
On Verifying Linear Execution Strategies in Planning Against Nature

Lukáš Chrpa1, Erez Karpas2

1Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czechia
2Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Haifa, Israel

chrpaluk@cvut.cz, karpase@technion.ac.il

Abstract

While planning and acting in environments in which nature
can trigger non-deterministic events, the agent has to con-
sider that the state of the environment might change without
its consent. Practically, it means that the agent has to make
sure that it eventually achieves its goal (if possible) despite
the acts of nature. In this paper, we first formalize the seman-
tics of such problems in Alternating-time Temporal Logic,
which allows us to prove some theoretical properties of dif-
ferent types of solutions. Then, we focus on linear execution
strategies, which resemble classical plans in that they follow
a fixed sequence of actions. We show that any problem that
can be solved by a linear execution strategy can be solved by
a particular form of linear execution strategy which assigns
wait-for preconditions to each action in the plan that specifies
when to execute that action. Then, we propose a sound algo-
rithm that verifies a sequence of actions and assigns wait-for
preconditions to them by leveraging abstraction.

Introduction
Planning and acting in real-world scenarios (Ingrand and
Ghallab 2017), such as planetary rovers (Ai-Chang et al.
2004), or autonomous underwater vehicles (Chrpa et al.
2015), poses a challenge as during plan execution exoge-
nous events, not being under the control of the agent, might
change the environment. Exogenous events are triggered by
an actor without specific intentions (or goals) that acts rather
randomly. We call that actor nature. The (rational) agent that
wants to achieve its goal has to take into consideration possi-
ble actions (events) of nature. We call such a problem plan-
ning against nature. Acts of nature, however, might render
the plan invalid, make the agent’s goal no longer achievable,
or, worse, they might cause damage to the agent.

For example, the AUV domain (Chrpa, Gemrot, and Pilát
2020), inspired by real-world AUV operations (Chrpa et al.
2015), simulates a scenario in which the AUV has to perform
sampling of given objects of interest in the presence of ships
(controlled by nature) passing by in corridors. If a ship enters
the AUV’s location, then the AUV is destroyed.

The number of non-deterministic alternatives (per action)
might be exponential with respect to the number of events if
we consider that nature can apply multiple events at once.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

That makes it possibly harder than Fully-observable non-
deterministic (FOND) planning, which considers actions
with non-deterministic effects (Cimatti et al. 2003). Recent
works (Chrpa, Gemrot, and Pilát 2020; Chrpa, Pilát, and
Med 2021) aimed at alleviating “non-deterministic branch-
ing” by studying in which conditions a sequential plan is
guaranteed to eventually achieve the goal. In contrast to
those works, we consider that nature can apply sequences
of events at once and provide a formal definition of wait-
for preconditions, inspired by the work on social laws in
planning (Karpas, Shleyfman, and Tennenholtz 2017), that
establish when a given action (in the sequence) can be ap-
plied (e.g., the AUV has to wait until the ship leaves before
entering the ship’s corridor).

Inspired by the line of work on Situation Calculus (Re-
iter 1996; De Giacomo and Lespérance 2021), in this pa-
per, we formalize planning against nature tasks by using
a concurrent game structure and Alternating-time Tempo-
ral Logic (ATL) (Alur, Henzinger, and Kupferman 2002).
Hence ATL model checking can be leveraged to generate ex-
ecution strategies. We then focus on linear execution strate-
gies, resembling classical sequential plans, where we show
that the fundamental principle determining whether a se-
quence of actions can yield a linear execution strategy is to
guarantee that the next action (or the goal after the whole
sequence is executed) becomes applicable (or the goal is
achieved) after an infinite number of “turns” of nature. Also,
we show that if we have a sequence of actions that can yield
a linear execution strategy, then we can compute wait-for
preconditions for each action by stepwise regression from
the goal that makes such a linear execution strategy unique.
Then, we propose an algorithm that verifies a sequence of
actions (generated by classical planners) by using a heuris-
tic approach based on problem abstraction. On top of that,
the verification algorithm computes wait-for preconditions
for actions in that sequence. Although the proposed algo-
rithm is theoretically incomplete, it allows us to verify lin-
ear execution strategies generated by off-the-shelf classical
planners for a subclass of problems.

Related Work
The concept of exogenous events in planning (Dean and
Wellman 1990; Iocchi, Nardi, and Rosati 2000) was used
in systems such as Circa (Musliner, Durfee, and Shin 1993).

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

86

These systems usually have to reason with a whole (or al-
most whole) state space. Markov Decision Process (MDP)-
based approaches can be leveraged to tackle events (Mausam
and Kolobov 2012) and aim to generate a policy with
the most promising action in each state. Monte-Carlo Tree
Search (MCTS) approaches provide similar benefits; how-
ever, the success rate tends to drop for problems with dead-
ends (Patra et al. 2021).

