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Abstract
Electric vehicle (EV) travel planning is a complex task that
involves planning the routes and the charging sessions for
EVs while optimizing travel duration and cost. We show the
applicability of the multi-objective EV travel planning algo-
rithm with practically usable solution times on country-sized
road graphs with a large number of charging stations and a
realistic EV model. The approach is based on multi-objective
A* search enhanced by Contraction hierarchies, optimal di-
mensionality reduction, and sub-optimal ϵ-relaxation tech-
niques. We performed an extensive empirical evaluation on
182 000 problem instances showing the impact of various al-
gorithm settings on real-world map of Bavaria and Germany
with more than 12 000 charging stations. The results show
the proposed approach is the first one capable of performing
such a genuine multi-objective optimization on realistically
large country-scale problem instances that can achieve prac-
tically usable planning times in order of seconds with only a
minor loss of solution quality. The achieved speed-up varies
from∼ 11× for optimal solution to more than 250× for sub-
optimal solution compared to vanilla multi-objective A*.

Introduction
Multi-objective electric vehicle (EV) route planning ad-
dresses the rising problem of long-range trip planning
greatly exceeding the vehicle range. Many achievements
have been recently presented in this field; however, exist-
ing algorithms do not fully address realistic concerns, such
as the trade-off between cost and time, large-scale road map,
or a large amount of diverse charging stations altogether.

State-of-the-art approaches and algorithms mostly rely
on single-objective optimization (e.g., Baum et al. 2019a)
and are therefore technically limited to always considering
only a single objective when finding optimal EV travel plan.
Well-established approaches to multi-objective optimiza-
tion, such as meta-heuristics, can find the Pareto-set only
on very small city-sized road networks. Consequently, these
approaches are not suitable in practice (e.g., Ben Abbes,
Rejeb, and Baati 2022). Very recent work of (Schoenberg
and Dressler 2023) achieved good planning times while con-
sidering multiple simpler objectives (not including cost) on
country-scale road networks, but it prohibits planning with
a realistic number of charging stations.
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Multi-objective EV travel planning is a complex problem
(NP-hard but not even in NP) for two main reasons that re-
quire both domain-independent and domain-specific tech-
niques to overcome:

1. Multi-objective optimization: The problem involves mul-
tiple, inherently conflicting objectives (travel time and
cost), which inflates the dimensionality of the search
space and extends the solution concept from a single so-
lution (route with charging stops) into a Pareto-set of so-
lutions, each with different trade-off of duration and cost.

2. Integration of charging planning with route planning:
The EV travel planning problem comprises two sub-
problems - planning the route in the road network and
choosing where and how long to charge. These two prob-
lems are closely interconnected, and therefore, we need
to solve them holistically to obtain the best solutions.

The multi-objective approach (instead of, e.g., weighted
sum) provides Pareto-sets that properly explore the trade-off
between the objectives instead of a few pre-selected time-
cost weight combinations providing a fixed number of op-
tions. Consider the example in Figure 1. The fastest plan
takes 2h41min and costs 15C while a plan that takes 100
more seconds costs 13C. Another 4C can be saved by a
plan that takes five more minutes. Fixed weight combina-
tions could find these options if the weights were tuned to
this specific trip, but only a multi-objective algorithm can
discover the best trade-offs for all trips.

The multi-objective EV route planning problem we ad-
dress in this paper is further complicated but, at the same
time, more applicable in practice by our use of realistic
battery charging (non-linear function), large road networks
(country-sized), and different prices and speeds of charging
at different charging stations.

In this paper, we show the applicability of multi-objective
EV travel planning algorithm based on A* search enhanced
by Contraction hierarchies, optimal dimensionality reduc-
tion, and sub-optimal ϵ-relaxation techniques with practi-
cally applicable solution times on country-sized road graphs
with large number of charging stations and realistic EV
model. To demonstrate the practical usefulness of our so-
lution, we have set up a prototype application1, see Figure 1

1http://its.fel.cvut.cz/ev-travel-planner. Note that the applica-
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Figure 1: Screenshot of the EV travel planning prototype
application. The planning request (left) results in a Pareto-
set of plans (middle), which are shown on the map (right).

for an example solution provided by the application. We per-
formed an extensive empirical evaluation of the proposed
algorithms on real-world country-scale data with more than
12 000 charging stations involving 182 000 calculated prob-
lem instances requiring more than 250 000 CPU hours.

Importantly, our proposed approach is very versatile and
can be adapted to other optimization objectives and more
complex scenarios, such as time-dependent travel times and
charging prices, and therefore presents a generic approach to
solving a wide range of practical multi-objective EV travel
planning problems. We believe our contribution will provide
a solid basis for the future exploration of multi-objective ap-
proaches to EV travel planning while keeping the practical
applicability on large-scale realistic scenarios.

Related Work
EV travel planning has been first studied with regards to the
most energy-efficient routes (Artmeier et al. 2010; Sachen-
bacher et al. 2011). Schönfelder, Leucker, and Walther
(2014) extend the problem of finding the most energy-
efficient route by searching not only for a single solution
for a given initial state of charge (SoC) but rather for the
consumption profile function that computes the optimal con-
sumption and route for any possible initial SoC. Storandt
and Funke (2012) added to consideration en-route charg-
ing, although simplified to always charge to the full battery
capacity. Baum et al. (2019b) overcome the need for this
simplification by exploiting SoC profiles to find the optimal
charging options from the virtually infinite number of pos-
sibilities due to the continuous nature. All of the above con-
sidered only the energy as the optimization objective. Baum
et al. (2019a) and Storandt (2012) considered the SoC only
as a constraint while optimizing travel time.

