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Abstract

Representing and manipulating domain knowledge is essen-
tial for developing systems that can visualize plans. This pa-
per presents a novel plan visualisation system called Planning
Domain Simulation (PDSim) that employs knowledge rep-
resentation and manipulation techniques to support the plan
visualization process. PDSim can use PDDL or the Unified
Planning Library’s Python representation as the underlying
language for modelling planning problems and provides an
interface for users to manipulate this representation through
interaction with the Unity game engine and a set of planners.
The system’s features include visualising plan components,
and their relationships, identifying plan conflicts, and exam-
ples applied to real-world problems. The benefits and limi-
tations of PDSim are also discussed, highlighting future re-
search directions in the area.

Introduction
Modelling planning domains that are both correct and ro-
bust can be a challenging problem, especially in real-world
domains. For instance, consider the following robot plan-
ning task: a set of robots are deployed in a factory to help
with warehouse logistics. The robots can navigate on a pre-
defined grid map with simple 4-way movements, pick up
and drop boxes, and deliver objects to a van parked in the
warehouse. The problem also imposes certain limitations:
the robots cannot cross each other and the vans can only ac-
cept a specific box. The above problem could be viewed as a
slightly modified version of the sequential Floor Tile domain
from the 2011 International Planning Competition (IPC),1 a
decision-making problem inspired by a real-world scenario
that can be modelled using a representation language such
as PDDL (McDermott et al. 1998). From a representation
point of view, the grid could be modelled as a set of inter-
connected nodes denoting locations in the warehouse for ob-
jects and agents (e.g., vans, boxes, and robots), as illustrated
in Figure 1. A simple goal might be to ensure that particular
objects are in specific locations (e.g., box1 is in van1).

Using the above model, we can quickly find a valid solu-
tion to the problem using classical automated planning tech-
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1https://github.com/potassco/pddl-instances/tree/master/ipc-
2011/domains/floor-tile-sequential-satisficing
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Figure 1: Initial state for the Warehouse problem.

LEFT (R1,C2-1,C2-0) LEFT (R1,C2-1,C2-0)
UP (R1,C2-0,C1-0) UP (R1,C2-0,C1-0)
PICKUP(R1,B1,C1-0) UP (R1,C1-0,C0-0)
UP (R1,C1-0,C0-0) PICKUP (R1,B1,C1-0)
LOAD (R1,B1,C0-0,V1) LOAD (R1,B1,C0-0,V1)

Figure 2: Example plan outputs for the Warehouse problem.
The plan on the left is correct, while the plan on the right is
found after introducing an error in the domain.

niques. For instance, Figure 2 (left) shows a plan generated
by the FastDownward planner (Helmert 2006) for the prob-
lem in Figure 1, where a robot moves to grid cell 1 0 to
pick up the box before delivering it to the van at cell 0 0.

Figure 2 (right) shows an alternative action sequence, gen-
erated using an incorrect version of the domain. Although
the plan is similar to the one on the left, it is incorrect: the
robot executes the pickup action when in grid cell 0 0
before loading the van. (This plan is the result of a missing
precondition on the pickup action which normally ensures
that the robot and object are in the same cell). While this
kind of error can be trivial to debug and correct by an expert
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knowledge engineer, this isn’t always the case for novices
using languages such as PDDL. Catching modelling errors,
such as incorrect logic in action preconditions and effects
or missing properties in the initial state, can still be diffi-
cult due to the complexity of the knowledge that needs to be
specified and the level of abstraction that is often required
for ensuring the generation of tractable solutions.

In this paper, we present the Planning Domain Simula-
tion (PDSim) system (De Pellegrin 2020; De Pellegrin and
Petrick 2021, 2022, 2023), a framework for visualising and
simulating a range of planning problems (classical, numeri-
cal, or temporal) using the Unified Planning Library (UPL)
(Micheli and Bit-Monnot 2022) and the Unity game engine
(Unity Technologies 2022). Using UPL or PDDL, the user
can define the domain knowledge and the problem formula-
tion (e.g., planner requirements, types and objects, plus stan-
dard definitions of the domain and problem). A planner then
uses this information to check that a solution exists and to
generate a plan that satisfies the goal. Using the generated
plan, PDSim interprets the action effects as 3D animations
and graphics effects in Unity to deliver a visual represen-
tation of the world and its actions during plan execution,
which can aid the user in assessing the validity of the plan.