A “lazy” approach addressing non-determinism is to relax
events and generate plans by classical planners, and if, dur-
ing acting, the agent encounters an unknown state or cannot
apply the next action, it replans (Komenda, Novák, and Pe-
choucek 2014). The success of FF-replan (Yoon, Fern, and
Givan 2007) in the International Planning Competition 2006
(it was an unofficial winner of the probabilistic track) in-
dicates a viability of such a strategy, however, in domains
with dead-ends such an approach might not be effective (and
might even be dangerous).

To address the issue of encountering dead-ends while us-
ing the (classical) planning and replanning strategy Chrpa,
Gemrot, and Pilát (2020) adapted the notion of safe
states (Cserna et al. 2018) such that no sequence of events
can transform a safe state to a dead-end state and proposed
a technique that iteratively generates robust plans, guaran-
teed to always succeed regardless of events, connecting safe
states until the goal is achieved. The main drawback of the
technique is that it tries to find robust plans between safe
states online which might not always be possible. If there
is no way of transiting an unsafe area via a robust plan, the
agent gets stuck forever (albeit in a safe state). A subsequent
work of Chrpa, Pilát, and Med (2021) introduced a technique
for generating eventually applicable plans that, in our termi-
nology, refer to linear execution policies. That technique de-
termines “cyclic phenomena” that are formed by reversible
events and also identifies potentially irreversible events that
might lead to dead-ends. These irreversible events cannot
become applicable during plan execution (the agent either
does not enable them or disables them before they have a
chance to occur). It should be noted that our work consid-
ers valid sequences of events between actions of the agent
while Chrpa, Gemrot, and Pilát (2020) and Chrpa, Pilát, and
Med (2021) consider sets of independent events between the
agent’s actions and, hence, the concepts for those works can-
not be directly applied in our model.

Conformant planning deals with the problem of gen-
erating linear plans in partially or unobservable environ-
ments (Cimatti and Roveri 2000; Bonet 2010). Conformant
planning can be addressed, for instance, by extending clas-
sical planners (Hoffmann and Brafman 2006) or by com-
piling it to classical planning (Palacios and Geffner 2009).
Although our focus on linear execution strategies shares the
same spirit as conformant planning, as the settings are dif-
ferent (we assume full observability but the environment can
be modified by the act of nature) and the semantics of linear
execution strategies (with waitfors) can be interpreted as a
policy with loops that wait until the waitfor precondition of
the next action is satisfied.

Fully Observable Non-deterministic (FOND) planning, in
a nutshell, concerns tasks in which the environment is fully

observable while actions have several different outcomes
and if one such action is applied a random outcome occurs
(Cimatti et al. 2003). The task is to find a strong plan that, in
the context of our terminology, represents a valid execution
strategy that is a solution of a FOND planning task. For in-
stance, the well-known PRP planner (Muise, McIlraith, and
Beck 2012) looks for strong plans by leveraging classical
planning techniques and handling non-determinism by at-
tempting to “close” states from which there does not yet
exist a plan. FOND planning is known to be EXPTIME-
complete (Littman, Goldsmith, and Mundhenk 1998).

Although both FOND planning and planning against na-
ture deal with non-determinism, there is a fundamental dif-
ference in how non-determinism occurs. In FOND plan-
ning, non-determinism is triggered by (non-deterministic)
actions of the agent while in planning against nature non-
determinism is triggered by events that nature can apply.
Thus from the resulting state from an agent’s action any of
the reachable states by events might occur. In the AUV ex-
ample, ships can move freely regardless of the movement of
the AUV. After the AUV acts, each ship can then move to
any of its reachable positions or stay, so the number of non-
deterministic alternatives is the number of combinations of
reachable positions of the ships. Hence, in each “turn” the
number of outcomes of nature might be exponential with re-
spect to the size of the representation of the planning task
against nature. We conjecture that planning against nature
is computationally harder than FOND planning and at most
double exponential (as ATL model checking).

Preliminaries
Planning against Nature can be understood as a special
case of multi-agent planning (Brafman and Domshlak 2008)
in which an intelligent agent that plans towards its goal acts
against a “random” agent (or nature) that acts randomly
without a specific purpose (or goal).

To represent the environment, we use Finite Domain Rep-
resentation (FDR) (Helmert 2009). Let V be a set of vari-
ables where each variable v ∈ V is associated with its do-
main D(v). An assignment of a variable v ∈ V is a pair
(v, val), where its value val ∈ D(v). Hereinafter, an as-
signment of a variable is also denoted as a fact. A (partial)
variable assignment p over V is a set of assignments of in-
dividual variables from V , where vars(p) is the set of all
variables in p and p[v] represents the value of v in p. A state
is a complete variable assignment (over V). We say that a
(partial) variable assignment q holds in a (partial) variable
assignment p, denoted as p |= q, iff vars(q) ⊆ vars(p) and
for each v ∈ vars(q) it is the case that q[v] = p[v].

An action is a pair a = (pre(a), eff (a)), where pre(a) is
a partial variable assignment representing a’s precondition
and eff (a) is a partial variable assignment representing a’s
effects. We say that an action a is applicable in state s if and
only if s |= pre(a). The result of applying a in s, denoted
as γ(s, a), is a state s′ such that for each variable v ∈ V ,
s′[v] = eff (a)[v] if v ∈ vars(eff (a)) while s′[v] = s[v] oth-
erwise. If a is not applicable in s, γ(s, a) is undefined. The
notion of action application can be extended to sequences
of actions, i.e., γ(s, ⟨a1, . . . , an⟩) = γ(. . . γ(s, a1) . . . , an).