Several existing works also extended the problem to mul-
tiple objectives. Common approaches for solving multi-
objective problems, such as genetic algorithms (Ben Abbes,
Rejeb, and Baati 2022) or particle swarm optimization (Sid-
diqi, Shiraishi, and Sait 2011), were applied to EV travel

tion does not use precise (and expensive) travel time data and is
for potential capabilities and usage demonstration only.

planning. Although the authors consider the cost of charg-
ing, the methods were evaluated only on very small road net-
works with only hundreds of nodes. Realistic road graphs re-
quired in EV route planning have millions of nodes. As such,
these techniques do not currently scale to realistic problem
instances. Problems on realistically large road graphs are
solved by algorithm proposed by Schoenberg and Dressler
(2023). The algorithm based on multi-objective A* uses
multi-objective adoption of contraction hierarchies (CH)
(Geisberger et al. 2008), that were also used by Baum et al.
(2019a). However, they do not consider cost and one of
the pre-processing techniques they propose is not suitable
for a realistic number of charging stations (12000 in our
case). CH were also studied for a bi-objective case by Zhang
et al. (2023) but without battery constraints required by
EV travel planning. Another potentially applicable method
based on pre-processing is presented by Delling and Wagner
(2009). The work proposes a multi-objective adaptation of
SHARC algorithm (Bauer and Delling 2009) that combines
highway hierarchies (Sanders and Schultes 2006) and arc-
flags (Möhring et al. 2007) techniques. However, the arc-flag
technique is unsuitable for planning with charging stops.

Multi-Objective EV Travel Planning Problem
We model the EV travel planning problem as a multi-
objective constrained shortest path problem with SoC con-
straints and charging stops with two optimization objectives:
time and cost. Formally, we define the EV travel planning
problem as a tuple P = ⟨W ,M,R⟩ where W is the global
static EV travel planning environment, M is the EV model,
and R is the EV travel planning request that is specific for
each EV user and their needs. The solution to an EV travel
planning problem is the Pareto-set of EV travel plans Π.

EV Travel Planning Environment (termed planning en-
vironment further on) represents the road network and charg-
ing stations, i.e., the travel planning components indepen-
dent of the specific details of individual planning requests.

The planning environment is a tuple W = ⟨G,Q⟩, where
G = ⟨V,E, τ, d⟩ is a weighted oriented graph representing
the underlying road network, with V being the set of nodes
representing intersections and E the set of edges represent-
ing road segments. Each edge e = (u, v) ∈ E; u, v ∈ V ,
has a defined traversal duration τ(e) ∈ R+ and a length
d(e) ∈ R+. 2

The set of charging stationsQ defines the locations where
EVs can be charged. Each charging station q ∈ Q is defined
as q = ⟨vq, Pq, γq⟩, where vq ∈ V is the node where the
charging station is located (VQ = {vq|q ∈ Q}), Pq ∈ R+ is
the maximum power the charging station provides (charging
rate) and γq : R+×R+ → R+

0 is the charging cost function
that defines how much any charging session at the station q
costs based on the duration t ∈ R+ of the session and the
amount of energy j ∈ R+ charged during the session. The
charging cost function can formalize various types of charg-
ing policies, including all of those popular today, such as

2Non-essential properties are omitted in the problem definition
(e.g., elevation profile required only for the consumption function)
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fixed price per charging session, price per minute of charg-
ing, price per kWh of charged energy, or their combination.

EV Model M = ⟨bmax, β, ϕ, ψ⟩ consists of the battery
capacity bmax ∈ R+ of the EV, cost per km of driving ψ ∈
R+

0 , and two functions defining how the EV consumes the
energy stored in its battery and how the battery is recharged.

The energy consumption function β : E × [0, bmax] →
[0, bmax] ∪ {−∞} defines the SoC after traversing edge
e ∈ E while depending on starting SoC. The energy con-
sumption function can take into account various properties
of the edge, such as the length or elevation profile. The con-
sumption can be negative due to recuperation. −∞ means
that the starting SoC is too low to traverse the edge.

The charging function ϕ : [0, bmax] × (0, bmax] × R+ →
R+ defines the time needed to complete a charging session
specified by the starting SoC bstart ∈ [0, bmax], the final SoC
bend ∈ (0, bmax] and the maximum available power P ∈ R+.

The cost per km of driving ψ ∈ R+
0 defines EV wear-and-

tear costs per driven distance.

EV Travel Planning Request defines the user’s specific
request for EV travel. The request is defined as a tuple R =
⟨vinit, vgoal, binit⟩, where vinit ∈ V is the origin, vgoal ∈ V is
the destination, and binit ∈ [0, bmax] is the initial SoC.

EV Travel Plan is a sequence of interleaving states and
actions π = (s0, a0, s1, a1, . . . , ak−1, sk).

A state si fully describes the status of the EV and the
value of plan objectives at the i-th step of the plan and action
ai describes the transition between the states si and si+1.
We define the state s as a tuple ⟨v, t, c, b⟩ where v ∈ V is an
EV location node, t ∈ R+

0 is the time the state is reached,
c ∈ R+

0 is the charging and driving cost spent to reach the
state, and b ∈ [0, bmax] is the SoC with which the state is
reached (higher value means more energy in the battery).

