but we will see in the
experiments section that sometimes this does not work well.

Planning as Satisfiability
Extending encodings of planning as satisfiability (Kautz and
Selman 1996) with forced actions is slightly more compli-
cated. We need to force the execution of all forced actions
after every regular action. The principles the encoding im-
plements are the following.
1. At least one forced action must be taken whenever the

precondition of at least one forced action is true.
2. An ordinary (non-forced) action can be taken only if no

forced action is applicable at the same step.
The first requires firing all applicable forced actions, in

one or more steps of a parallel plan (Kautz and Selman
1996). The second means that agent’s actions can only be
considered after all applicable forced actions have been
fired. Next we give an implementation of these principles.

Let there be n forced actions, and let p1, . . . , pn be
their respective preconditions and let f1@t, . . . , fn@t be the
atomic propositions indicating whether they are executed at
time point t. Let a1@t, . . . , am@t be the atomic propositions
indicating whether the agent actions are executed.

Requirement 1 is encoded as follows.
pi@t→ F@t for all i ∈ {1, . . . , n} (1)

F@t→ (f1@t ∨ · · · ∨ fn@t) (2)
Requirement 2 is encoded as follows.

ai@t→ ¬F@t for all i ∈ {1, . . . ,m} (3)
Here F@t is true if at time step t there are forced actions.

This encoding can be strengthened so that forced actions
following one regular action are never unnecessarily spread
to more time points than what is necessary, as follows.

1b. If the precondition of the forced action is true and no
forced action is executed that either has a conflicting
effect or that is mutex with the forced action, then the
forced action must be taken.

This could further be strengthened by removing ambigu-
ity about which maximal consistent set of forced actions is
taken by adding “no forced action with a lower index”, so
that in conflict situations always the lower indexed forced
action wins. This condition is encoded as follows.

pi@t→ F@t for all i ∈ {1, . . . , n} (4)pi@t ∧ ¬
∨
j∈Ci

fj@t

 → fi@t (5)

Here Ci is the set of lower-indexed actions that have an ef-
fect that conflicts with the effect of forced action i or that is
mutex with it, in the sense of Graphplan parallelism (Blum
and Furst 1997; Kautz and Selman 1996).

183

10
-1

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

L
A

M
A

 F
o

rc
e

d
 A

c
ti
o

n

LAMA Base

Figure 1: LAMA runtimes on Logistics

10
-1

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

F
F

F
1

 F
o

rc
e

d
 A

c
ti
o

n

FF Base

Figure 2: FFF1 and FF runtimes on Logistics

Experiments
We have implemented forced actions in the LAMA planner
(Richter and Westphal 2010) in the Fast Downward frame-
work (Helmert 2009) and FF (Hoffmann and Nebel 2001),
both often used for benchmarking, as well as a basic SAT-
based planner, and performed experiments with them.

In our first experiment, the distinction between regular
and forced actions is viewed as control knowledge, and we
investigated this idea with the well-known logistics domain,
by comparing the domain’s original version to the new ver-
sion with control knowledge.

The second experiment demonstrates the use of forced ac-
tions in expressing indirect effects that would be difficult to
encapsulate in regular actions. For this, we introduce a new
domain derived from Game of Life (Gardner 1970).

All experiments were run on Intel Xeon E5-2680 CPUs,
with 8 GB of memory and a time limit of 30 minutes.

Control Knowledge for Logistics
Forced actions can be used as control knowledge. Con-
sider the standard logistics domain, with airplanes and trucks

10
-1

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

S
A

T
 F

o
rc

e
d

 A
c
ti
o

n

SAT Base

Figure 3: SAT runtimes on Logistics

transporting packages. Some of the actions can be made
forced actions which must be taken whenever possible.
• Packages at target city but not at target location must be

loaded into truck.
• Packages not in target city must be loaded into truck if it

is not at the airport.
• Packages destined to a different city must be unloaded

from truck at the airport.
• Packages in target city must be unloaded from airplane.
• Packages in target location must be unloaded from truck.

These forced actions refer to the target cities and locations
of the packages, which must be accordingly modeled.

The only actions left to the agent to decide about are the
move actions for trucks and airplanes, and whether to load
a package to an airplane. Loading a package to an arbitrary
airplane may risk losing optimality of a plan.

Note that these forced actions mostly satisfy the condi-
tions of Theorem 3, except for immediate loads after un-
loads, as in unloading a package from a truck and then load-
ing it into an airplane. The more relaxed conditions of The-
orem 5 in this case show that confluence indeed holds.

Our experiment uses 200 instances from the year 2000
planning competition Logistics domain, both in the origi-
nal version, and a revised version with many of the actions
turned to forced actions as described above.