87

We denote as ha(a) a (partial) variable assignment repre-
senting values of variables that must hold after applying
an action a, i.e., for each v ∈ vars(eff (a)) : ha(a)[v] =
eff (a)[v] and for each v′ ∈ vars(pre(a)) \ vars(eff (a)) :
ha(a)[v′] = pre(a)[v′].

We define a planning task against nature (or planning
task, for short) as a tuple P = (V,A,E, I,G), where V is
a set of variables, A is a set of actions of the agent, E is a
set of actions of nature (or, events), I is a complete variable
assignment representing the initial state and G is a partial
variable assignment representing the goal.

Alternating-time Temporal Logic (ATL) (Alur, Hen-
zinger, and Kupferman 2002) is a modal logic which allows
us to write formulas which describe interactions between
multiple agents, and what a set of agents can achieve regard-
less of what the other agents choose to do. The semantics of
ATL rely on the definition of a concurrent game structure:
Definition 1. A concurrent game structure is a tuple S =
⟨P, S, F, π, d, δ⟩ with the following components:
• A set of players P = {p1, . . . , pk}
• A finite set of states S
• A finite set of propositions F (also called observables)
• For each state s ∈ S, π(s) ⊆ F is a set of propositions

which are true in s
• For each player p ∈ P and each state s ∈ S, a set of

moves dp(s) available to player p in state s. Given a state
s ∈ S, we write M(s) for the set (dp1(s)×· · ·× dpk

(s))
of move vectors. The function M is called move func-
tion.

• For each state s ∈ S and each move
vector ⟨jp1

. . . , jpk
⟩ ∈ M(s), the state

δ(s, jp1
, . . . , jpk

) ∈ S that results from state s if
every player pi ∈ P chooses move jpi

. The function δ is
called transition function.

Definition 2. Given a concurrent game structure, an ATL
formula Φ is either:
• A single proposition f for any proposition f ∈ F
• Composed of smaller ATL formulas Φ1,Φ2 using the

propositional logical connectives: ¬Φ1 or Φ1 ∨ Φ2

• Composed of smaller ATL formulas using a path quan-
tifier ⟨⟨A⟩⟩ (where A ⊆ P is a set of players) and a
temporal operator (◦ (next), □ (always), or U (until)):
⟨⟨A⟩⟩ ◦ Φ1, ⟨⟨A⟩⟩□Φ1, or ⟨⟨A⟩⟩Φ1UΦ2

The interpretation of the propositions (F) and logical con-
nectives (∧,∨,¬) is straightforward, and the temporal opera-
tors — ◦ (next), ⋄ (eventually), □ (always), U (until) — are
similar to those used in LTL (Pnueli 1977).

The path quantifiers allow ATL to express properties of
multi-agent systems. For a set of players A, the formula
⟨⟨A⟩⟩Φ, means that the players in A can ensure the for-
mula Φ holds, regardless of what the other players (P \ A)
do. To define this formally, we define a strategy zp for
player p as a function that maps every sequence of states
hs ∈ S+ ending in state s (that is, a possible history) to
an action applicable in s, i.e., zp : hs → dp(s). Given
a state s, a set of players A, and a set of strategies ZA
(one for each player in A), out(s, ZA) is the set of possi-
ble trajectories which could occur when starting from state

s and the players in A follow strategies ZA. In other words,
a trajectory s0, s1, . . . , sm ∈ out(s, ZA) iff s0 = s, and
for i ∈ {0, . . . ,m} ∃⟨j1, . . . , jn⟩ ∈ M(si) such that
δ(si, j1, . . . , jn) = si+1 and for pk ∈ A : zpk

(si) = jk.
We can now define when an ATL formula is satisfied.

Definition 3. Given a concurrent game structure S , state s,
and ATL formula Φ, we say that S, s |= Φ. For brevity we
omit S , and define this recursively by:
• s |= f iff f ∈ π(s)
• s |= ¬Φ iff s ̸|= Φ
• s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

• s |= ⟨⟨A⟩⟩ ◦ Φ iff there exists a set of strategies ZA
(one for each player in A) such that for all trajectories
s0, s1, . . . sj ∈ out(s, ZA), s1 |= Φ

• s |= ⟨⟨A⟩⟩□Φ iff there exists a set of strategies ZA
(one for each player in A) such that for all trajecto-
ries s0, s1, . . . sj ∈ out(s, ZA), for all positions i ∈
{0, . . . , j}, si |= Φ

• s |= ⟨⟨A⟩⟩Φ1UΦ2 iff there exists a set of strategies ZA
(one for each player in A) such that for all trajectories
s0, s1, . . . sj ∈ out(s, ZA), there exists a position i ∈
{0, . . . , j} such that si |= Φ2, and for all positions 0 ≤
j < i : sj |= Φ1

Finally, we can discuss ATL fairness constraints. While
there are several types of fairness discussed in the original
ATL paper (Alur, Henzinger, and Kupferman 2002), we re-
view only strong fairness constraints, which we use later.