An EV travel plan consists of two types of actions:

• move(e) that moves the vehicle across the edge e =
(v, u) ∈ E:

⟨v, t, c, b⟩ → ⟨u, t+ τ(e), c+ ψd(e), β(e, b)⟩

• charge(q, j) that charges the vehicle at the charging sta-
tion q ∈ Q with energy j ∈ R+:

⟨vq, t, c, b⟩ → ⟨vq, t+ tq,j , c+ γq(tq,j , j), b+ j⟩

where tq,j = ϕ(b, b+ j, Pq)

For EV travel plan π = (s0, a0, s1, a1, . . . , ak−1, sk) to
be valid, the SoC must not drop below zero or get above the
battery capacity bmax: 0 ≤ bi ≤ bmax, ∀i ∈ 0, . . . , k.

We say that an EV travel plan π with k+1 states is feasible
for a planning request R = ⟨vinit, vgoal, binit⟩ if it is valid,
v0 = vinit, b0 = binit and vk = vgoal. We also define the plan
time as tπ = tk and the plan cost as cπ = ck.

An EV travel planning algorithm solving problem P =
⟨W ,M,R⟩ should produce EV travel plans feasible plans
for planning request R optimal with regard to two objectives
– time and cost. More specifically, the goal of the algorithm
is to minimize tπ and cπ .

Since there is more than one optimization objective, a to-
tal ordering with regard to tπ and cπ does not exist. However,
a partial ordering exists according to weak dominance:
Definition 1 Let π, π′ be two valid EV travel plans. We say
that π weakly dominates π′ (denoted as π ⪯ π′) iff tπ ≤ tπ′

and cπ ≤ cπ′ .
Further, we refer to the weak dominance only as the dom-

inance for simplicity.

Solution to the multi-objective EV travel planning prob-
lem P is a set of feasible Pareto-optimal (non-dominated)
EV travel plans Π. The travel plans are optimal regarding
the travel time tπ and the cost cπ minimization objectives.

EV Travel Planning Algorithm with CH
To solve the above-outlined problem, we designed an al-
gorithm based on multi-objective A* (Mandow and De la
Cruz 2005) enhanced by well-known Contraction hierar-
chies (CH) pre-processing (Geisberger et al. 2008) that re-
duces the complexity of the route planning part of the prob-
lem similarly to Baum et al. (2019a). To further improve the
planning time, we also used optimal dimensionality reduc-
tion (Pulido, Mandow, and Pérez-de-la Cruz 2015) and sub-
optimal ϵ-relaxation (Batista et al. 2011) techniques.

CH that speed up the route planning part of the prob-
lem work in two phases. The pre-processing phase assigns
a level lvl(v) to each node v ∈ V and calculates shortcuts
ECH that speed up the query phase. The query phase then
performs a search on the graph enhanced with the shortcuts
GCH = ⟨V,E ∪ ECH⟩ limited only to up-down paths. An
up-down path is a path where the level of the nodes is non-
decreasing at the first part of the path and decreasing at the
rest of the path. If a Pareto-optimal path exists between any
pair of two nodes in the original graph G, it is guaranteed
that an up-down path with the exact same costs also exists
in the contracted graph GCH (Geisberger et al. (2012) refor-
mulated for multiple objectives).

Pre-Processing Phase
In the pre-processing phase, graph nodes are contracted one
by one. When a node v ∈ V is contracted, for each pair of
incoming edge (u, v) ∈ E and outgoing edge (v, w) ∈ E,
a shortcut e′ = (u,w) is calculated by their concatenation.
The contracted node and its adjacent edges are then removed
from the graph. Afterward, a witness search is started for
each shortcut, determining if a witness path dominating the
shortcut exists. If a witness path exists, the shortcut is unnec-
essary and, therefore, discarded since a better/dominating
path exists. To improve the performance, we calculate the
witness search at once for all shortcuts starting at node u by
a version of multi-objective Dijkstra’s algorithm very simi-
lar to the algorithm described in Algorithm 1 without heuris-
tics. We also use hop limit that bounds the search only to the
vicinity of the origin (in our case, to paths consisting of 20
edges at maximum). Although it leads to the addition of un-
necessary edges, it does not violate optimality.

The next vertex to contract is determined based on a pri-
ority composed of three node metrics proposed by Geis-
berger et al. (2012) - Edge Difference (ED), Cost of Queries
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(CQ) and Deleted Neighbors (DN). The resulting priority is
64ED+ CQ+ DN as used by Baum et al. (2019a). The pri-
ority is calculated once for all nodes at the beginning of the
pre-processing and stored in a priority queue. Furthermore,
we implemented a lazy update of the priority. When a node
with minimal priority is polled from the queue, its priority
is recalculated. If the priority exceeds the second smallest
priority, the node is reinserted into the queue. The process
is repeated until the priority of a node remains the smallest
after its update. Additionally, we update the priority of all
neighbors of a contracted node. This can be done in parallel
since they do not change anything until the queue is updated,
which can be done serially after all priorities are calculated.
The resulting contraction order defines the level of the con-
tracted nodes.