We first implemented FF with forced actions so that the
heuristic computation considers the forced actions as hav-
ing cost 0 (which we call FFF0). The results turned out
to be underwhelming, with FFF0 often not solving Logis-
tics any better. We noticed that forced actions having cost
0 turns the heuristic uninformative and makes the search
quite blind. Then we went back to the original implementa-
tion with forced actions treated by the heuristic exactly like
the rest of the actions, obtaining FFF1. For forced actions in
LAMA/FD we left the heuristics as is.

Figure 1 gives LAMA’s runtimes with the original and
modified instances, and Figure 2 runtimes of FF for the orig-
inal instances and of FFF1 with forced actions. Each dot de-
picts one instance, with the X-coordinate indicating the run-

184

0 1 2 3 4 5 6 7 8 9

Figure 4: Our Game of Life problem in a 7 × 7 grid. It takes nine steps to reach the destination area (rightmost column) from
the source area (leftmost column). The agent sets cells in the source area in the first three steps.

time for the original instance and the Y-coordinate for forced
actions. Forced actions as control knowledge decimates the
runtimes for the large instances which LAMA and FF would
otherwise need tens of minutes to solve.

We implemented the SAT approach with a ∃-step encod-
ing (Rintanen, Heljanko, and Niemelä 2006), as discussed in
the implementation section, with the Logistics results given
in Figure 3. As the SAT solver we used KisSAT. Invariant
computation (Rintanen 2008) strongly dominates the over-
all planner runtimes for these – very large – logistics prob-
lems. It is the smaller reachable state space with forced ac-
tions that decimates the runtimes of invariant computation.
On SAT solving the impact of forced actions is the oppo-
site: for the parallel ∃-step encoding the planner uses, forced
actions double the horizon length, slowing down SAT solv-
ing considerably. With the slower ∀-step encoding (Rinta-
nen, Heljanko, and Niemelä 2006) this does not happen for
these logistics problems, allowing a moderate performance
improvement. Encodings that allow regular and forced ac-
tions on the same step are possible, and would potentially
reduce SAT solver runtimes considerably. We have not pur-
sued this question deeper and leave it to future work.

The results show that forced actions can considerably im-
prove performance when some of the actions can be consid-
ered obligatory whenever they are applicable. Although Lo-
gistics is a simple domain and is solved by many heuristic
state-space planners efficiently, the reduction in the number
of decision points, due to the smaller number of regular ac-
tions, still leads to a dramatic performance improvement for
large problem instances.

Many other forms of control knowledge to planning have
been proposed before, including temporal logic (Bacchus
and Kabanza 2000), program-like procedures (Baier et al.
2008), and constraints on the components of a plan (Tate
1995; Frank and Jónsson 2003). The control knowledge used
in our modified Logistics domain could be similarly ex-
pressed in these frameworks.

Game of Life
Game of Life (Gardner 1970) is a cellular automaton. The
cells in the grid are either live or dead. Given the current
state, the following three rules determine the next state: Any
cell with three live neighbors will be alive. Any live cell with
two live neighbors will be alive. All other cells will be dead.

For our second experiment, we based a planning prob-
lem on Game of Life. We partition a finite grid into three
parts: source area, destination area, and the rest. The goal
is to make at least one cell alive in the destination area by
controlling the cells in the source area, and otherwise allow-

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

size

SAT
FFF1

LAMA

Figure 5: Planner runtimes on Game of Life

ing the automaton run according to its usual rules. Figure 4
demonstrates an example of this problem with its solution.
The leftmost column is the source area, and the rightmost
column is the destination area. Forced actions implement the
cellular automaton rules. We use two copies of the grid, the
old and the new, so that each cell’s new state only depends
on the cells’ old values, with the new grid becoming the next
new for the next stage of cell evolution. This problem is con-
fluent, as the forced actions determine a unique next state.

We generated problem instances for grid sizes 3× 3 until
19 × 19. The results of this experiment are shown in Fig-
ure 5. There is no baseline version of this benchmark, as
expressing it in standard modeling languages is impractical.
Finding cellular automata states satisfying complex criteria
can be computationally hard. LAMA and our SAT planner
extended with forced actions solve the problem consistently
until about grid size 17× 17, but after that runtimes quickly
grow as grid dimensions increase.

Conclusion
We have investigated methods and complexity of testing the
termination and confluence of indirect effects expressed as
condition-effect rules, showing the main decision problems
PSPACE-complete, and giving incomplete but broadly ap-
plicable polynomial-time heuristic methods. Additionally,
we have presented scalable implementation both for heuris-
tic state space search and logic-based methods, which have
not been presented in earlier research. Indirect effects can
formalize complex uncontrollable but predictable environ-
ments, or they can be understood as control knowledge, as
discussed in our experiments.

