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Abstract
The use of planning techniques in traffic signal optimisa-
tion has proven effective in managing unexpected traffic con-
ditions as well as typical traffic patterns. However, signifi-
cant challenges concerning the deployability of generated sig-
nal plans remain, as planning systems need to consider con-
straints and features of the actual real-world infrastructure on
which they will be implemented. To address this challenge,
we introduce a range of PDDL+ models embodying techno-
logical requirements as well as insights from domain experts.
The proposed models have been extensively tested on histor-
ical data using a range of well-known search strategies and
heuristics, as well as alternative encodings. Results demon-
strate their competitiveness with the state-of-the-art.

Introduction
There is a growing interest in the use of automated planning
and scheduling techniques for urban traffic control (Smith
2020; Vallati and Chrpa 2023), especially for traffic signal
optimisation. The use of automated planning, in particular,
yields the benefits of great flexibility in terms of goals that
can be described and achieved, and a centralised overview
of the target region. The problem of traffic signal control
has been tackled using PDDL+ planning (Vallati et al. 2016;
Antoniou et al. 2019; Percassi, Scala, and Vallati 2023),
with knowledge models subsequently re-engineered by Mc-
Cluskey and Vallati (2017) and highly effective domain-
specific heuristics introduced by Percassi et al. (2023). This
line of research leads to approaches that are capable of ef-
ficiently generating good quality signal plans with signifi-
cant benefits in terms of congestion and emissions reduction.
As with other applications of planning that are actually de-
ployed to the real world, however, technological constraints
are very specialised and may well change drastically, even
within the same area, when faced with a different deploy-
ment infrastructure. This is because, in any application area,
the constraints and features of the infrastructure that will im-
plement plans need to be accounted for, and shape the capa-
bilities and characteristics of the planning systems.

In this paper, we report on the process of adapting pre-
vious automated planning techniques for traffic signal opti-
misation to cope with a legacy traffic control infrastructure
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which is common in urban areas of the UK, forming the ba-
sis of Urban Traffic Control (UTC) technology. To do so,
the knowledge models have to be redesigned to incorporate
extra constraints and features that take into account the pe-
culiar deployment constraints of the infrastructure.

More specifically, we introduce three new PDDL+ mod-
els which enable domain-independent planning engines to
produce deployable signal plans on UTC. For comparison
and collecting real-world data, we use a region where nor-
mally the traffic reactive SCOOT (Taale, Fransen, and Dib-
bits 1998) control system is in operation within the UTC
architecture. We extensively test the introduced models to
assess their capabilities and to evaluate the impact of differ-
ent language features on the performance of a wide range
of domain-independent search techniques and heuristics. Fi-
nally, we show that the generated plans are comparable with
the state-of-the-art, and ready to be deployed in the real
world.

Research Context
In essence, traffic signal control is the problem of determin-
ing the optimal green length for each signal in a set of traf-
fic signals, which may be dispersed around a region con-
sisting of several spatially-close traffic junctions. The prob-
lem is structured by grouping sets of green lit signals into
stages: each signal in a stage shares the same green time,
is situated in the same junction, and collectively lets traffic
flow through the junction in a safe manner. This structur-
ing leads to the simpler problem of determining the optimal
green length for each stage.

The goal of the traffic signal problem could be as gen-
eral as minimising average traffic delay in the region, or
as specific as alleviating the extreme delays of traffic exit-
ing major city events and passing through the region. Typi-
cal traffic engineering mechanisms to solve this problem are
traffic-reactive, and make decisions in real-time on how to
change stage duration from cycle to cycle, based on sensor
data (a cycle is the time taken to move through a sequence of
stages of the junction, starting at a distinguished stage one,
and returning back to stage one). Constraints on the prob-
lem include the legal and practical restrictions on the mini-
mum and maximum length of each stage, as well as on the
minimum and maximum length of the overall traffic signal
cycle. While traffic local-reactive technology is essential (in
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Figure 1: A simplified overview of the modelled urban re-
gion, in terms of junctions (circles), links, and boundaries
(rectangles). For readability, the map is not correctly scaled.

particular, the presence of a stage within a cycle may be de-
mand driven, so that stages are used by a single junction only
when needed), our research has concentrated on producing
plans that coordinate junctions working together for periods
of time, with the aim of achieving goals given the knowl-
edge of traffic demands in a region. E.g., the knowledge that
1,000 vehicles will attempt to leave a city centre at a partic-
ular time after a large leisure event forms part of an initial
state to construct a plan alleviating the extreme delays that
happen when purely local-reactive technology is used.

Although we have exported our technology to other parts
of the UK, for illustration we focus on an urban region lo-
cated in the Kirklees council area within West Yorkshire,
United Kingdom. It encompasses a major corridor that con-
nects the Huddersfield ring road with the M1 highway and
extends to the southern part of the Kirklees council. This
corridor serves as a crucial route for commuters and deliv-
ery vans travelling to Huddersfield town or moving between
the M62 and M1 highways, as well as for people joining
or leaving events hosted at the nearby John Smith’s Sta-
dium. Spanning approximately 1.3 kilometres, it comprises
six junctions and 34 road links. Each junction consists of
four to six stages, accommodating between 10 and 17 valid
traffic movements. The 6 junctions sit in a single SCOOT re-
gion, i.e., an area where all of them are controlled by the
SCOOT system and information between nearby junctions
are shared to minimise overall delay for vehicles navigating
the corridor. Figure 1 provides a simplified representation of
this urban area.

SCOOT (Taale, Fransen, and Dibbits 1998) is a traffic re-
active control mechanism used widely around the world, and
is aimed at handling cycle-to-cycle changes in demand. In
response to changes in traffic flows, SCOOT would gradu-
ally adapt and adjust the traffic signal timings of a set of
managed neighbouring junctions. SCOOT is dependent on
its own local data sensors, usually inductive loops embed-
ded in the road surface, and stores sensed data and opera-
tional information in a dedicated database; for details about
the extraction process to create planning knowledge from
the database, the interested reader is referred to the work by
Bhatnagar et al. (2022b). Using this historical data, one can

ensure that the PDDL+ simulation of traffic plans is as ac-
curate as possible, since one can simulate the SCOOT plans
in the PDDL+ model and check the data from the simulation
against the historical records in the database.