It is not required for all nodes to be contracted. It is com-
monly used in more complex scenarios (e.g., Baum et al.
2019a) to, for example, lower the number of created short-
cuts that, if there are too many of them, could negatively
impact the query performance. In our case, we also need it
to allow traveling between charging stations required by the
need for charging. The set of uncontracted nodes V ◦ ⊂ V is
called the core and contains at least all nodes with charging
stations VQ ⊆ V ◦. All nodes in the core have assigned equal
level ∀v ∈ V ◦ : lvl(v) = |V | − |V ◦|+ 1.

An edge (u, v) is an upward edge iff lvl(u) ≤ lvl(v)
and downward edge iff lvl(u) > lvl(v). An upward graph
G↑ = ⟨V,E↑⟩ is a graph where all edges E↑ ⊂ E∪ECH are
upward while downward graph G↓ contains only downward
edges E↓.

The edges e ∈ E in the original graphG of the problem P
have defined three properties - traversal duration τ(e), dis-
tance d(e), and energy consumption function β(e, b) which
is part of EV model M. The duration and distance of a short-
cut created by a concatenation of two edges are trivial. The
concatenation of two consumption functions is done by us-
ing SoC profile first introduced by Schönfelder, Leucker, and
Walther (2014) and used by (Baum et al. 2019a). The SoC
profile is a special case of consumption function and can be
represented by only three values per edge (more details in
Baum et al. 2019a). It has also defined dominance relation,
allowing us to easily check the dominance of shortcuts and
found paths by, e.g., witness search.

Query Phase
CH queries are commonly solved by bidirectional search al-
gorithms. However, our problem is too complex for easy
adoption of bidirectional search, mostly because of the time-
dependent nature of charging (dependence on starting SoC)
that makes backward search that includes charging very
complicated. Therefore, we split the query phase into two
sub-phases similarly to (Baum et al. 2019a).

First, we run a backward search from the destination vgoal
on the downward contracted graph G↓ that calculates tem-
porary shortcuts Edest from the uncontracted core (that con-
tains all charging stations) to the destination. This search
is based on multi-objective Dijkstra’s algorithm very simi-
lar to the algorithm used by the witness search in the pre-
processing phase. Since the SoC is unknown at the time of

the calculation, the algorithm calculates the SoC profile in-
stead of just the consumption values.

The second sub-phase runs the multi-objective A*-
based (Mandow and De la Cruz 2005) algorithm described
below (pseudocode in Algorithm 1) on the upward graphG↑

with the temporary shortcuts Edest from the first sub-phase.

States and Their Dominance To describe the query algo-
rithm, we use the same definition of states s = ⟨v, t, c, b⟩ as
presented in the problem definition3. As mentioned above,
a state can also be viewed as a simpler representation of a
(partial) EV travel plan since it fully describes all essential
attributes necessary for the planning algorithm to decide the
subsequent actions. We say that a plan is partial if its last
location is not the destination.

In this section, we formally extend the concept of EV
travel plan dominance (Definition 1) to states while main-
taining full compatibility. The algorithm requires two ver-
sions of the dominance used in different algorithm steps. π-
dominance in Definition 2 is a straightforward adjustment of
Definition 1 to the context of states leveraging the informa-
tion provided by the time and cost heuristics ht and hc (de-
scribed below). The algorithm uses π-dominance to check
the explored states against the already found solution plans.

Definition 2 Let s = ⟨v, t, c, b⟩, s′ = ⟨v′, t′, c′, b′⟩ be two
states. We say that s π-dominates s′ (denoted as s ⪯π s

′) iff
the following conditions are satisfied:

t ≤ t′ + ht(s
′)

c ≤ c′ + hc(s
′)

However, π-dominance does not work if both states rep-
resent partial plans (not at the destination yet). For exam-
ple, a state representing a slower partial plan with a higher
SoC could lead to a faster plan at the destination because it
could have enough energy to reach the destination without
any additional stop at a charging station. Therefore, the al-
gorithm requires the following dominance extended by the
SoC attribute and without the heuristic estimates to check
the states representing partial plans (details how it is used in
the section below).

Definition 3 Let s = ⟨v, t, c, b⟩, s′ = ⟨v′, t′, c′, b′⟩ be two
states at the same node (v = v′). We say that s dominates s′
(denoted as s ⪯ s′) iff the following conditions are satisfied:

t ≤ t′

c ≤ c′

b ≥ b′

At last, we introduce the dominance between a state and
a set of non-dominated states.

Definition 4 Let s be a state and S be a set of mutually non-
dominated states according to the dominance relation ⪯. We
say that S dominates s (denoted as S ⪯ s) iff

∃s′ ∈ S : s′ ⪯ s

3Although the reconstruction of the final plans requires addi-
tional state attributes (e.g., a reference to the preceding state and
charging details), we omitted them for a clearer presentation.
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Algorithm 1: Pseudocode of the query phase of the
multi-objective EV travel planning algorithm.