Definition 4. Given a concurrent game structure S =
⟨P, S, F, π, d, δ⟩, a fairness constraint is a pair ⟨p, λ⟩ where
p ∈ P is a player and λ maps every state s ∈ S to a set of
moves in dp(s).

A trajectory s0, s1, . . . is strongly ⟨p, λ⟩-fair iff there are
only finitely many positions i where λ(si) ̸= ∅, or there
are infinitely many positions i where ⟨j1, . . . , jn⟩ ∈ M(si),
δ(si, j1, . . . , jn) = si+1, and jp ∈ λ(si).

In other words, a strong fairness constraint specifies a sub-
set of moves, each of which must be taken infinitely often
when each state is visited infinitely often. Note that it is
similar to the fairness required by strong cyclic FOND plan-
ning (Cimatti et al. 2003).

Execution Model as a Concurrent Game
In the presence of non-deterministic events, we look for an
execution strategy of an agent that, in a nutshell, specifies
which action (if any) is applied in a particular state when-
ever the agent can act. Our execution model is derived from
the model used in previous work on social laws (Karpas, Sh-
leyfman, and Tennenholtz 2017) to account for possibly dif-
ferent durations of actions and events even without explicitly
specifying those in the action/event description. To resolve
potential conflicts between actions and events, we consider
in our execution model that sequences of events triggered by
nature alternate with the actions of the agent.

In the context of ATL, we can specify a concurrent game
structure for two players – an agent and nature – where the
agent is responsible for applying actions to achieve its goal
while nature applies events randomly without a specific aim.

88

We enforce a strong fairness requirement, so each event has
a chance to occur if it is applicable. Each player can act only
in its turn. Turns can be switched by the agent’s actions or a
specific “switch” event of the nature.

Definition 5. Let P = (V,A,E, I,G) be a plan-
ning task. We define a variable turn with domain
D(turn) = {at, nt}. Then, we define an action
switcha = ({(turn, at)}, {(turn, nt)}, an event switche =
({(turn, nt)}, {(turn, at)} and an empty action/event “0”.
Let F be the set of all facts over V ∪ {turn}, S be the set of
states over V ∪ {turn}.

We define the concurrent game structure for P to be
S = ⟨P, S, F, π, d, δ⟩, where:
• P = {agent, nature}
• π : S → 2F with π(s) = {(v, val) | v ∈ V, val ∈
D(v), s[v] = val}

• for each s ∈ S it holds that dagent(s) = {a | a ∈ A ∪
{switcha}, s |= pre(a) ∧ (turn, at)} ∪ {0}, dnature(s) =
{e | e ∈ E ∪ {switche}, s |= pre(e) ∧ (turn, nt)} ∪ {0}

• ∀a ∈ A ∪ {switcha} s.t. s |= pre(a) ∧ (turn, at):
δ(s, a, 0) = (γ(s, a) \ {(turn, at)} ∪ {(turn, nt)}),

• ∀e ∈ E ∪ {switche} s.t. s |= pre(e) ∧ (turn, nt):
δ(s, 0, e) = γ(s, e)

We define a fairness constraint (nature, λ) such that λ(s) =
dnature(s) for each s ∈ S, that is, nature will take each
move infinitely often.

The concurrent game structure models the interaction be-
tween the agent and nature. It captures the interaction in an
asynchronous way, where nature can apply a sequence of
events before switching the turn back to the agent.

We define an execution strategy for the agent as a function
that for each state in which the agent has its turn maps an
action that the agent applies in that state (including switch).

Definition 6. Let P = (V,A,E, I,G) be a planning task
and S = ⟨P, S, F, π, d, δ⟩ be its concurrent game structure.
Let σ be a policy of the agent in the concurrent game struc-
ture S , which maps every state s ∈ S to an action da(s). We
define the execution strategy ϵσ : S → A ∪ {switcha} by
ϵσ(s) = σ(s).

Note that by definition of S , for every s ∈ S such that
s[turn] = at it is the case that ϵ(s) = a→ s |= pre(a).

The notion of outcome of an execution strategy, formally
introduced below, describes a specific play of the “game”
specified by the concurrent game structure (S) of a planning
task (P).

Definition 7. An outcome of an execution strategy ϵ is a se-
quence of actions from A∪ {switcha} that the agent applies
in the game (described by S) starting in I ∪ {(turn, nt)}
and, possibly, reaching a state s |= G∧ (turn, at) if the out-
come is successful.

Note that a successful execution strategy can reach the
goal and then continue. If we want to stop at the goal we can
either consider versions of ATL on finite traces (Belardinelli
et al. 2018), or modify the definition of the concurrent game
structure to include “noop” action for the agent at the goal,
allowing the agent to loop forever once it reaches the goal.

However, for the sake of simplicity, we use the standard ver-
sion of ATL, which is defined on infinite traces.