185

References
Bacchus, F.; and Kabanza, F. 2000. Using Temporal Logics
to Express Search Control Knowledge for Planning. Artifi-
cial Intelligence, 116(1–2): 123–191.
Baier, J. A.; Fritz, C.; Bienvenu, M.; and McIlraith, S. A.
2008. Beyond classical planning: procedural control knowl-
edge and preferences in state-of-the-art planners. In Pro-
ceedings of the 23rd AAAI Conference on Artificial Intelli-
gence (AAAI-08), 1509–1512. AAAI Press.
Barendregt, H. P. 1984. The lambda calculus. North-
Holland.
Blum, A. L.; and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence, 90(1-2):
281–300.
Bonet, B.; and Geffner, H. 2000. Planning as heuristic
search: new results. In Recent Advances in AI Planning.
5th European Conference on Planning, ECP’99, Durham,
UK, September 8-10, 1999. Proceedings, number 1809 in
Lecture Notes in Artificial Intelligence, 360–372. Springer-
Verlag.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence, 69(1-2):
165–204.
Fox, M.; Howey, R.; and Long, D. 2005. Validating plans
in the context of processes and exogenous events. In Pro-
ceedings of the 20th National Conference on Artificial Intel-
ligence (AAAI-2005), 1151–1156. AAAI Press.
Fox, M.; and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research, 27: 235–297.
Frank, J.; and Jónsson, A. 2003. Constraint-based attribute
and interval planning. Constraints, 8: 339–364.
Fritz, C.; and McIlraith, S. A. 2008. Planning in the face of
frequent exogenous events. In Online Poster Proceedings of
the 18th International Conference on Automated Planning
and Scheduling (ICAPS), 14–18.
Gardner, M. 1970. The fantastic combinations of John Con-
way’s new solitaire game ”Life”. Scientific American, 223:
120–123.
Gelfond, M.; and Lifschitz, V. 1998. Action Languages.
Linköping University Electronic Press.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-
dictable exogenous events. Journal of Artificial Intelligence
Research, 25: 187–231.
Giunchiglia, E.; and Lifschitz, V. 1998. An action language
based on causal explanation: Preliminary report. In Pro-
ceedings of the 15th National Conference on Artificial In-
telligence (AAAI-98) and the 10th Conference on Innovative
Applications of Artificial Intelligence (IAAI-98), 623–630.
AAAI Press.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence, 173(5): 503–
535.

Hoffmann, J.; and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14: 253–302.
Iocchi, L.; Nardi, D.; and Rosati, R. 2000. Planning with
sensing, concurrency, and exogenous events: logical frame-
work and implementation. In Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Seventh In-
ternational Conference (KR 2000), 678–689. Morgan Kauf-
mann Publishers.
Jensen, K. 1980. A method to compare the descriptive power
of different types of Petri nets. In International Symposium
on Mathematical Foundations of Computer Science, 348–
361. Springer-Verlag.
Kartha, G. N.; and Lifschitz, V. 1994. Actions with indi-
rect effects (preliminary report). In Principles of Knowledge
Representation and Reasoning: Proceedings of the Fourth
International Conference (KR ’94), 341–350. Elsevier.
Kautz, H.; and Selman, B. 1996. Pushing the envelope: plan-
ning, propositional logic, and stochastic search. In Proceed-
ings of the 13th National Conference on Artificial Intelli-
gence and the 8th Innovative Applications of Artificial Intel-
ligence Conference, 1194–1201. AAAI Press.
Keller, R. M. 1974. A fundamental theorem of asynchronous
parallel computation. In Sagamore Computer Conference,
102–112. Springer-Verlag.
Petrick, R. P. A.; and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sens-
ing. In Proceedings of the Sixth International Conference on
Artificial Intelligence Planning Systems, April 23-27, 2002,
Toulouse, France, 212–221. AAAI Press.
Richter, S.; and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research, 39: 127–177.
Rintanen, J. 2008. Regression for classical and nondetermin-
istic planning. In ECAI 2008. Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence, 568–571. IOS
Press.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence, 170(12-13): 1031–1080.
Rosen, B. K. 1973. Tree-manipulating systems and Church-
Rosser theorems. Journal of the ACM, 20(1): 160–187.
Sethi, R. 1974. Testing for the Church-Rosser property.
Journal of the ACM, 21(4): 671–679.
Tate, A. 1995. Characterizing plans as a set of constraints –
the <I-N-OVA>model – a framework for comparative anal-
ysis. ACM SIGART Bulletin, 6(1): 26–32.

186