Input: planning environmentW = ⟨⟨V,E↑ ∪ Edest⟩, Q⟩
EV modelM = ⟨bmax, β, ϕ, ψ⟩
planning requestR = ⟨vinit, vgoal, binit⟩

Output: set of Pareto-optimal travel plans Π
1 Sop

v : set of opened states for each node v ∈ V
2 Scl

v : set of visited/closed states for each node v ∈ V
3 Sop =

⋃
v∈V S

op
v : set of all opened states

4 Π: set of solution states
5 Sop

v ← ∅, ∀v ∈ V
6 Scl

v ← ∅, ∀v ∈ V
7 Π← ∅
8 Sop

vinit ← {⟨vinit, 0, 0, binit⟩}
9 while Sop ̸= ∅ do

10 smin ← extractMin(Sop)
11 if Π ⪯π smin then continue;
12 if inDestination(smin) then
13 Π← Π ∪ {smin}
14 else
15 Scl

vmin
← Scl

vmin
∪ {smin}

16 S ← expand(smin)
17 forall s = ⟨v, t, c, b⟩ ∈ S do
18 if b < 0 then continue ;
19 if (Sop

v ∪ Scl
v ) ⪯ s ∨Π ⪯π s then

20 continue
21 else
22 Sop

v ← Sop
v \ {s′ ∈ Sop

v |s′ ⪯ s}
23 Sop

v ← Sop
v ∪ {s}

24 return Π

Query Algorithm As mentioned above, the optimal algo-
rithm is based on a multi-objective version of A* algorithm
guiding the search by two consistent heuristics. We designed
remaining travel time heuristic ht and minimum remaining
charging and driving cost heuristic hc.

To further reduce planning times without sacrificing opti-
mality, we employed a technique that significantly reduces
the computational complexity of the dominance checks,
which are the greatest bottleneck of the proposed algorithm.
The dimensionality reduction technique described below al-
lows to significantly reduce the size of the Pareto-sets main-
tained during the search.

The pseudocode of the optimal algorithm is given in Al-
gorithm 1. The algorithm uses four basic types of data struc-
tures:

• Pareto-set of visited/closed states Scl
v for each graph node

v ∈ V that contains all states that were already visited
and expanded by the algorithm.4

• Pareto-set of opened states Sop
v for each graph node v ∈

V that holds the states that were generated but not yet
visited by the algorithm.4

• Solution set Π with the states representing plans that
reached the destination.

4The algorithm maintains open and closed sets for all nodes to
contain only non-dominated states.

• Set of all opened states Sop =
⋃

v∈V S
op
v , that can also

be viewed as a priority queue for the states to be visited.

In each iteration, a lexicographically minimal state
smin is extracted from the set of all opened states Sop

(extractMin on line 10). The states s = ⟨v, t, c, b⟩ are
sorted first by their estimated time t + ht(s), then by cost
c+ hc(s) and then by SoC b.

Each extracted state is first checked for whether it is
not π-dominated by any of the already found solution
states (line 11) and whether it is not a solution itself
(inDestination on line 12). If neither is true, the state
is added to the corresponding visited/closed set Scl

v (line 15)
and expanded (expand on line 16).

Let smin = ⟨v, t, c, b⟩ be the extracted state. The state is
then expanded (function expand) using the following ac-
tions corresponding to the actions described in the EV travel
plan definition:

(i) move For each outgoing edge e = (v, u) ∈ E↑ ∪ Edest,
a new state

s = ⟨u, t+ τ(e), c+ ψd(e), β(e, b)⟩

is generated.
(ii) charge For each charging station q = ⟨vq, Pq, γq⟩ such

that vq = v and for each amount of energy j from a pre-
defined set of target charging levels (for example, charg-
ing to 80%, 90%, 100% of battery capacity) a new state

s = ⟨vq, t+ tq, c+ γq(tq, j), b+ j⟩

where tq = ϕ(b, b+ j, Pq) is generated. The set of target
charging levels can be configured arbitrarily, but it should
consider the shape of the charging function ϕ.

We use the discretization of the target charging levels to
significantly reduce the number of newly generated states.5

All the newly generated states are first checked if they
violate the SoC constraint. If they do, they are pruned im-
mediately (line 18). Then, they are checked if they are not
dominated by any states in their corresponding Sop

v and Scl
v

Pareto-sets (line 19). Additionally, they are also checked if
they are not π-dominated by any of the already found solu-
tion states in Π. If they are not dominated, they are added to
the opened set Sop

v while removing all states in the opened
set dominated by the newly generated one (lines 22-23).

Remaining Travel Time Heuristic This heuristic relaxes
the battery constraints and estimates the minimum time
needed to reach the destination regardless of the battery con-
straints. It calculates a lower bound on the travel time to the
destination.

5In theory, the optimal solution of the EV travel planning prob-
lem would require the ability to consider any arbitrary target charg-
ing level. In practice, however, the user can only choose from a
discrete set of target charging levels when charging the vehicle and
the discretization of the target charging level can be considered as
part of the definition of the EV travel planning problem. For this
reason, and to simplify the exposition, we refer to EV travel plan-
ning as optimal as long as it is optimal with regards also to the set
of predefined charging levels.
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Let s = ⟨v, t, c, b⟩ be a state, then the heuristic can be ex-
pressed as ht(s) = t(v, vgoal), where t(v, vgoal) is the mini-
mum travel time needed to drive from v to vgoal.

We pre-calculate the heuristic using a backward single-
objective Dijkstra’s algorithm.

Remaining Charging and Driving Cost Heuristic Since
the cost objective comprises two components - the charging
and driving costs - the heuristic is based on combining the
lower bounds of both components. The minimum cost spent
on charging is based on the most energy-efficient route to
the destination, while the minimum driving cost is based on
the shortest route.