We leverage the architecture proposed by Bhatnagar et al.
(2023) for generating and simulating traffic plans in areas
controlled by SCOOT systems, through PDDL+ planning.
The idea of the architecture is to exploit the existing infras-
tructure deployed in an urban region and to use the planning-
enhanced traffic signal control module as a plugin that can be
activated when needed, with goals either specified by a hu-
man operator or pre-defined for routine interventions. This
modular solution has a number of benefits: (i) minimising
costs for traffic authorities, who can reuse what is already
available; (ii) maximising robustness and safety, as gener-
ated plans are implemented and checked by an existing and
extensively validated system, and (iii) supporting mainte-
nance and continuous improvements, as the planning sys-
tem can be modified and swapped with no implications for
the rest of the system. It is worth noting that the models pro-
posed in this paper are agnostic with regard to the deploy-
ment architecture, but are designed to support the constraints
imposed by the underlying UTC architecture.

When moving to generated plan deployment, two main
technological constraints that need to be addressed, and that
emerged from recent trials on the target UTC are: (i) for each
junction, the length of the stages can not be modified arbi-
trarily; instead, the configuration of cycles (i.e., the speci-
fication of the length of every stage in the cycle) can only
be selected from a predefined set, and (ii) traffic engineers
involved in the trials require all the cycles to have the same
duration. The reason for (i) is that configurations need to be
uploaded into the UTC system at least one day in advance;
the reason for (ii) is that the synchronisation between junc-
tions needs to be maintained to avoid disrupting the signal
offsets (green wave) along a corridor of connected links.

Existing PDDL+ Models
A region of the urban road network is modelled as a di-
rected graph, where edges represent road links and vertices
represent junctions. One special vertex represents the exter-
nal area of the modelled region. Essentially, vehicles enter
(leave) the network via links connected to the external area,
which represents the demand for the modelled region. Each
road link has a specified maximum occupancy, indicating the
maximum number of vehicles allowed on the road simulta-
neously, and a current occupancy, representing the current
number of vehicles on the road. Traffic at junctions is reg-
ulated by flow rates assigned to pairs of road links, that en-
code the valid traffic movements. For two road links, rx and
ry , connected to a junction i, and a traffic signal stage p, the
flow is active when rx is the incoming link, ry is the out-
going link, and the traffic signal for i is green during stage
p. Flow rates represent the number of vehicles, measured in
Passenger Car Units, that can move from rx, through i, and
into ry per unit of time.

Junctions are associated with a sequence of traffic signal
stages, where each stage is either fixed (it must occur) or
demand-driven (it will occur if the demand is there for it).
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Listing 1: PDDL+ triggerChange event for transitioning
from a stage p1 to the next one p2 over junction j.
1 (:event triggerChange

2 :parameters (?p1 ?p2 - stage ?j - junction)

3 :precondition (and

4 (inter ?p2) (contains ?j ?p1) (next ?p1 ?p2)

5 (>= (intertime ?j) (- (interlimit ?p1) 0.1)))

6 :effect (and

7 (not (inter ?p1))

8 (active ?p2)

9 (assign (intertime ?j) 0)))

In our models, we assume all stages to be fixed, and allow
the traffic controller to skip them if no demand is present.
We use the next predicate to define the sequence of stages.
The active traffic signal stage determines the flow rates cor-
responding to the green lights. For each stage, there is a
specified range for the minimum and maximum stage length.
A signal plan determines the length within this range. Each
stage ends with an intergreen period, which is the time re-
quired for a signal to change to green while allowing for
stacked vehicles in the middle of the junction to clear and/or
provide time for pedestrian crossings. Intergreens have fixed
minimum and maximum limits, and in operation vary in
length depending on demands. In our current implementa-
tion, their lengths are fixed and estimated by utilising rele-
vant historical data.

Processes are used to model the continuous flow of ve-
hicles through a junction and to track the time duration of
stages and intergreens. The limits and boundaries are man-
aged through PDDL+ events. An important event, which will
be later exploited, is the one for handling the transition from
one stage to the next within the same junction. Specifically,
given two stages p1 and p2, such that p2 follows p1, and
a junction j, the event triggerChange(p1, p2, j) is triggered
when p1, including its intergreen time, has been completed,
enabling p2 on j. Figure 1 provides an excerpt from the
model of the lifted event triggerChange.

In early works (McCluskey and Vallati 2017; Franco et al.
2018), the proposed knowledge model supported traffic sig-
nal optimisation through an action switchStage(p, i), where
p is a stage and i is a junction. This action allows for in-
terrupting the currently ongoing stage and switching to the
next one, provided that p has reached the preset minimum
duration. This model has a significant drawback: it is not
possible to effectively impose constraints on the minimum
and maximum length of a cycle, as required by the regu-
lations. To overcome this issue, Percassi et al. (2023) in-
troduced an improved version of the PDDL+ model, where
stages’ length can be modified with a given granularity, and
cycles’ length constraints can be modelled and taken into
account. The main improvement of this model is the de-
coupling of the switchStage action into two actions, namely
extendStage(p, j) and reduceStage(p, j). Figure 2 provides
an excerpt from the model of the lifted action extendStage
for increasing the duration of a running stage. Such an action
is applicable if junction j is controllable, stage p belongs to
junction j, and importantly, if the increase in the duration

Listing 2: PDDL+ extendStage action for extending the du-
ration of a stage p referring to the junction j.
1 (:action extendStage

2 :parameters (?p - stage ?j - junction)

3 :precondition (and

4 (controllable ?j) (contains ?j ?p)

5 (active ?p)

6 (< (+ (gt ?p) (gran)) (maxgt ?p))

7 (< (+ (ct ?j) (gran)) (maxct ?j)))

8 :effect (and

9 (increase (gt ?p) (gran))

10 (increase (ct ?j) (gran))))

of the green time (gt) does not violate the overall maximum
cycle length for j (maxct) and the maximum length of an in-
dividual stage p (maxgt). The execution of this action results
in an increase, equal to the chosen granularity, of the dura-
tion of stage p and the cycle to which it belongs. The use of
the two actions allows a planning engine to effectively trade
green time between different stages in a cycle, thus support-
ing overall cycles’ length constraints. This model also intro-
duced a numeric fluent counter for each link, used to record
the number of vehicles that entered the link over the plan du-
ration, which is then exploited for defining goal conditions.
In the following sections, we will refer to the model based
on extend and reduce actions as EXRE.