While several tools already exist to aid in the process of
validating planning models—notably plan validation tools
like VAL (Howey and Long 2003) and formal plan verifi-
cation methods such as (Bensalem, Havelund, and Orlan-
dini 2014; Cimatti, Micheli, and Roveri 2017; Hill, Komen-
dantskaya, and Petrick 2020)—approaches based on visual
simulation and visual feedback can also play an important
role in addressing this problem: visual tools can serve as
powerful environments for displaying, inspecting, and sim-
ulating the planning process, which can aid in plan explain-
ability for human users (Fox, Long, and Magazzeni 2017).

In this paper, we describe the structure, components, and
features of PDSim that are responsible for providing visual-
isations, and illustrate how PDSim can be used to simulate
planning problems. PDSim is built by extending the Unity
game engine editor, and can use the components offered by
the engine such as a path planner, scene management, and
visual scripting, among others. The system uses a backend
server that is responsible for defining planning problems us-
ing UPL or PDDL, managing plan generation and problem
compilation, and providing support for a range of modelling
features including typing, temporal actions, and action costs.

The rest of the paper is organised as follows. First, we give
an overview of automated planning with PDDL and review
work related to plan visualisation. We then describe how
knowledge is represented in PDSim and outline the struc-
ture of PDSim’s main components. Examples are provided
for a number of planning domains. Finally, we conclude with
future work and planned extensions to PDSim.

Background and Related Work
Automated Planning with PDDL
Automated planning is a decision-making task that in-
volves reasoning about the sequence of actions (a plan) that
achieves a set of goals (Ghallab, Nau, and Traverso 2004;

Haslum et al. 2019). A planning problem Π can be thought
of as a tuple Π = ⟨P,A, I,G⟩, where P is a set of prop-
erties that define a state space (including possibly a set of
objects), A is a set of actions, I is a set of initial state prop-
erties, and G is the set of goal conditions to be achieved. It
is useful to think of a planning problem as a state transition
system, where a state captures all the properties that are true
at some point in time, and actions transition states to new
states. A solution to the planning problem is a sequence of
actions, called a plan, that when applied to the initial state I
transitions to a state in which the goal conditions G are true.

Automated planning has been used in a variety of appli-
cations such as robotics, video games, logistics, and natural
language processing. Intuitively, planning can be thought of
as a search process that enables an autonomous agent to gen-
erate a plan to achieve its goals. In this view, plan generation
typically involves the following steps:

1. Problem Definition: Specifying the planning model Π
(properties, actions, initial state, and goals) that captures
the operating environment of the agent.

2. Search Space Generation: Creating a representation of
the possible states that can be achieved by applying ac-
tions from the initial state to the goal state.

3. Search: Applying a search algorithm that explores the
state space and selects a plan that satisfies the goal.

Planning problems are composed of two parts: the domain
definition which specifies the state properties and actions,
and the problem definition which specifies the initial state
and the goal. State properties are specified using (parameter-
ized) predicates that can be true or false in a given state and
that capture attributes of the environment, objects, or agents.
For instance, (clear cell 0 1) might denote that loca-
tion (0,1) is empty, (at box1 cell 1 1) might capture
the fact that box1 is at location (1,1), and (robot-empty
robot1)might represent the idea that robot1 isn’t carrying
anything. Predicates specify the initial state and goal condi-
tions of the planning problem, and are also used to describe
the preconditions and effects of actions.