We can now define a valid execution strategy as a strat-
egy whose every possible outcome is successful. In other
words, no matter how nature plays (if following the fairness
assumption), the agent always reaches its goal by a valid ex-
ecution strategy. We also say that a valid execution strategy
is a solution of the given planning task.

Definition 8. Let P = (V,A,E, I,G) be a planning task
and ϵ be an execution strategy. If every outcome of ϵ is suc-
cessful, then we say that ϵ is valid. We also say that if ϵ is
valid, then it is a solution of P .

We can reasonably assume that nature always eventually
switches the turn to the agent. Then, we can say that a plan-
ning task is solvable if and only if the agent can extract an
execution strategy that eventually achieves the goal. The fol-
lowing definition captures the above aspects in an ATL for-
mula.

Proposition 1. Let P = (V,A,E, I,G) be a planning task,
S be the concurrent game structure for P and turn be a
variable as in Def. 5. We say that P is solvable if and
only if S, I ∪ {(turn, nt)} |= (⟨⟨nature⟩⟩□((turn, nt) →
⋄(turn, at)))→ (⟨⟨agent⟩⟩ ⋄ (G ∧ (turn, at))).

Proof. If the premise I ∪ {(turn, nt)} |=
(⟨⟨nature⟩⟩□((turn, nt) → ⋄(turn, at))) holds, and
the formula above is satisfiable for S , then by the definition
of ATL semantics for ⟨⟨agent⟩⟩ ⋄ (G ∧ (turn, at))), there
exists some strategy for the agent, such that for every
strategy of nature, the goal G is achieved for every outcome,
i.e., the execution strategy of the agent is valid and a
solution of P . The “if” implication also straightforwardly
holds as the existence of an execution strategy achieving G
implies the satisfiability of the ATL formula.

The above proposition indicates that a valid execution
strategy can be extracted by model checking of the given
ATL formula. Of course, ATL model checking is not compu-
tationally tractable – in fact, with strong fairness constraints
it is PSPACE-hard in the size of the game structure (Alur,
Henzinger, and Kupferman 2002, Theorem 5.5), that is, dou-
bly exponential in the number of variables. In the next sec-
tion, we restrict our attention to some cases where we can
check if the formula is satisfiable more efficiently.

Linear Execution Strategy
Rather than determining which action has to be applied in
each (reachable) state, it might be practical to consider (se-
quential) plans where the agent applies actions one by one.
This leads us to the notion of linear execution strategies that
are special cases of execution strategies that resemble se-
quential plans – as in classical planning.

Given a sequence of actions that includes switcha, we call
the sequence of real actions (all actions except the switch
actions) its non-switch sequence. Using this notion we can
define a linear execution strategy as follows:

Definition 9. Let P = (V,A,E, I,G) be a planning task,
S = ⟨P, S, F, π, d, δ⟩ be its concurrent game structure, and

89

let ϵ be an execution strategy. If every outcome of ϵ shares
the same non-switch sequence of actions θ, then ϵ is a linear
execution strategy. We call θ the action sequence of ϵ.

The following example shows that linear execution strate-
gies are indeed more limited than general execution strate-
gies. Consider a variant of the AUV example, where a ship
drops an object onto a random place that the AUV wants to
collect. A general execution strategy of the AUV will wait
until the ship drops the object and then will act to collect the
object. However, there is no linear execution strategy that
can solve this problem, as the AUV cannot commit to a spe-
cific sequence of actions beforehand. On the other hand, if
the location of the object is fixed at the beginning, the AUV
can commit to a sequence of actions and hence can use a
linear execution strategy to solve the problem.

In order to verify if a linear execution strategy is valid, we
have to investigate what nature can do and whether it can
apply a sequence of events that might jeopardize the appli-
cability of the next action or the goal rendering the agent’s
linear execution strategy unsuccessful. Hence we define an
alive property determining whether a (partial) variable as-
signment always has a chance to become true despite acts of
nature (while considering the fairness assumption).

Definition 10. Let P = (V,A,E, I,G) be a planning task
and S be the set of states over V . We define a nature game
of P as a labelled transition system N = (S, T), where
(s, e, s′) ∈ T iff γ(s, e) = s′.

We say that s′ (resp. an event e ∈ E) is reachable from
s (in N) iff there exists a path from s to s′ (resp. a state
s′′ such that s′′ |= pre(e)) in N . Otherwise, we say that s′
(resp. e) is unreachable from s (in N).

Let q be a (partial or complete) variable assignment over
V . We say that q is alive with respect to s (inN), denoted as
alive(q, s), iff for each state s′ reachable from s there exists
a state s′′ with s′′ |= q that is reachable from s′.

For convenience, we define ∆ : 2S × A → 2S as
∆(S′, a) = {s | s′ ∈ S′, γ(s, a) = s′} representing re-
gression from S′ via a, that is, what are the states where
applying action a results in some state from S′.