Clearly, even the most recent model based on extend and
reduce actions does not accommodate the constraints of the
UTC infrastructure: it is not possible to define a fixed set
of predefined cycle configurations, resulting in traffic signal
plans that cannot be deployed in the real world.

Engineering PDDL+ Models for Deployability
In this section, we propose three planning models whose
solutions can be deployed in the UTC infrastructure. Their
common feature is that cycle configurations have to be se-
lected from a provided pool of candidates. The three mod-
els are denoted as Cycle by Cycle (CBC), Fixed Repeti-
tion (FIRE), and Variable Repetition (VARE). Before delv-
ing into the details of the models, let us more formally
define cycle configurations. Let j be a junction, and let
Sj = ⟨s1, . . . , skj ⟩ be the sequence of stages associated
with j, also referred to as a cycle. Additionally, let Gj =
{gt1, . . . , gtkj

} be a set of numeric variables that track the
current duration of each stage within j. A cycle configura-
tion of j is a complete assignment over Gj . E.g., given a junc-
tion j having a cycle involving 3 stages Sj = ⟨s1, s2, s3⟩, a
configuration for j is {⟨gt1 = 20⟩, ⟨gt2 = 20⟩, ⟨gt3 = 50⟩},
assigning 20 secs, 20 secs, and 50 secs to the duration of the
three stages.

In the proposed models, each junction has a set of pre-
defined configurations. For example, suppose that j has two
possible configurations, i.e., Cj = {Ca, Cb}. The duration
of the stages Sj are represented as constants, i.e., Gj =
{gta1 , gta2 , gta3 , gtb1, gtb2, gtb3}, where gtck is the fixed duration
of the stage k ∈ {1, 2, 3} for the configuration c ∈ {a, b}.
A possible set of configurations can be defined by the fol-
lowing predefined assignments Ca = {⟨gta1 = 20⟩, ⟨gta2 =
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Listing 3: PDDL+ changeConfiguration action for changing
the configuration of the junction j from c1 to c2.
1 (:action changeConfiguration

2 :parameters (?p - stage ?j - junction ?c1 ?c2 -

configuration)

3 :precondition (and

4 (inter ?p) (controllable ?j) (endcycle ?j ?p)

5 (availableconf ?j ?c2) (activeconf ?j ?c1)

6 (not (activeconf ?j ?c2)))

7 :effect (and

8 (not (activeconf ?j ?c1))

9 (activeconf ?j ?c2)))

20⟩, ⟨gta3 = 50⟩} and Cb = {⟨gtb1 = 20⟩, ⟨gtb2 = 50⟩, ⟨gtb3 =
20⟩}. Notably, the sum of the lengths of the three stages is 90
secs for both configurations, so that the offset in the corridor
is kept. Essentially, configurations Ca and Cb give priority to
the 3rd and 2nd stage of the junction, respectively. The plan-
ning problem hence entails the selection of the configuration
for j to be used, and when, between Ca and Cb.

Cycle by Cycle
In CBC, flexibility is maximised, allowing the configuration
of a junction to be selected in every cycle transition. This
model aims at assessing whether it is worth allowing higher
degrees of freedom to the planning system. In real-world de-
ployment, however, instead of changing configuration every
cycle, it is preferable to repeat the same configuration for
several consecutive cycles to minimise the overhead of the
signal plan change, hence increasing robustness.

The flexible behaviour is achieved by the action
changeConfiguration(p, j, c1, c2), where p denotes a stage,
j represents a junction, and c1 and c2 are two distinct config-
urations for j. In this context, c1 denotes the currently active
configuration on j, while c2 represents the new configura-
tion that will be adopted by j. To prevent redundant decision
points, which would not enhance the expressive power of the
model, the configuration selection can only occur at the end
of the cycle, during the intergreen of the cycle’s final stage.
Figure 3 shows the lifted action changeConfiguration.

Similarly to the extendStage action, the action change-
Configuration can be applied if the junction j is controllable.
Additionally, the action requires that the stage p is currently
in the intergreen phase (predicate (inter ?p)) and p is
the last stage for the cycle referring to junction j (predicate
(endCycle ?j ?p)). This condition ensures that the con-
figuration selection action can only be executed during the
intergreen phase of the last stage of the cycle. For the transi-
tion from c1 to c2, it is necessary that c1 is currently active
for junction j (predicate (activeconf ?j ?c1)) and that
configuration c2 is available for junction j (static predicate
(availableconf ?j ?c2)). To ensure that the action is
executed only when c1 and c2 differ, it is required that con-
figuration c2 is not currently in execution, thus avoiding the
generation of ineffective actions. The execution of this ac-
tion deactivates (activates) configuration c1 (c2). Then, all
events employed to manage the execution of the cycle will
be conditioned to use the stage durations prescribed by c2.

Fixed Repetition
The FIRE model enforces the retaining of the selected con-
figuration for a minimum of k cycles. Once the minimum
number of cycles has been reached, there is the option to
change the configuration for the considered junction. This
model allows a number of decision points lower than CBC.
Our conjecture tested with an experimental study is that this
can lead to better performance.