Actions are formalised using a schema that specifies the
parameters, preconditions, and effects of each action, as in
Figure 3 using PDDL or Figure 4 using UPL and Python.
The preconditions capture the conditions that must be true
in a state to perform the action, while the effects describe
the state changes after an action is performed. For instance,
the load-truck action in Figures 3 and 4 has three pa-
rameters: a package (?p), a truck (?t), and a location (?l).
A package ?p can be loaded onto a truck ?t provided ?t
is at location ?l, (at ?t ?l), and ?p is at location ?l,
(at ?p ?l). As a result of applying load-truck, the
package will no longer be at ?l, (not (at ?p ?l)),
and will be in the truck, (in ?p ?t). When an action is
chosen by the planner to be part of the plan, its parameters
will be replaced by objects in the planning problem (e.g.,
van1 for ?t, box2 for ?p, and cell 1 2 for ?l).

Domain and problem definitions are used as input to an
automated planner that can reason about the changes in the
world state when actions are applied, and generate a plan
that achieves the goal conditions. A plan is typically a se-
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(:action load-truck
:parameters (?p, ?t, ?l)
:precondition (and (at ?t ?l)

(at ?p ?l))
:effect (and (not (at ?p ?l))

(in ?p ?t))
)

Figure 3: PDDL representation of the load-truck action
in the Warehouse domain.

lt = InstantaneousAction("loadTruck",
p=parcel, t=truck, l=location)

lt.add_precondition(at(lt.t, lt.l)
&
at(lt.p, lt.l))

lt.add_effect(at(lt.p, lt.l), False)
lt.add_effect(in(lt.p, lt.t), True)

Figure 4: Representation of the load-truck action in the
UPL Python format.

quence of actions, as shown in Figure 2, where each row
represents an action and its (grounded) parameters, and the
parameters in the action schema have been replaced with ob-
jects from the problem definition.

Plan Visualisation
PDSim (De Pellegrin and Petrick 2023) is part of the small
ecosystem of simulators for automated planning which use
visual cues and animations to translate the output of a plan
into a 3D or 2D environment. The closest approach to ours
is Planimation (Chen et al. 2020) which uses Unity as the
front-end engine to display objects and animate their posi-
tion in a given plan. Planimation defines animations using
an ad hoc language (namely, an animation profile) similar
to PDDL. This differs from PDSim, where animations are
defined using Unity’s visual scripting system.2

The Logic Planning Simulator (LPS) (Tapia, San Se-
gundo, and Artieda 2015) also provides a planning simu-
lation system that represents PDDL objects with 3D models
in a user-customisable environment. The approach is inte-
grated with a SAT-based planner and a user interface that
enables plan execution to be simulated while visualising up-
dates to the world state and individual PDDL properties in
the 3D environment. LPS is not based on Unity but provides
the user with a simple interface for plan visualisation. Sev-
eral user-specified files are also required to define 3D object
meshes, the relationship between PDDL elements and 3D
objects, and the specific animation effects.

vPlanSim (Roberts et al. 2021) is a similar application that
also aims to provide a 3D visualisation of a plan but with
a number of important differences. While vPlanSim offers
a simple and fast custom graphical environment for creat-
ing plan simulations with few dependencies, PDSim uses

2https://docs.unity3d.com/Packages/com.unity.
visualscripting@1.7/manual/vs-nodes-reference.html

the Unity game engine to offer the user industry-standard
tools for creating realistic scenarios. PDSim also provides a
language-agnostic tool to set up simulations which is key for
users who are not familiar with PDDL and Unity.

Table 1 highlights the main differences between PDSim,
Planimation, and vPlanSim in how they tackle the problem
of plan visualisation. Unlike other visualisation systems that
offer a limited selection of planners, PDSim, thanks to its
integration with UPL, supports a range of planners such as
FastDownward, Tamer, and LPG, providing capabilities for
both numerical and temporal planning. This distinguishes
PDSim from existing visualization systems. Additionally,
PDSim also offers compatibility with ROS for robotics ap-
plications, a feature that to the best of our knowledge is not
supported by other visualization systems. In contrast, Plani-
mation relies on an animation profile in a definition language
similar to PDDL, while vPlanSim requires scripting using a
Python routine. For users seeking more in-depth modifica-
tions to the visualisation, PDSim provides a C# API.