Let s = ⟨v, t, c, b⟩ be a state, then the heuristic can be
expressed as hc(s) = bmincmin + ψd(v, vgoal), where bmin

is the minimum amount of energy that has to be charged
to reach the destination, cmin is the minimum possible price
per amount of energy achievable with regards to the cost
functions of all charging stations and the charging function
of the EV, and where d(v, vgoal) is the length of the shortest
path from v to vgoal. The minimum amount of energy that has
to be charged to reach the destination bmin = β(v, vgoal)− b
is the amount of energy required by the most energy efficient
route from v to vgoal deducted by the current SoC b.

We pre-calculate the heuristic by a backward label-
correcting version (due to the negative consumption) of
single-objective Dijkstra’s algorithm.

Dimensionality Reduction The greatest bottleneck of our
proposed algorithm is the computational complexity of dom-
inance checks that is directly dependent on the size of the
Pareto-sets managed by the algorithm (Sop

v , S
cl
v , and Π). The

size of the Pareto-sets can grow exponentially with the size
of the problem (in particular, with the size of the road graph
and the number of charging stations) and the number of com-
ponents on which the dominance is based, making the dom-
inance checks very expensive.

Fortunately, we can leverage a technique proposed
by (Pulido, Mandow, and Pérez-de-la Cruz 2015) that re-
duces the dimension of some of the Pareto-sets without loss
of optimality. If we use the lexicographical ordering for the
minimal label smin extraction (line 10 in Algorithm 1) and
if the heuristic estimates ht and hc are consistent, we can re-
move the first attribute (in our case the time) from the domi-
nance checks against the solution set Π (line 11) and against
the closed set Scl

v (line 19). Unfortunately, it does not apply
to the opened set Sop

v .

ϵ-relaxation Since the optimal version of our planning al-
gorithm is too slow (see the experiments), we employed
ϵ-dominance relaxation (Batista et al. 2011) of dominance
conditions to achieve practically usable planning times. For
example, ⪯ dominance from Definition 3 is extended to:

Definition 5 Let s = ⟨v, t, c, b⟩, s′ = ⟨v′, t′, c′, b′⟩ be two
states and ϵt, ϵc, ϵb ∈ [0, 1] be relaxation ratios. We say that
s ϵ-dominates s′ (denoted as s ⪯ϵ s

′) iff the following con-
ditions are satisfied:

ϵt · t ≤ t′

ϵc · c ≤ c′

b ≥ ϵb · b′

All variants of dominance defined above can be adapted
in a similar fashion. This technique is compatible with both
heuristics and also with dimensionality reduction.

This relaxation speeds up the algorithm by pruning more
states during the search; however, it does not maintain opti-
mality. Therefore, the ratios need to be selected carefully to
achieve a good trade-off between the reduction of the plan-
ning time and the loss of solution quality.

Experiment Problem Instances
The EV planning environments used for the evaluation were
constructed from real-world data sets for Germany. Ger-
many has a large road network with many charging stations
and good accessibility of data. Besides the large-scale Ger-
many area, we also performed the evaluation on a smaller-
scale area of the German state of Bavaria.

In the road network graphs created for the experiments,
we also included so-called residential roads (unlike, for ex-
ample, Schoenberg and Dressler (2023)) that are important
only for the first and last miles. However, they significantly
increase the size of the graph and, therefore, increase the
complexity of the problem.

We extracted road graphs for both areas from Open-
StreetMaps6 and then mapped real-world charging stations7

to them. The elevation data were gathered from SRTM.8
In total, we experimented with four planning environ-

ments. Two Germany environments with 12633 charging
stations and 4M nodes or 1.5M nodes without residential
roads. The Bavaria environments comprises 2225 charging
stations and a road graph with 800k nodes (resp. 300k).

Each charging station in the dataset is described by its
location (GPS), the maximum power (kW), and the pricing
policy. The pricing policies are of three types: energy-based,
duration-based, and fixed. The pricing policy of a charging
station can also be a combination of multiple types of poli-
cies. They also vary a lot between charging stations, imple-
menting the so-called location-of-use pricing.

We model the energy consumption of the EV with a linear
model that takes into account the length and the elevation
profile of the roads similarly to Eisner, Funke, and Storandt
(2011). We set the model to approx. correspond to 250 km
range with 40 kWh battery capacity. We used a piecewise
linear charging function similar to Baum et al. (2019b) that
expresses well the decreasing charging speed when the SoC
approaches the battery capacity while maintaining simplic-
ity. The charging speed gradually decreases starting at 80%
battery capacity with other breakpoints at 85%, 90%, and
95%. The charging speed is 6.6× slower while above 95%
than below 80%. The cost per km is set to 3 cents.