To track the number of completed cycles associ-
ated with the current configuration for each junction,
we introduce variable (countcycle ?j), and event
triggerChange(p1, p2, j), which models stage transitions
from p1 to p2 for j. When triggerChange(p1, p2, j) is trig-
gered and p1 is the last stage of the cycle, the cycle counter
is increased by one. This state-dependent effect is imple-
mented through the following conditional effect added to the
effects of the triggerChange event:
1 (when

2 (endcycle ?j ?p1)

3 (increase (countcycle ?j) 1))

Here, the static predicate (endcycle ?j ?p1) is used to
verify if p1 corresponds to the last stage of the cycle for j.

The FIRE model adopts the same action
changeConfiguration as the CBC one, with slight mod-
ifications. In addition to the original preconditions, it is
required that the minimum number of cycles (cyclelim)
has been reached; this is done by adding the precondition
(>= (countcycle ?j) (cyclelim)). Also, the use of
the action causes the reset of the counter, modelled by the
additional effect (assign (countcycle ?j) 0).

Variable Repetition
VARE takes control to a deeper level by allowing decisions
on how many times a selected configuration has to be re-
peated for a specific junction. Given a junction j, we denote
by kj the minimum number of repetitions of a configuration
in j. Such a value can vary within a defined range, namely
{kmin, . . . , kmax}. Notably, when kmin = 1, VARE’s control
capability is equivalent to that of CBC. On the one hand, it
introduces additional decision points related to the choice of
kj w.r.t. FIRE; on the other hand, the number of decision
points related to the change of configurations can be lower,
as kmax can be higher than the value of (cyclelim) for
FIRE. We experimentally evaluated if this modelling pays
off in terms of the achieved performance.

kj is modelled in PDDL+ as the numeric variable
(varlimit ?j), serving a similar role as (cyclelim) in
the action for changing the configuration in FIRE. However,
since kj is linked to a specific junction j, the correspond-
ing numeric variable is also parameterised with the object
?j representing the junction. The admissible values for kj
are modelled as constant numeric variables (conflim ?l),
where ?l is an object of type limit associated with each pos-
sible value in the range. VARE allows setting the value of
kj whenever the action for changing a configuration is exe-
cuted. Specifically, the action changeConfiguration enables
an additional action, changeLimit(p, j, l), where p is a stage,
j is a junction, and l is a limit, which assigns to (varlimit
?j) the value (conflim ?l).
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Once the value of kj has been set, the remaining part of
the model for handling the duration of the stages and the
cycle count remains unchanged w.r.t. the model FIRE.

Reformulations and Optimisation
The proposed models use PDDL features that are known as
potentially problematic for PDDL+ planners, namely condi-
tional effects and numeric assignments. Because of that, we
designed reformulations of the models where such features
are compiled away. In the experimental analysis, presented
in the next section, we also take the occasion to empirically
assess whether removing these features could result in more
manageable models for state-of-the-art planning systems.

The introduced models enable the agent to take decisions
during the last intergreen phase of a given cycle (called In-
tergreen Time-window). In our experiments, we also tested
a variant of these models for which deciding a cycle can
be done exactly at the end of the last intergreen phase
(called Instantaneous Time-window). Given the discretisa-
tion of the time utilised for our experiments, the number of
decision points for Instantaneous Time-window is usually 5
times lower than for Intergreen Time-window. Therefore, in
our experiments, we also study if and how much this vari-
ant pays off. All the models and variants are available at:
https://github.com/anas-elkouaiti/utc-models-deployable.

Complexity Induced by the Models
Let us qualitatively examine the computational complexity
induced by the discussed models. We argue that, in this con-
text, the model’s complexity is determined by how it shapes
the state space in relation to decision points and branching
factors.

Notably, models vary based on how the agent can control
the traffic light settings, while they are equivalent in terms of
how they represent the behaviour of the environment. Hence,
the complexity of a model primarily relies on the agent’s in-
teractions with the environment, particularly regarding how
and when it can adjust the configuration of the traffic lights.

In the introduced models, for each junction j, a set of con-
figurations Cj is specified from which the agent must choose.
This choice can only occur at the time instant when the exe-
cution of a cycle is completed.

In the following discussion, let us assume we aim to con-
trol a network with a single junction j within a time hori-
zon h, e.g., h = 900 secs, with cycles having a maximum
duration of gtmax, e.g., gtmax = 90 secs. The timeline is
discretised in δ = 1.

In CBC, the agent can modify the junctions’ configura-
tion, or retain it for the subsequent cycle, after completing
each cycle, significantly increasing the number of decision
points compared to FIRE. We will approximately have h

gtmax

decision points with a branching factor of |Cj |+1 (allowing
for either selecting a different configuration or maintaining
the current one).

In FIRE, on the other hand, the agent is forced to main-
tain the current configuration for k cycles, after which it can
change it or extend it further in time. Therefore, the decision
points are reduced to h

k·gtmax
while maintaining the same

branching factor of CBC. Hence, it can be concluded that
CBC is more complex than FIRE when k > 1.

In the VARE model, the agent can dynamically set the
limit k ∈ {kmin, . . . , kmax} for which a configuration must
be retained before it can be changed. A comparison in terms
of complexity in the general case is not trivial as it may de-
pend on the value of kmin and kmax. However, if kmin = 1,
we can observe that VARE is more complex than CBC, and
consequently than FIRE, because by looking at k = 1 the
decision points are doubled due to the introduction of the
action changeLimit that has a branching factor equal to the
number of available limits. Furthermore, the search space
is extended with all paths related to k > 1. In the general
case, we can conclude that the decision points are equal to∑

k∈{kmin,...,kmax}
2·h

k·maxgt
.

Finally, let us comment on the expressiveness of the mod-
els, understood as the amount of traffic light strategies in-
duced by a model in the form of solution plans. The most ex-
pressive model is CBC. For k > 1 (kmin > 1), FIRE (VARE)
is less expressive than CBC.