Several systems also exist to help users formalise plan-
ning domains and problems through user-friendly interfaces.
For instance, GIPO (Simpson, Kitchin, and McCluskey
2007), ItSimple (Vaquero et al. 2007), and VIZ (Vodrázka
and Chrpa 2010) use graphical illustrations of the do-
main and problem elements, removing the requirement of
PDDL language knowledge to help new users approach
planning domain modelling for the first time. Tools such
as Web Planner (Magnaguagno et al. 2017) and Plan-
ning.Domains (Muise 2016) use Gantt charts or tree-like
visualisations to illustrate generated plans and the state
spaces searched by a particular planning algorithm. Plan-
Curves (Le Bras et al. 2020) uses a novel interface based
on time curves (Bach et al. 2015) to display timeline-based
multiagent temporal plans distorted to illustrate the similar-
ity between states. All of these tools attempt to assist users
in understanding how a plan is generated and to help detect
potential errors in the modelling process.

Simulators are also prevalent in robotics applications and
multiple systems make use of game engines to provide vir-
tual environments, such as MORSE (Echeverria et al. 2011)
or Drone Sim Lab (Ganoni and Mukundan 2017). Game
engines also offer several benefits such as multiple render-
ing cameras, physics engines, realistic post-processing ef-
fects, and audio engines, without the need to implement
these features from scratch (Ganoni and Mukundan 2017),
making them desirable tools for simulation. For example,
Unity has been used as a tool for data visualisation, archi-
tectural prototypes, robotics simulation (Green et al. 2020),
synthetic data generation for computer vision (Fort, Hogins,
and Davis 2021), and machine learning applications (Haas
2014; Craighead, Burke, and Murphy 2008). There are also
interesting use cases of Unity related to AI and planning, in-
cluding the Unity AI Planner,3 an integrated planner being
created by Unity as a component for developing AI solutions
for videogames, and Unity’s machine learning agents,4 a so-

3https://docs.Unity3d.com/Packages/com.Unity.ai.planner@0.
0/manual/index.html

4https://github.com/Unity-Technologies/ml-agents
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PDSim Planimation vPlanSim
Supported
Planners

Supports a wide range of planners,
(see Back-End section) planning.domains solver API External PDDL planner

Planning
Support Classical, Temporal, Numeric Classical Classical

Visualisation Unity Editor or executable
targeting user OS Web interface VTK and pyQt

Animation
Creation Visual scripting in-engine system Animation profile definition

(PDDL-like) Scripting routines with Python

Representations PDDL, ANML, Python, C# PDDL PDDL

Miscellaneous Middleware support for
robotics with ROS

Can host local versions of
Planimation

Can generate PDDL problems
interactively

Table 1: Comparison of plan visualisation systems.

PDSim
Representation

UPL
Internal

Representation
Facts

Planning

Protobuf

Figure 5: Mapping between the current planning problem
state description (Facts), the UPL Internal Representation
used to schedule the selected planner, and the PDSim Rep-
resentation using the C# counterpart for Unity.

lution for training and displaying agents whose behaviour is
driven by an external machine learning component.

Knowledge Representation
PDSim visualises states and plans in the Unity game envi-
ronment. Knowledge is visualised by defining a planning
problem directly using UPL or by using UPL to parse a
PDDL representation. After a plan is generated, both the
plan and the problem definition are converted to a protocol
buffer representation5 that will be later mapped to Unity’s
game engine objects. In Unity, the user defines the proce-
dures, animations, and final visualisation of the plan. In this
section, we discuss the underlying planning model and how
it is mapped to concepts in Unity.

Mapping Planning Components into Unity
Unity does not have built-in support for planning problem
modelling languages but instead uses C# as a scripting lan-
guage. As a result, components must be mapped into C#
constructs (classes) to be represented in Unity. For a given
planning domain and problem description, a set of basic con-
structs must be translated for plan visualisation: predicates,
actions, types, and constants. Figure 5 shows the mapping
between different types of knowledge and how that knowl-
edge is manipulated for visualisation in PDSim. ‘Facts’ cor-
respond to the high-level knowledge that the user wants to
represent (e.g., the configuration of the Warehouse environ-
ment). This high-level representation can be mapped to the
‘UPL Internal Representation’ by using PDDL or the Python

5https://protobuf.dev/

library. Here knowledge is further manipulated and used to
perform the search for plans using the planning components.
The last block corresponds to the ‘PDSim Representation’
that maps the planning model to Unity C# components us-
ing the protocol buffer representation.