We generated the planning requests as 1000 random
origin-destination pairs, uniformly sampled from road graph
nodes, for both non-residential graphs and then mapped the
OD pairs to the full graphs to correspond to the same loca-
tions. The origin-destination pairs were generated so that the
direct distance was at least 250km (Germany avg. 409km,

6https://download.geofabrik.de/europe/germany.html
7https://chargemap.com
8https://www.earthdata.nasa.gov/sensors/srtm
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|V ◦| tpr [min] |ECH| # solved tavg [s]
B

av
ar

ia N
on

-r
es

id
en

tia
l 3k 11.3 746k 1000 11.1

5k 2.3 651k 1000 9.6
7k 1.4 615k 1000 10.3
10k 1.0 583k 1000 11.1
15k 0.8 547k 1000 13.5
301k - 0 1000 73.9

Fu
ll

3k 383.6 2.2M 997 136.5
5k 33.5 1.9M 999 113.6
7k 13.0 1.8M 1000 118.8
10k 7.0 1.7M 999 115.9
15k 4.5 1.6M 999 126.9
811k - 0 964 700.9

G
er

m
an

y N
on

-r
es

id
en

tia
l 20k 52.8 3.6M 980 570.6

30k 20.5 3.3M 981 542.4
40k 10.9 3.1M 982 549.0
50k 9.6 3.0M 980 554.6
75k 7.8 2.8M 972 565.2
100k 7.0 2.7M 971 622.9
1.5M - 0 826 1105.1

Fu
ll

20k 1216.6 10.5M 745 1242.6
30k 224.0 9.4M 772 1258.9
40k 92.2 8.9M 776 1202.8
50k 68.3 8.6M 774 1164.4
75k 46.6 8.2M 782 1221.5
100k 42.6 7.9M 766 1261.8
4.1M - 0 422 1976.5

Table 1: Experiment results of the pre-processing phase.
|V ◦| - core size, tpr - pre-processing time, |ECH| - num-
ber of created shortcuts, # solved - number of successfully
solved queries, tavg - average query planning time

max. 773km; Bavaria avg. 280km, max. 399km). The initial
SoC was set to 100% of the battery capacity.

The algorithm is configured to generate new states
for charge action to the following target charging levels
based mostly on the used charging function breakpoints:
{10%, 20%, 30%, . . . , 80%, 85%, 90%, 95%, 100%}.

Experiment Results
We implemented our EV travel planning algorithms in Java
17. We ran the experiments on the OpenJDK 64-Bit Server
VM Temurin-17.0.4 JVM on a computing cluster node with
64 cores/128 threads 3.1GHz (2 x AMD EPYC 7543). We
ran multiple instances simultaneously while limiting the re-
sources to 8 threads and 31GB of RAM per query and to
24 threads and 450GB of RAM per CH pre-processing. Due
to the high complexity of the problem, we also introduced a
time limit for the query phase to 2 hours.

Pre-Processing Evaluation
First, we evaluate the impact of the CH core size (# un-
contracted nodes). We evaluate the query performance on
the fastest optimal configuration of the algorithm, i.e. with
both heuristic and dimensionality reduction, but without
ϵ−relaxation.

In Table 1, we can see that CH speed up queries signif-
icantly. On the smaller Bavaria area, where it is capable to

solve nearly all instances, the speed-up is more than 6×. On
Germany, we need to look first at the number of solved in-
stances. On the non-residential graph, the algorithm with-
out CH solves 82% of the instances (compared to 98% with
CH), and on the full graph, it solves only 42% of instances.
Therefore, a direct comparison of avg. query time does not
have much value. If we compare only the instances that
both algorithms can solve, the speed-up on these simpler in-
stances is ∼ 11× on full Germany (∼ 7× on non-residential
Germany). We can assume that more complex instances ben-
efit more from CH.

We can also see that too great or too small core size neg-
atively impacts the performance. The best optimal query
performance can be seen around core size of 75k for full
Germany and 40k for non-residential Germany (7k and 5k
on Bavaria). Although the average query time on full Ger-
many with core size 75k is slightly slower than the rest, it
is capable of solving more instances within the time limit.
The additional solved instances, which are the more com-
plex ones, probably cause the greater average query time.
Besides longer pre-processing time, it appears that too small
core also leads to a dramatically increased number of created
shortcuts that slow down the query algorithm by exploring
too many unnecessary shortcuts.

The main reason why the optimal queries are much slower
on the more dense full road graphs is the dramatically in-
creased number of Pareto-optimal solution plans. In the case
of Germany, the average Pareto-set size increases from 700
to 1400 (300 to 800 on Bavaria).

Query Evaluation
We also evaluate the impact of the query phase configura-
tions. We have tried various values of ϵ coefficients. For sim-
plicity, we present here only the configurations where all ϵ
coefficients are set to the same value (ϵt = ϵc = ϵb).

For each planning environment, we first tried the CH pre-
processing, which appears to have the best performance with
the optimal query algorithm. However, the CH best for opti-
mal planning are not always the best with ϵ-relaxation. For
example, on full Germany, the best optimal CH with core
size 75k has an average query time of 9.4s with ϵ = 0.9,
while CH with core size 50k avg. query time is 8.6 (the dif-
ference in max. times is greater - 25.1s vs. 20.7s).

Therefore, in Table 2, you can see the results on the CH
with the fastest avg. query times with ϵ-relaxation - 40k for
Non-residential Germany, 50k for full Germany, 5k for non-
residential Bavaria and 7k for full Bavaria.