Empirical Evaluation
The experimental analysis aims to assess the capabilities and
performance of the proposed models and considered lan-
guage features, and to understand the ability of the result-
ing system to generate effective strategy plans for real-world
scenarios. For this reason, the evaluation consists of two
parts. First, we perform a comparison across the proposed
models and formulations, using a broad range of search con-
figurations provided by the PDDL+ planner ENHSP version
20 (Scala et al. 2020a). This planner, in addition to providing
the possibility of performing customised searches in PDDL+,
has proven to be very effective in dealing with traffic con-
trol problems modelled in PDDL+ (Bhatnagar et al. 2023;
Percassi et al. 2023). This first extensive analysis aims to
identify the best candidate, understood as a model combined
with a search configuration, to be compared with state-of-
the-art signal plans in the second part of the experimental
evaluation. To compare against the state-of-the-art, we con-
sider the historical signal plans implemented by the SCOOT
system, and the signal plans generated by a domain-specific
heuristic working on the EXRE model (Percassi et al. 2023).

Experimental Settings
We use an extended version of the benchmark used by Per-
cassi et al. (2023), focusing on the corridor presented in Fig-
ure 1. We consider six scenarios in two distinct days: the
26th (referred to as day A), which is a Wednesday, and the
30th (referred to as day B), a Sunday, both in January 2022.
It is important to highlight that COVID-19 restrictions were
no longer in effect during that period in the United King-
dom. Each day was examined at three different time slots:
the morning peak hour at 8:30 am (morn), noon at 12:30 pm
(noon), and the evening peak hour at 4:30 pm (eve). This
variation aimed to assess diverse traffic volumes and con-
ditions. The notation used for the scenarios is expressed as
day-slot, e.g., A-morn. Further, we include a scenario (Con-
cert) involving exceptional traffic circumstances, pertaining
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to a concert held at John Smith’s Stadium on Tuesday the
20th of June 2023, which attracted an approximate audience
of 30,000 people. The time considered is 4:00 pm, which
is before the start of the concert. This timing is challenging
for the considered corridor because there is a clash between
commuters leaving the town and spectators arriving at the
concert, creating two opposed traffic demands.

For each scenario, we generate multiple UTC planning
problems, progressively expanding the set of explicitly con-
sidered corridor links in the goal. Specifically, for a given
scenario, we create five UTC planning problems denoted as
Πi

UTC, where i ∈ {1, . . . , 5}. In Πi
UTC, the goal is repre-

sented as a conjunction involving the first i links of the cor-
ridor, i.e., G =

∧
l∈{l1,...,li}⟨counterl ≥ ql⟩. To illustrate, if

i = 2, then G = ⟨counterl1 ≥ ql1⟩∧⟨counterl2 ≥ ql2⟩, sig-
nifying that to solve Π2

UTC, a state must be reached wherein
at least ql1 and ql2 vehicles have traversed links l1 and l2,
respectively. This strategy demonstrated the ability to sup-
port different kinds of goals for the network, and different
behaviours of planning systems: for example, a single goal
link at the end of the corridor can lead to signal plans that fo-
cus on flushing vehicles already in the network towards the
goal link, while multiple goal links require also reasoning in
terms of congestion and ability of vehicles to move through
different junctions. We consider a uniform q value of 350.

All plans generated by the new models have been vali-
dated against the EXRE model, to confirm compliance with
existing requirements, and simulated on historical data via
the architecture designed by Bhatnagar et al. (2022a), to as-
sess deployability and ability to model traffic evolution.

Experiments were run on a machine equipped with Intel
Xeon Gold 6140M CPU with 2.30 GHz, 8 GBs of RAM.

Cycle Configuration Distillation The proposed models
require a set of cycle configurations. To explore how dif-
ferent configurations may impact the models’ ability to gen-
erate effective signal plans, we have outlined three method-
ologies for their distillation.

The first methodology involves generating configurations
synthetically. Let j be a junction, and Sj be the sequence
of stages associated with it. The maximum-1 strategy, de-
noted as MAX1, generates a number of configurations equal
to |Sj |, which in our region is at most 6. Specifically, each
configuration prioritises one stage over the others while pre-
serving a fixed duration of the cycle. In this methodology,
the prioritisation is as follows: the maximised stage has a
higher duration, while the remaining stages have an equally
short green time allocated.

The other two methodologies, instead, draw from the con-
figurations historically adopted by SCOOT in the considered
region. S-HIST generates configurations by looking at con-
figurations implemented by SCOOT in the previous year at
the same day of the week and time of the day. From these
configurations, six are then selected following the idea of the
MAX1 above, i.e., maximising different stages’ lengths at a
time. G-HIST employs a similar approach but considers as
potential candidates all the configurations implemented by
SCOOT in the entire past year, without restrictions in terms
of days and times. These two approaches aim to provide the

planning approach with configurations that have been useful
in the past, hence aligned with the needs of the region.

Following the instructions of traffic engineers from the
local traffic authority, we use configurations with a total
length of 90 secs, and we keep the same 90 secs value for all
junctions to support the synchronisation of flows and green
waves implicitly.

Comparison of PDDL+ Models
In the PDDL+ intra-model experimental analysis, we per-
form a detailed comparison among the novel models, along
with their different formulations, employing various search
strategies and different heuristics. Given a model M ∈
{CBC, FIRE, VARE}, we denote by M the base model and
with M(-f), where f ∈ {ce, asgn} (conditional effects and
numeric assignments, respectively), the formulation of M
in which the language feature f has been removed.

For the FIRE model, we chose to keep the configuration
for a number k of cycles equal to 4 as it represents a good
trade-off between stability and flexibility. This way, once a
configuration is chosen, it is maintained for 6 minutes in the
real world, and at most 3 configurations are needed for a 15-
minute strategy. As for VARE, we considered the range of
k ∈ {4, . . . , 10}, where the minimum value is the same as
the one chosen for FIRE, and the maximum corresponds to a
real-world duration of 15 minutes. Values beyond this range
are not useful, as simulations after 15 minutes diverge from
the real-world behaviour due to the shifting of underlying
turnrates factors (Bhatnagar et al. 2022b).