Theorem 1. Let P = (V,A,E, I,G) be a planning task, let
S be the set of states over V andN be the nature game of P .
Finally, let θ = ⟨a1, . . . , an⟩ be an action sequence. Then,
we specify sets of states S0, S1, . . . , Sn as follows.
• Sn = {s | s ∈ S, s |= ha(an), alive(G, s)}
• Si = {s | s ∈ S, s |= ha(ai), ∃s′ ∈ ∆(Si+1, ai+1) :

alive(s′, s)} for all 1 ≤ i < n
• S0 = {s | s ∈ S, ∃s′ ∈ ∆(S1, a1) : alive(s′, s))}

If I ∈ S0, then there exists a valid linear execution strategy
ϵθ for P and S0, . . . Sn ̸= ∅.

Proof. The intuition behind the proof is to show that we can
regressively construct sets of states that ensure the (even-
tual) applicability of the subsequent non-switch actions or
achievability of the goal (after the agent applies all non-
switch actions). It can be seen that for a state s and a variable
assignment q such that alive(q, s) it holds that Sswitch, s |=
⟨⟨agent⟩⟩ ⋄ q, where Sswitch is a variant of concurrent game

structure from Definition 5 that allows only the switcha ac-
tion for the agent, as nature cannot generate a sequence of
events making states entailing q unreachable.

For a state sn ∈ Sn, we can derive that Sswitch, sn |=
⟨⟨agent⟩⟩ ⋄ G and that sn can be achieved just after an
is applied by the agent (because of sn |= ha(an)). Then,
we can observe that if the agent applies an in any state
from ∆(Sn, an) it eventually achieves the goal G. For a
state si ∈ Si (0 ≤ i < n), we can similarly derive that
Sswitch, si |= ⟨⟨agent⟩⟩ ⋄ (

∨
s′∈∆(Si+1,ai+1)

s′) and that, if
i ≥ 1, then si can be achieved just after ai is applied by the
agent (because of si |= ha(ai)). We can then observe that if
the agent applies ai in any state from ∆(Si, ai), it eventually
reaches a state from ∆(Si+1, ai+1) and eventually achieves
the goal G (by induction on i to reach Sn). From this ob-
servation, we can immediately see that if I ∈ S0, then we
can define a valid linear execution strategy ϵθ which follows
θ. Also, if Si = ∅, we can derive that Sj = ∅ for every
0 ≤ j < i and hence if I ∈ S0, then S0, . . . Sn ̸= ∅.

The definition of linear execution strategy (Definition 9)
is, however, not constructive as it contains an implicit ambi-
guity for the agent in deciding when to apply the next action.
To make the definition constructive we leverage the concept
of wait-for preconditions that represents a fragment of so-
cial laws in multi-agent planning (Karpas, Shleyfman, and
Tennenholtz 2017). In our case, wait-for preconditions are
sets of states that uniquely define when the agent applies its
non-switch action and when it switches.

In the AUV example, the AUV might have to wait until
a ship passes through the location before entering. This is a
stronger condition than the move action requires; however,
if the AUV enters the location before the ship passes it, the
ship might run over the AUV.
Definition 11. Let P = (V,A,E, I,G) be a planning task
and S = ⟨D,S, F, π, d, δ⟩ be its concurrent game structure.
Let θw = ⟨(w(a1), a1), . . . , (w(an), an)⟩ be a sequence
of actions (from A) associated with wait-for preconditions
w(ai) ⊆ S(1 ≤ i ≤ n) and ϵθw be a linear execution strat-
egy. If for every outcome of ϵθw , it is the case that non-switch
actions are applied in states satisfying actions’ wait-for pre-
conditions, i.e., s ∈ w(ai), while switch actions are applied
in states in which the wait-for precondition for the next ac-
tion is not met, then ϵθw is a linear execution strategy with
wait-for preconditions.

The following theorem, which follows immediately from
Theorem 1 and Definition 11, shows how wait-for precondi-
tions can be refined from Si states.
Theorem 2. Let P = (V,A,E, I,G) be a planning task,
ϵθ be a linear execution strategy whose action sequence is
θ = ⟨a1, . . . , an⟩ and sets of states S0, S1, . . . , Sn. Then,
we can refine ϵθw , a linear execution strategy with wait-for
preconditions, by computing wait-for precondition, for each
action ai ∈ θ, as w(ai) = ∆(Si, ai).

Verification of Linear Execution Strategies
Theorems 1 and 2 provide a blueprint of how action se-
quences can be verified as linear execution strategies (with

90

wait-for preconditions). An important step of the verification
is to guarantee that the next action (or the goal) will become
eventually applicable regardless of how nature acts. Thus,
we have to identify whether a (partial) variable assignment
is “alive” with respect to a state (see Definition 10). This can
be done by leveraging the notion of strongly connected com-
ponent, which is well known in the graph theory, and the re-
lated notion of condensation of a graph, where each strongly
connected component is “condensed” to a single node. The
idea is to compute strongly connected components and “con-
dense” the nature game to get an understanding of its topol-
ogy. That is important in determining the alive relation for
(partial) variable assignments.