We can see that, surprisingly, the fastest avg. query times
on full Germany are not achieved with the most aggressive
relaxation with ϵ = 0.9 but with ϵ = 0.93. The avg. query
time difference is relatively small (8.2s vs. 8.6s), and the
standard deviation for ϵ = 0.93 is 2.5, which, compared to
other measured datasets where the deviation is below 2, in-
dicates that this is probably caused by a noise in this dataset.
On full Germany, we can reach very good avg. planning
times (below 10s), and if we exclude the residential roads
(that could be dealt with by post-processing), we can get
even to avg. planning times of 2.6s while the maximum is
below 10s which is very good for real-world applications.
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ϵ tavg [s] tmax [s] Avg. |Π| Avg. err
B

av
ar

ia N
on

-r
es

id
en

tia
l - 9.6 406.7 294 0.00

0.995 0.7 3.4 32 0.02
0.990 0.5 2.2 26 0.02
0.980 0.5 1.5 21 0.04
0.960 0.6 1.1 17 0.06
0.930 0.4 0.7 12 0.08
0.900 0.4 0.6 10 0.10

Fu
ll

- 118.8 5810.1 796 0.00
0.995 2.0 9.0 45 0.02
0.990 1.8 6.0 33 0.03
0.980 1.7 3.8 25 0.05
0.960 1.5 2.4 19 0.08
0.930 1.3 2.5 12 0.11
0.900 1.3 1.8 10 0.13

G
er

m
an

y N
on

-r
es

id
en

tia
l - 549.0 6809.7 713 0.00

0.995 11.7 219.5 48 0.01
0.990 7.5 120.7 37 0.02
0.980 5.3 64.2 29 0.03
0.960 3.9 28.8 22 0.04
0.930 3.2 13.2 15 0.06
0.900 2.6 8.6 13 0.08

Fu
ll

- 1164.4 6710.4 1422 0.00
0.995 24.1 395.2 62 0.02
0.990 16.6 231.7 46 0.02
0.980 13.0 114.7 34 0.04
0.960 10.2 63.3 25 0.06
0.930 8.2 26.0 16 0.08
0.900 8.6 20.7 13 0.10

Table 2: Experiment results of the query phase. ϵ - coef-
ficient used for the ϵ-relaxation speed-up, tavg - average
query planning time, tmax - maximum query planning time,
Avg. |Π| - average solution Pareto-set size, Avg. err - aver-
age quality loss compared to optimal baseline on instances
where both algorithms find the solution

Because the ϵ-relaxation technique does not preserve op-
timality, we need to measure also its impact on the solu-
tion quality loss. We measure the solution quality loss as the
closeness of the resulting set of EV travel plans to the opti-
mal Pareto-set of plans as proposed by Hrnčı́ř et al. (2016):
d(Π∗,Π) = 1

|Π∗|
∑

π∗∈Π∗ minπ∈Π d(π
∗, π). The average

distance of the Pareto-set Π from the full Pareto-set Π∗ mea-
sures the average Euclidean distance in the objective space
(in our case, time and money cost) normalized to [0, 1] range.
For each objective, the minimum value from all plans Π∪Π∗

is mapped to 0, and correspondingly, the maximum value
is mapped to 1. For illustration, if the optimality loss was
7% equally distributed among the objectives, the distance
d(π∗, π) would be approx. 0.1.

More aggressive pruning leads to smaller solution Pareto-
sets (avg. 13 plans with ϵ = 0.9). While the sub-optimal
Pareto-sets are dramatically smaller, the solution quality loss
is very reasonable (below 0.1), which means that the diver-
sity of the Pareto-optimal set of plans is covered well by the
subset obtained with ϵ-relaxation. We can also see that the
inclusion of residential roads does not significantly increase
the diversity of the solution since the average sizes of re-
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Figure 2: The trade-off between average solution quality loss
and average speed-up achieved by ϵ-relaxation. The ϵ coef-
ficients are displayed directly in the plot.

laxed solutions that maintain good diversity are very similar
to those without residential roads.

Figure 2 illustrates the trade-off between the achieved
speed-up and the solution quality loss (and also the sur-
prising behavior described above). We can see that on full
Germany a speed-up of ∼150× (on non-residential even
∼170×) can be achieved with only a minor solution qual-
ity loss of 0.08.

Conclusions
In this paper, we show the applicability of multi-objective
EV travel planning algorithm based on A* search enhanced
by Contraction hierarchies, optimal dimensionality reduc-
tion, and sub-optimal ϵ-relaxation techniques on realistic
country-sized road graphs with a large number of charging
stations and realistic EV model.

Our extensive evaluation demonstrated the great impact of
CH speeding up the optimal algorithm on the most complex
scenarios more than 11×. Together with the sub-optimal re-
laxation, with which the additional speed-up is 150×, the al-
gorithm solves instances on Germany with residential roads
below 9 seconds on average while maintaining a very good
solution quality and providing 13 plans on average. On the
less dense Germany graph without residential roads, even
the maximum time is below 9 seconds. The total combined
speed-up is more than 250× (on the 422 instances the algo-
rithm without CH can solve). These results prove that the
proposed approach is the first to perform such a genuine
multi-objective optimization on realistically large country-
scale problem instances that can achieve practically usable
planning times in order of seconds with only a minor loss of
solution quality. These results prove the practical applicabil-
ity of the proposed algorithm, which is the first one capable
of performing such a genuine multi-objective optimization
on realistically large country-scale problem instances.

In future research, we would like to enhance the CH pre-
processing by including real-time data that require time-
dependent travel times (Batz et al. 2009) and frequent up-
dates (Geisberger et al. 2012). We would also like to focus
on improving the time and cost heuristics, which could ben-
efit if they consider more informed routes and charging esti-
mates.
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