Predicates define the properties that objects have (or don’t
have) in a particular state. In PDSim, predicates are encoded
as Object Oriented Programming (OOP) classes. In partic-
ular, PDSim differentiates between Boolean, Numeric, or
Symbolic predicates. Boolean predicates can be either true
or false. The animation of Boolean predicates can be split
in two ways and the user can customise the behaviour of
both values. Numeric predicates represent a predicate that
can hold a numeric value. Animations of Numeric predicates
can represent increases or decreases in numeric assignments.
Finally, Symbolic predicates map animations to predicates
that have a symbolic value, such as a constant.

Actions are defined by their preconditions and effects. Ac-
tions in PDSim are also represented by classes that store the
set of effects and the possible objects that can be used with
the action. Types are used to define a specific property for an
object, in a parent-child relationship. In C#, types are repre-
sented with a tree-type structure so that if an object is of a
particular type it inherits all the possible actions that the su-
pertype has access to. For example, a robot could be a physi-
cObject child type that inherits all the animation available to
this type. Types are not necessary for PDSim, as a predicate
animation can also be used to define the type of constant on
the Unity side. For example, cube(?c) can be mapped to an
animation that can spawn a cube model or sprite and set its
position in the 3D environment. Constants are used to refer
to specific objects in the planning problem. In C#, and more
particularly in Unity, constants represent the virtual actors in
the scene. These can be 3D or 2D models and the animations
that are directly applied to them.

Converting the Planning Model to PDSim
The planning model is converted to a protocol buffer rep-
resentation that maps to an internal C# PDSim model rep-
resenting the components described above (predicates, ac-
tions, constants, etc.). This model is used in Unity to set up
the simulation, where domain entities such as actions, types,
and predicates are used to set up the core Unity simulation.
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(:init
(at box1 cell_1_1)
(at box2 cell_1_2)
(at robot1 cell_0_0)
(at robot2 cell_2_2)
(robot-empty robot1)
(robot-empty robot2)
...
(up cell_0_1 cell_1_1)
(down cell_1_1 cell_0_1)
(right cell_0_2 cell_0_1)
(left cell_0_1 cell_0_2)

...)

Figure 6: Example of an initial state in PDDL format.

Figure 7: Initial state representation translation in PDSim
where the PDDL predicates are visualised as objects and
physical positions in a 3D space.

Similarly, problem components such as constants and the
initial state are used to set up a Unity-level scene. Once these
components are defined, users can customise them using the
Unity editor, for instance configuring multiple problems for
the same domain, or multiple simulations for different plans.

Figure 6 shows the PDDL problem definition for the ini-
tial state described in the introduction. The at predicate is
used to describe the position of a physical object (robots,
boxes and vans), robot-empty represents if a robot is car-
rying a box or not, van-request represents which box
is requested by a particular van, and up, down, right,
left represent the connections between cells in the grid.
The same PDDL representation can be visualized with 3D
models in PDSim as shown in Figure 7. The PDDL :init
block from Figure 6 can be animated in PDSim by assigning
translation sequences to the physical objects and displaying
them in game mode.

From C# to Animations
The planning domain description is used to build the core
elements and animations for the simulation. The types and
objects define the visual aspect of the Unity simulation: 3D
models or 2D sprites. Once mapped, predicates are used to
define the 2D/3D animations using Unity’s visual scripting
option. This visual scripting language is used to define and
interface with Unity’s common transformation operations,
path planning, audio emission, and particle effects systems.

Figure 8: Example animation definition using Unity’s vi-
sual scripting graph showing the event for the ‘at(robot,cell)’
predicate and the node to execute (‘Translate To’) when the
predicate is executed in one of the plan action effects.

For example, Figure 8 shows an animation definition for
the earlier Warehouse planning problem, for a predicate that
captures the movement of the robot position from the cur-
rent grid to an adjacent cell. Action effects are the animated
components, where every predicate in the effects list that has
an associated animation graph will execute an animation at
simulation time.