Theorem 3. Let P = (V,A,E, I,G) be a planning task
andN = (A, T) be its nature game. Let N1, . . . , Nk be sets
of nodes forming strongly connected components of N . For
some (partial) variable assignment q and a state s, it is the
case that alive(q, s) if and only if for N i such that s ∈ N i

there does not exist a path from N i to some (condensed) leaf
node N j such that ∄s′ ∈ N j : s′ |= q.

Proof. If alive(q, s), then for every s′′ reachable from s in
N it holds that s′ such that s′ |= q is reachable from s′′ inN
(according to Definition 10). Since the condensation ofN is
acyclic there is a path from N i to at least one (condensed)
node (including N i itself). We can also observe that s′ (with
s′ |= q) has to be in a (condensed) leaf node, otherwise, there
might exist s′′ in N from which s′ might not be reachable.
If, however, there is a path from N i (s ∈ N i) to another
(condensed) leaf node N j such that ∄s′ ∈ N j : s′ |= q, then
we can find such s′′ (being, for example, in N j) from which
s′ (such that s′ |= q) is not reachable, and hence alive(q, s)
would not hold.

Corollary 1. Let P = (V,A,E, I,G) be a planning task,
N = (A, T) be its nature game, and N1, . . . , Nk be sets
of nodes forming strongly connected components of N . Let
q be a (partial) variable assignment. If N i is a (condensed)
leaf node such that s ∈ N i and s |= q, then for each s′ ∈ N i

it is the case that alive(q, s′). If, on the other hand, there
does not exist a (condensed) leaf node N i such that s ∈ N i

and s |= q, then alive(q, s′) does not hold for any state s′.

Atomic Projection Abstractions
To simplify reasoning about the alive relations we propose
Nature Domain Transition Graph (NDTG), a special case of
a Domain Transition Graph (Jonsson and Bäckström 1998),
that represents how the values of variables can be changed in
the nature game. NTDGs can be leveraged to check the vari-
ables one by one whether they conform to the alive relation.
Note that such an approach is incomplete as we abstract the
state space of the nature game.

Definition 12. Let P = (V,A,E, I,G) be a planning task.
For each v ∈ V , we define the Nature Domain Transi-
tion Graph (NDTG) as a directed graph Gv = (D(v), T v),
where D(v) is a set of nodes and T v a set of edges such that
for all x, y ∈ D(v) with x ̸= y, (x, y) ∈ T v iff there exists
e ∈ E such that eff(e)[v] = y and either pre(e)[v] = x or

v ̸∈ vars(pre(e)). Also, we denote x→v y if there is a path
from x to y in Gv , and ↓v x if x is a leaf node in Gv .

In the AUV example, we consider variables “at-auv” and
“at-ship” representing the position of the AUV and the ship,
respectively, variables “free” representing whether a partic-
ular cell is free or occupied, and a variable “operational”
representing whether the AUV can act.

In the following paragraphs, we describe four cases of
how we can leverage NDTG to verify whether a given fact is
in the “alive” relation. The first two cases refer to situations
in which nature cannot change the value of the variable. The
third case refers to situations in which nature might change
the value of the variable but will eventually change it back.
The last case refers to situations in which nature will even-
tually change the value of a variable to a “final” value that
can no longer be modified by nature.

Maintaining the Value of a Variable In NDTGs, we can
immediately see that the alive relation holds for values in
leaf nodes as those values cannot be modified by events in
any reachable state in the nature game. In the AUV exam-
ple, we can observe that, for example, the value of “at-auv”
is always maintained regardless of event occurrence, or no
event can modify the value of “at-ship” representing that the
ship has left the area, as the ship cannot re-enter the area.
Lemma 1. Let P = (V,A,E, I,G) be a planning task, S
be the set of states over V , v ∈ V be a variable and Gv =
(D(v), T v) be its NDTG. If for x ∈ D(v) it holds that ↓v x,
then for each state s ∈ S such that s[v] = x it is the case
that alive((v, x), s)

In a more general sense, we can also observe that the value
for a given variable does not change if none of the events
“deleting” that value is reachable from a given state1. In the
AUV example, the value of “operational” representing that
the AUV is operational cannot be modified as long as the
AUV is not in the ship’s corridor, or the ship has already
passed by the cell in question.
Lemma 2. Let P = (V,A,E, I,G) be a planning task, S
be the set of states over V , and v ∈ V be a variable. For
s ∈ S it holds that alive((v, x), s) if s[v] = x, and all
e ∈ E deleting (v, x) are unreachable from s.

In some situations, an event might change the value of a
variable but it enables another event that can revert it. In a
variant of the AUV example, the nature might temporarily
make an object of interest invisible for the AUV (e.g. setting
a variable “visible” to “false”). The nature can make the ob-
ject visible again (i.e., setting “visible” to “true”), which can
eventually happen (so the AUV might then sample it).
Lemma 3. Let P = (V,A,E, I,G) be a planning task, S
be the set of states over V and v ∈ V be a variable. For
s ∈ S it holds that alive((v, x), s) if s[v] = x and for each
e ∈ E applicable in s deleting (v, x), there exists e′ ∈ E
such that ha(e) |= pre(e′), eff(e′)[v] = x and for each e′′ ∈
E reachable from γ(s, e) and deleting some precondition of
e′ it holds that either eff(e′′)[v] = x or pre(e′′)[v] = x.