For each model in this analysis, we show the results of the
optimised variant in which there is a single cycle decision
point (Instantaneous Time-window). This had a strongly
beneficial impact on performance, when compared to the In-
tergreen Time-window variant. A comparison is shown in
Figure 2 (left) and discussed later in this section.

The considered search strategies are greedy best-first
search (GBFS) and A⋆ (Hart, Nilsson, and Raphael 1968),
and the adopted heuristics included hadd, hmax, and hmrp

(Scala et al. 2020b). A search configuration is defined as
the combination of a search strategy along with a particular
heuristic. Given the large number of systems obtainable (7
models and 6 search configurations), we rank their perfor-
mance using the IPC quality score, calculated based on the
makespan.1 Makespan provides an idea of the effectiveness
of the implemented signal plans in quickly reaching goals.

Out of all the considered search configurations, the best
performing across all models is GBFS with hmax, except for
the FIRE(-ce) model, where the best configuration is GBFS
with hmrp. In the following, we focus on results achieved
using such search configurations, as they represent the top
performance that each model can deliver in the considered
settings.

Table 1 provides scenario-by-scenario makespan results
for all models. Results are aggregated across scenarios ac-
cording to the exploited cycle configurations, offering pre-
liminary insights into the impact of injected configurations
on different models. In terms of makespan, all the models

1https://ipc2023-classical.github.io/ for details on IPC Score.
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Scenario Cycle CBC FIRE VARE

B -asgn B -ce B -asgn -ce

A-morn
MAX1 3.0 3.1 3.2 3.2 2.8 2.8 2.7
S-HIST 4.9 4.9 4.9 4.9 4.9 4.9 4.9
G-HIST 4.9 4.9 4.9 4.9 4.9 3.9 4.9

A-noon
MAX1 2.9 2.9 2.9 2.9 2.9 2.8 2.9
S-HIST 4.9 4.9 4.9 4.9 4.9 4.9 4.9
G-HIST 4.8 4.9 4.9 4.9 4.9 4.9 4.9

A-eve
MAX1 3.0 3.0 3.0 2.8 3.0 2.4 3.0
S-HIST 4.8 4.8 4.7 4.7 4.8 4.8 4.8
G-HIST 4.7 4.6 4.8 4.7 4.8 4.8 4.7

B-morn
MAX1 5.0 5.0 5.0 4.9 4.8 4.9 4.9
S-HIST 1.0 4.9 4.9 4.9 2.9 2.9 1.0
G-HIST 5.0 5.0 5.0 4.9 3.9 3.9 5.0

B-noon
MAX1 2.8 2.8 2.8 2.8 2.8 2.8 2.9
S-HIST 5.0 4.9 5.0 4.9 5.0 5.0 5.0
G-HIST 5.0 4.9 5.0 4.9 5.0 5.0 5.0

B-eve
MAX1 3.5 3.3 3.5 3.6 3.1 3.2 3.1
S-HIST 5.0 5.0 5.0 5.0 5.0 5.0 5.0
G-HIST 5.0 5.0 5.0 5.0 5.0 5.0 5.0

Concert
MAX1 3.0 2.8 2.9 3.1 2.7 2.8 2.7
S-HIST 4.9 4.7 4.6 4.6 4.5 4.6 4.6
G-HIST 4.6 4.8 4.6 4.8 4.6 4.6 4.6

Σ
MAX1 23.2 22.8 23.3 23.1 22.1 21.6 22.2
S-HIST 30.4 34.0 34.0 33.9 32.1 32.1 30.2
G-HIST 33.9 34.1 34.0 34.2 33.1 32.1 34.1

Σ Σ 87.6 90.9 91.3 91.2 87.3 85.8 86.4

Table 1: IPC-Score results for the makespan across the mod-
els and their different formulations (B stands for the base
model). The results are split according to the cycle configu-
ration strategy adopted. Best results are in bold.

tend to provide similar results across the scenarios, with sig-
nificant variations emerging when different cycle configu-
rations are used. Unsurprisingly, MAX1 is the distillation
approach that leads to the worst results, while S-HIST and
G-HIST allow to achieve plans of very similar quality. Turn-
ing our attention to the models, the top-performing one is
FIRE in both of its formulations, followed by CBC in its
version without numeric assignments, i.e., CBC(-asgn). It
is interesting to note that the higher flexibility provided by
the CBC formulation is not reflected in better performance,
while the tradeoff between flexibility and complexity pro-
vided by FIRE seems to better support the generation of
good quality signal plans. Further, removing the use of as-
signments in CBC leads to better results but only in a single
scenario, namely B-morn, as it increases coverage.

Table 2 sheds some light on the results by also showing
coverage (number of solved instances) and IPC-Score for
expanded nodes and planning time. These results provide
additional insights into Table 1. It is evident that the use
of FIRE-based models achieves the highest coverage, suc-
cessfully solving all considered instances. This outcome is
also reflected in the makespan score, positioning FIRE as the

CBC FIRE VARE

B -asgn B -ce B -asgn -ce

Coverage

MAX1 (35) 35 35 35 35 35 34 35
S-HIST (35) 31 35 35 35 33 33 31
G-HIST (35) 35 35 35 35 34 33 35

Σ (115) 101 105 105 105 102 100 101

Score(ExpNodes)

MAX1 10.0 10.4 17.6 12.2 4.9 5.0 5.0
S-HIST 7.3 11.7 17.0 14.0 8.8 8.4 8.2
G-HIST 8.4 10.3 18.0 17.3 8.6 7.6 7.4

Σ 25.7 32.4 52.7 43.5 22.3 21.0 20.6

Score(PTime)

MAX1 25.4 24.5 26.5 24.9 18.4 13.8 18.7
S-HIST 19.1 22.1 24.2 23.2 19.5 13.8 18.7
G-HIST 20.7 21.5 25.1 24.1 19.9 13.6 19.8

Σ 65.2 68.1 75.8 72.3 57.8 41.2 57.2

Table 2: Coverage and IPC-Score about expanded Nodes
(ExpNodes) and planning time (PTime) across the mod-
els and their different formulations (B stands for the base
model). The results are split according to the cycle configu-
ration strategy adopted. The best results are in bold.

most promising model among those evaluated. Indeed, many
of the makespan score variations from Table 1 can largely
be attributed to discrepancies in coverage. For instance, in
the CBC and VARE(-ce) models, four problems remain un-
solved in B-morn (compare with the B-morn S-HIST entry
in Table 1). This scenario is characterised by a low influx
of vehicles in the network, causing the plan solutions to be
much longer compared to other instances with a higher num-
ber of vehicles. As a consequence, models characterised by
greater flexibility, and thus more degree of freedom, suffer
more in terms of search effort.