Users can define their own behaviours in the virtual scene
for every predicate they want to animate. The example in
Figure 8 shows a simple translation animation from an ob-
ject position to a target position. In particular, the exam-
ple shows one of the custom animation nodes developed in
PDSim to help simplify the creation of animations for new
users. Every predicate in an action’s effect can have one of
these graphs linked to it, and every graph comes with an
EffectEvent that is invoked during plan simulation with the
corresponding objects from the Unity scene (i.e., the objects
in the plan’s action).

To simplify the development of new animations, and to
help new users with visual scripting, a set of predefined an-
imation nodes has been created which cover a number of
useful simulation cases that frequently arise, such as:

1. TranslateToPoint: Move a particular object in the scene
to a specific point in the world or to another object’s po-
sition (using path planning or simple interpolation).

2. TranslateToObject: Move a particular object in the
scene to a specific other object in the world (using path
planning or simple interpolation).

3. SpawnObject: Instantiate an object (i.e., a 3D mesh) in
the scene.

4. PlayPauseParticle: Create and either play or pause a
particle effect.
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Figure 9: High-level PDSim system architecture.

5. PlayPauseSound: Create and either play or pause an au-
dio effect.

6. GetCurrentPlanActions: Can get the current simulated
actions. Multiple actions can return if the simulated plan
is temporal and multiple actions are currently being exe-
cuted. It also returns metadata for the action such as pa-
rameters (objects) and action duration.

System Architecture
The high-level structure of the PDSim system is shown in
Figure 9. PDSim can be imported into Unity3D as a com-
mon asset, where the Unity editor interface is used to in-
teract with PDSim components, such as setting the simu-
lation scene, creating animations, or importing 3D or 2D
models. PDSim also relies on a Python backend implemen-
tation, which is used to parse PDDL files and generate plans.
A PDSim simulation is initialised and handled by the back-
end server running the UPL6 library, which is responsible for
parsing and building a protocol buffer representation of the
planning model and running a user-defined planner (default-
ing to FastDownward) to generate a plan. UPL is a planner-
agnostic framework for Python, which increases PDSim’s
modularity and lets users select their preferred planner im-
plementation, separating it from the simulation stage itself
which comes later in the process. We describe the major
components of PDSim below.

Front-End
Unity (Unity Technologies 2022) is a popular state-of-the-
art game engine used for building 3D projects across a range
of diverse applications. In PDSim, Unity provides the fron-
tend interface and is responsible for handling all of the
2D/3D graphics and animations related to the simulation.

One of the fundamental design concepts used by Unity is
the idea of composition, which means that an object can be
composed of different types of objects. In particular, Unity’s
component system provides the capability for every object
in a Unity scene to be assigned custom scripts or modules,
such as a rigid body for the physics simulation, a collision

6https://github.com/aiplan4eu/unified-planning

Figure 10: Simulation object example with a Robot type,
highlighting the customisations the user can work with, such
as adding custom models and defining points in the model to
be used in the virtual space.

volume, an audio source, etc. Every object in Unity can also
be scripted using the C# language, meaning that an object
can have a user-defined behaviour in the scene. For exam-
ple, an object can respond to user inputs from a mouse or
keyboard or can be translated, rotated and scaled, or have its
colour changed, based on conditional events. Object script-
ing in Unity is key to the modularity of the simulation, espe-
cially for the custom representation of PDDL elements.

Scripting can also be applied to the editor window, where
users interact with the engine and where it is possible to set
the properties of the objects in the scene by using Unity’s
user interface. PDSim makes heavy use of all the features
provided by Unity, such as the Visual Scripting Language
used to create animations and events. As a result, users do
not need to learn a new language to develop animations and
animation graphs can be modified on the fly without waiting
for scripts to be recompiled.

A type in PDSim is represented by a simulation object, a
structure that shares similar information for all the objects
defined in a planning problem. A simulation object is de-
fined by two main components: models and control points.
Models are used to visually represent the object type in the
virtual world (e.g., block, airport, player, robot, etc.). These
can be 3D meshes or 2D textured sprites that can be im-
ported into the Unity editor. A user can add as many models
as they like. A collision box that wraps all the models is au-
tomatically calculated to be used later in the simulation to
detect the interaction with the user inputs and the collisions
calculated by the physics engine. Control points are 3D vec-
tors that represent particular points of interest in the object
type representation (e.g., the cardinal points of an object, a
point that represents the arm position of an agent, etc.).

Figure 10 shows an example of how a simulation object
can be composed. The models(highlighted in red) are com-
posed of only one mesh representing a robot rover, and the
control points (highlighted in blue) are the 3D vector po-
sitions of the front and back of the robot that can be used
inside the animations as an anchor point for other objects
(e.g., attaching cargo on the front).

If types are specified in the domain definition, then the
simulation manager creates simulation object blueprints for
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all the leaf types of the type tree that is built when the do-
main is parsed for the first time. These types are replicated
for each object defined in the problem that matches the par-
ticular type, using the user configuration of simulation ob-
jects, as described above.

A simulation manager is initialised using the Protobuff
data from the backend server containing the planning model
and the representation of the plan. Every action effect will
have an associated list of animation graphs representing the
effects of an action. The simulation manager will execute the
animations using the attributes in the plan representing the
simulation objects involved in the simulation of that action.
As the first step in every simulation, the init block is ani-
mated. Init represents the starting state of a planning prob-
lem and is defined by a list of fluents describing the current
state of the world. These fluents are represented in the form
of fluent name(arguments) where the arguments are the ob-
jects that are present in the environment. The simulation
manager will publish events with the corresponding fluent
name and objects from the simulation scene that will be used
by the visual scripting language to map which animation to
execute and the graphical objects to use. The process is then
repeated for every action effect in the plan.

Back-End
PDSim’s backend system is a Python server that communi-
cates with the Unity editor and supports communication be-
tween the planning and animation components. Unity tries
to connect to the backend server to check if a planning prob-
lem has been initialised with the UPL and create a template
Unity scene for the visualisation. Planners that can be used
by PDSim include FastDownward (Helmert 2006), ENHSP
(Scala et al. 2016), Tamer (Valentini, Micheli, and Cimatti
2020), LPG (Gerevini and Serina 2002), Aries (Bit-Monnot
2023) and Pyperplan (Alkhazraji et al. 2020). If either the
parsing or planning actions fail, the interface will warn the
user of the error.

PDSim’s backend system wraps up the functionality of
UPL as the main tool for manipulating and solving plan-
ning problems in PDSim. UPL is a Python library provided
by the AIPlan4EU project7 that aims to simplify the use of
automated planning tools for AI application development.
UPL attempts to standardize aspects of the planning pro-
cess, making it accessible to users of any level of expertise.
In particular, it offers a well-developed PDDL parser and
a standard interface for communicating with external plan-
ners. Integration with UPL enables PDSim to take advantage
of these features and any future updates that UPL may pro-
vide.

At the technical level, communication between PDSim’s
backend server and Unity is provided by the ZeroMQ net-
working library,8 in particular the Python implementation
package pyzmq9 on the server side and the C# implemen-
tation netMQ10 on the Unity side.

7https://www.aiplan4eu-project.eu/
8https://zeromq.org/
9https://pypi.org/project/pyzmq/

10https://github.com/zeromq/netmq/

Figure 11: PDSim for real-world robotics using an HSR
robot (Yamamoto et al. 2019). This example represents how
recorded semantic sensor data in a ROS project can be visu-
alised as a 3D animation.

Figure 12: Blocks domain using a simulated Niryo robot
12and ROS for the arm motion planning.

Examples
PDSim has been developed and tested using published
benchmark domains from the International Planning Com-
petition (IPC),11 and is currently being used to visualise
real-world planning problems. We illustrate the capabilities
of PDSim using examples from real-world agricultural and
robotics use-cases. A video demonstration of how to set up
a simulation with the system is also available.