Results in Table 2 also show that FIRE models allow
domain-independent planning systems to solve problems
quickly, compared to the other variants, with also a smaller
number of nodes expanded during the search. It is also worth
highlighting that for CBC (VARE) the use of assignments
in the code has a slight detrimental (incremental) effect on
performance. This is somehow surprising as it is generally
known that assignments lower the performance for PDDL2.1
models; in VARE, this can be because removing assignments
between different numeric variables leads to a larger num-
ber of ground actions in the encodings. These results offer
a different perspective on the impact of that specific PDDL
feature in the context of challenging PDDL+ applications.
Surprisingly, the use of conditional effects is beneficial for
performance. Both FIRE and VARE allow to deliver best
performance when conditional effects are in use.

Turning our attention to the importance of the time-
window optimisation, Figure 2 (left) compares the planning
time achieved when using the three proposed models with
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Figure 2: (Left) Planning times obtained by comparing the
models using Instantaneous Time-windows, compared to
the models that do not employ this optimisation. (Right)
Whisker plot of expanded nodes across different models.

all possible reformulations, with and without the time win-
dow optimisation. Such optimisation brings an outstanding
benefit in terms of planning time (points above diagonal are
those where the optimisation has a beneficial impact). The
VARE model is the only one where there are some cases
where the optimisation reduces performance, but the over-
all positive impact is also true for this class of models. The
right part of Figure 2 provides a whisker plot comparing the
number of expanded nodes across the three models. The ob-
tained results confirm that the varying levels of freedom in
the models have repercussions in terms of the search effort.

Taking a closer look at the generated plans, we investi-
gate if they include cycle configuration changes, or whether
solutions are generated by keeping the starting configura-
tion on all junctions. In all cases, the solution plans include
changes to the configurations, suggesting that despite ex-
ploiting domain-independent approaches, the models allow
the planning engine to reason to improve traffic conditions.
More specifically, the CBC model generates a much higher
number of configuration changes w.r.t. FIRE and VARE. The
maximum number of changes encountered in a plan for the
three models is 98, 33, and 26, respectively. This is somehow
expected, as CBC has the greatest degree of freedom.

FIRE is the most promising model, producing plans with
less computational effort due to its good tradeoff between
flexibility and effectiveness, and is used in the next section.

Comparison Against the State-of-the-art
We are now in the position to compare the plans generated
by FIRE with the plans historically implemented by SCOOT
in the reference region. Additionally, we consider plans ob-
tained by a domain-specific planning approach designed for
the EXRE model, that utilises a domain-specific heuristic,
hTSO, combined with GBFS (Percassi et al. 2023).

All traffic signal plans are evaluated in simulation, util-
ising the simulation environment introduced in (Bhatnagar
et al. 2022a). For the comparison, to provide a well-rounded
performance overview, we rely on the metrics proposed by
Percassi et al. (2023): 0 ≤ µZ(occC) ≤ 1 represents the
average occupancy, normalised in relation to the maximum

Scenario Approach µZ countC in middle out

A-morn

MAX1 0.22 738.4 326.8 163.0 159.6
S-HIST 0.17 1088.7 417.1 248.9 221.6
G-HIST 0.16 1085.6 417.1 248.4 224.9
hTSO 0.13 1108.8 417.1 253.6 235.8
H 0.28 887.4 417.1 221.0 181.7

A-noon

MAX1 0.32 814.0 415.5 160.4 181.3
S-HIST 0.31 1225.3 551.5 244.7 249.4
G-HIST 0.3 1212.6 551.5 243.8 250.3
hTSO 0.16 1268.4 547.6 261.2 264.8
H 0.35 1138.3 551.5 270.9 227.3

A-eve

MAX1 0.43 833.5 526.2 166.4 197.4
S-HIST 0.39 1204.3 614.7 245.1 258.0
G-HIST 0.39 1209.0 614.7 245.1 260.3
hTSO 0.15 1437.0 599.9 298.5 292.8
H 0.4 1317.9 614.7 309.1 271.9

B-morn

MAX1 0.04 454.1 173.8 103.0 94.7
S-HIST 0.02 454.4 173.8 104.7 94.8
G-HIST 0.03 463.8 173.8 105.1 93.1
hTSO 0.02 468.3 173.8 108.6 97.2
H 0.07 417.8 173.8 102.6 83.2

B-noon

MAX1 0.34 768.8 400.4 161.1 169.0
S-HIST 0.34 1220.2 560.6 246.9 243.8
G-HIST 0.34 1214.7 560.6 246.9 238.6
hTSO 0.17 1322.0 557.7 279.4 259.0
H 0.73 612.9 558.9 146.1 74.9

B-eve

MAX1 0.16 678.2 283.5 148.6 163.7
S-HIST 0.1 944.3 353.4 206.2 207.6
G-HIST 0.1 944.4 353.4 206.2 209.2
hTSO 0.1 943.9 353.4 208.2 207.0
H 0.48 606.3 353.4 166.6 89.8