Real-World Robotics
PDSim can be used to represent and visualise state changes
from real-world robotic scenarios as shown in Figure 11 and
12. In particular, Figure 12 shows a simulation of the blocks
planning problem using a robot arm to perform the stack
and unstack actions and Figure 11 shows a visualisation of
the state changes related to sensors in a smart home. PDSim
plays animations related to the robot’s movements between
rooms or joint interpolations. This is done by connecting
Unity with the Robot Operating System (ROS) and using
the specialised library for all kinds of robotic tasks.

11https://github.com/potassco/pddl-instances
12https://niryo.com/
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Figure 13: PDSim for an agricultural domain. This exam-
ple represents a real-world planning problem that involves
scheduling trucks and harvesters in fields using a realistic
environment that has been digitalized for privacy purposes.

Agricultural Use-Case
PDSim has been used to visualise a real-world use case in-
volving an agricultural planning problem currently being de-
veloped by the Agrotech Valley Forum.13 The problem in-
volves a scenario as shown in Figure 13 that has been con-
verted into 3D models of roads and fields, with a set of har-
vesters and vehicles for the transportation of grain into a silo
for stocking. Vehicles can only access the fields at particular
access points in the map and there is a need for a planning
solution to direct the transporting vehicle that follows the
harvesting of the fields (Agrotech Valley Forum EV 2023).

Video Example
Due to the interactive nature of PDSim, we have also cre-
ated a video to demonstrate the capabilities of the system.14

This video shows how to start a new simulation, from prob-
lem definition to final 3D animation including all the inter-
actions with the Unity front end needed to customise a plan
visualisation, as an introduction to PDSim for new users.

Discussion
In general, PDSim offers a powerful and flexible framework
for visualising planning problems using a state-of-the-art
graphical engine. More specifically, PDSim aims to fill a gap
in current systems that provide plan simulations, by offering
users a simplified environment to develop 3D or 2D simula-
tions compared with current approaches that come with the
overhead of learning and using an ad hoc scripting language
to interact with a custom simulator (Tapia, San Segundo, and
Artieda 2015; Chen et al. 2020; Roberts et al. 2021).

PDSim is also designed as a support system for automated
planning by providing intuitive tools to interface with a plan-
ning solution. Approaches like (Le Bras et al. 2020; Fox,
Long, and Magazzeni 2017) also suggest that answering the
question of why an action has been successfully executed or
has failed, further increases the explainability of a plan. In

13https://www.ai4europe.eu/ai-community/organizations/
association/agrotech-valley-forum-ev

14https://drive.google.com/file/d/
1AHlcYkadRa1ndJp7sxpC2VE0OTEZh0ii/view?usp=sharing

this context, PDSim provides intuitive hints about possible
errors using visual cues, by displaying an interface with the
transitions of each action and how they modify the state of a
particular object or agent.

However, it is important to reiterate that PDSim is primar-
ily aimed at planning-agnostic users like students. Within
this group, as (Chen et al. 2020) indicates, there is a dif-
ference between the mental model the user has of the plan-
ning problem and the actual implementation. PDDL is often
approached as a traditional programming language by be-
ginners, rather than a knowledge definition language. With
this in mind, PDSim aims to simplify the learning curve of
PDDL by assisting with components that provide informa-
tion about the state of planning entities in real-time.

Conclusion and Future Work
This paper presented the structure and operation of PDSim, a
simulation system for animating PDDL-based planning do-
mains and plans. In future work, we plan to introduce a more
intuitive way to create and modify the knowledge model, us-
ing the same visual scripting paradigm and, thus, completely
removing the need to know PDDL syntax. This will be in-
ternally used together with an in-engine planner that the user
can interact with at planning time to change object properties
and replan on the fly. Given the close relationship between
PDSim and Unity, it will also be possible to use applications
such as extended reality (XR) to interact with the plan. An-
other planned direction for PDSim will also be to include ex-
tensions for visualising the current state of an agent’s knowl-
edge and beliefs to support epistemic planning, allowing vi-
sualisations to be generated from different agent perspec-
tives. Finally, an evaluation is scheduled to be performed
to assess the use of PDSim in an education setting, provid-
ing feedback about the overall helpfulness and usefulness
of PDSim as a development aid for students learning about
automated planning in an introductory AI course.
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