Concert

MAX1 0.52 1163.5 612.8 176.1 351.5
S-HIST 0.74 1356.9 612.8 228.9 357.9
G-HIST 0.73 1408.5 612.8 244.3 344.9
hTSO 0.64 1492.8 612.8 269.2 386.6
hTSO
⋆ 0.45 1628.2 612.8 308.7 409.7

Table 3: Comparison between the best planning system ob-
tained, i.e., GBFS+hmax applied to FIRE for different kinds
of cycle configurations, and the state-of-the-art results, i.e.,
GBFS+hTSO applied to EXRE, and the historical strategy im-
plemented by SCOOT (H) or hTSO

⋆ . Best results are in bold.

capacity of the links in the west-to-east corridor direction;
a value close to one indicates a high level of congestion.
countC is the total number of vehicles that have moved in
the corridor during the simulation. in/mid/out is the total
number of vehicles that have entered from the western entry
points, crossed the middle of the corridor (between J3 and
J4), and exited from the eastern exit points, respectively.

Table 3 (top) presents the results of the comparison for
days A and B. Each sub-table, corresponding to a specific
scenario, displays the metrics obtained for the FIRE model
tested with different stage configurations, hTSO, and the his-
torical data generated by SCOOT (denoted by H). For the
FIRE-based and hTSO models, the results are reported for the
problem that maximised the metric countC .
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The use of cycle configurations derived from historical
data (S-HIST and G-HIST) enhances the results obtained
from the FIRE model also in terms of traffic-related met-
rics. Specifically, the combination of FIRE and S-HIST (G-
HIST) yields a value of countC slightly lower than that
recorded in historical data on day A. Overall, the counter for
this combination is better than for H in 5 out of 6 instances.
Simultaneously, the counter is marginally lower than that ob-
tained by hTSO in 5 out of 6 instances. It is worth reminding
that the comparison with hTSO is biased in favour of hTSO,
since it relies on the EXRE model, which provides a de-
gree of freedom that is beyond the capabilities of FIRE, and
which, differently from FIRE, is driven by a domain-specific
heuristic. More importantly, hTSO leads to signal plans that
can not be deployed in the region due to the technological
constraints of the UTC infrastructure. Another observation
is that FIRE consistently generates plans that reduce corri-
dor congestion w.r.t. H, albeit to a lesser extent compared
to hTSO. An example is the B-noon scenario, where the num-
ber of moved vehicles is roughly double while halving the
overall congestion level (middle and out values are much
higher).

Table 3 (bottom) focuses on the Concert scenario, where
significant opposed traffic flows navigate the area. This sce-
nario differs significantly from the previous ones. Firstly,
it involves exceptional traffic conditions, and secondly, his-
torical data where SCOOT is in operation is not available.
This is because the strategy implemented in the real-world
on that occasion was generated by leveraging a plan pro-
duced by hTSO and then manually modified by traffic en-
gineers, according to their knowledge, to make it deploy-
able on the SCOOT infrastructure. This variant of hTSO is de-
noted as hTSO

⋆ , and should be regarded as the best possible
performance achievable by merging human experience and
planning capabilities. Unsurprisingly, hTSO

⋆ delivers the best
overall performance. FIRE with G-HIST achieves slightly
lower results than hTSO in terms of vehicles moved through
the corridor, and interestingly, the MAX1-based variant at-
tains lower congestion levels, but this appears to be because
it creates a bottleneck at the start of the corridor (middle
and out values are very low). All the approaches allow an
equal number of vehicles to enter from the West entry point
(in), but for FIRE and hTSO middle and out are lower than
for hTSO

⋆ ; this is because the implemented plans –being gen-
erated in advance– include all stages of all cycles, while the
SCOOT system that operates in real-time can skip optional
(demand-only) stages, for instance pedestrian crossings or
cross-flow traffic, if there is no demand.

Overall, the introduced FIRE model allows a domain-
independent planning engine to deliver plans that are com-
parable with the state-of-the-art and that, differently from
the state-of-the-art, can be continuously deployed.

Related Work
Several planning and scheduling-based approaches have
been developed for traffic signal optimisation. Gulić, Oli-
vares, and Borrajo (2016) proposed a system that integrates
an AI planning engine with the SUMO simulator (López
et al. 2018) via an “Intelligent Autonomic System” module.

Their PDDL2.1 model utilises relative density descriptors
(e.g., “low”, “medium”) to represent traffic concentration on
road links, abstracting away from individual vehicle counts.
This approach enables scalability to regions with thousands
of vehicles. The work by Pozanco, Fernández, and Borrajo
(2021) builds upon this approach, introducing also the abil-
ity for continuous learning and knowledge model evolution
for improved network adaptation.

Recent preliminary work by Ivankovic et al. 2022 per-
forms traffic signal optimisation by leveraging on planning
techniques that reason with global state constraints (Haslum
et al. 2018), which can provide valuable insights into the
broader impact of light changes.

The SURTRAC system leverages a decentralised schedul-
ing technique for urban traffic signal control (Xie, Smith,
and Barlow 2012; Hu and Smith 2019; Smith 2020). Each
intersection acts as an autonomous scheduling agent, col-
laborating with neighbouring intersections to predict future
traffic demand and minimise expected vehicle wait times at
their respective signals. This distributed approach exhibits
good potential for scalability due to its localised decision-
making, but may exhibit reduced flexibility in achieving spe-
cific system-wide goals compared to centralised AI planning
methods.

Conclusions
In this paper, we demonstrated how we adapted planning
models to generate deployable traffic signal plans for a spe-
cific UTC infrastructure, widely used in the UK. In the pro-
cess, we designed three new PDDL+ models that support the
use of domain-independent planning engines for the task.
The large experimental analysis, performed using real-world
data, demonstrated the capabilities of the models and shed
some light on the impact of some advanced language fea-
tures. Future work will focus on investigating more sophis-
ticated techniques for cycle configurations distillation, on
exploring the use of multiple discretisation steps to reduce
complexity (Cardellini et al. 2024), and on extending the
analysis to additional urban regions.
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