1By “deleting” a value of a variable (e.g. (v, x)), we mean
changing the value (x) of that variable (v) to a different value (y)

91

Proof. Any event e deleting (v, x) makes another event
e′ (re)achieveing (v, x) applicable because of ha(e) |=
pre(e′). Also, any event e′′ that can possibly make e′

inapplicable either requires or achieves (v, x). Hence,
alive((v, x), s) for each s with s[v] = x.

Note that even though two facts over different variables
can be determined as alive according to Lemma 3 their
conjunction might not be alive as, for example, an event e
deletes (v, x) and achieves (v′, x′) and another event e′ does
it the other way round.

Connecting Different Variable Values If the value of a
given variable has to be changed, we can investigate whether
nature can eventually apply events that achieve the required
value, and such a value is then maintained. The NDTG can
be analyzed to check whether some “leaf” value can be
achieved from another value. It can be possible if events on
the path from that value to the leaf one can eventually oc-
cur, which is formally stated in the following lemma. In the
AUV example, we might observe that the ship will even-
tually leave the area, i.e., it will be changing the value of
“at-ship” until it (finally) reaches the value representing that
the ship is outside the area.
Lemma 4. Let P = (V,A,E, I,G) be a planning task,
S be the set of states over V and v ∈ V be a variable
and Gv = (D(v), T v) be its NDTG. For s ∈ S with
s[v] = y, alive((v, x), s) if (i) there exists a path y =
q0, q1, . . . , qk = x in Gv (i.e., y →v x), (ii) ↓v x (iii) there
exists a sequence of events ⟨e1, . . . , ek⟩ such that for every
1 ≤ i ≤ k it holds that pre(ei)[v] = qi−1, eff(ei)[v] = qi,
γ(s, ⟨e1, . . . , ei−1⟩) |= pre(ei) and for each e′i that deletes
a fact required by ei, e′i is unreachable or v ∈ vars(pre(e′i))
and pre(e′i)[v] ̸= qi−1.

Proof. The sequence of events ⟨e1, . . . , ek⟩ from the as-
sumption can eventually achieve the value x of the variable
v from y. On top of that, the fact (v, x) cannot be deleted
because of (ii). In particular, it is assured that each event
(from that sequence) can eventually be applied because of
γ(s, ⟨e1, . . . , ei−1⟩) |= pre(ei) and the fact that any event
possibly invalidating the precondition of any of the events
in the sequence is either unreachable or requires a different
value of v than that being currently set.

The Method
Sequences of actions, which might form a basis for linear
execution strategies, are generated by off-the-shelf classi-
cal planners such that a planning task P = (V,A,E, I,G)
is converted into a classical planning task Pc = (V,A ∪
E, I,G), solved, and from the solution of Pc, denoted as ϵc,
we take out events, i.e., ϵ = ϵc \ E.

Such an action sequence ϵ has to be verified to check
whether it can yield a valid linear execution strategy for
P . The verification of ϵ can be done regressively step by
step as indicated in Theorem 1 and, consequently, wait-
for preconditions can be computed for the actions from
ϵ as indicated in Theorem 2. Note that we abuse nota-
tion by considering wait-for preconditions (prew(a)) as par-
tial states (or partial variable assignments) meaning that

Algorithm 1: Verifying a Linear Execution Strategy
Require: A planning task P = (V,A,E, I,G), a sequence

of actions ϵ = ⟨a1, a2, . . . , an⟩
Ensure: A linear execution strategy with wait-for precon-

ditions θ over ϵ
1: θ ← ⟨⟩; s← G
2: for i← n, i ≥ 0, i−− do
3: sp = ha(ai) if i ≥ 1, or sp = I otherwise
4: prew(ai)← pre(ai)
5: while ∃v ∈ (vars(sp) ∩ vars(s)) : sp[v] ̸= s[v] do
6: if ∃⟨e1, . . . , ek⟩ as in Lemma 4 then
7: ∀v′ ∈ (vars(pre(e1)) \ vars(sp)) :

sp[v
′] = prew(ai)[v

′]← pre(e1)[v′]
8: sp ← γ(sp⟨e1, . . . , ek⟩)
9: else

10: return Fail
11: for all v ∈ (vars(sp) ∩ vars(s)) do
12: if none of Lemmas 1–3 can be applied then
13: return Fail
14: else
15: prew(ai).add(Cond-Vals(sp, ai, e, v))
16: s← Reg(s, ai); θ.push-back(prew(ai), ai)
17: return θ

prew(a) represents all states in which prew(a) holds. To de-
termine the regression step (over partial) states we define
the Reg(s, a) function that is calculated according to (Pom-
merening and Helmert 2015), i.e., Reg(s, a) is defined only
on variables from (vars(s)\vars(eff (a)))∪vars(prew(a)))
such that Reg(s, a)[v] = prew(a)[v] if v ∈ vars(prew(a)),
or Reg(s, a)[v] = s[v] otherwise. Even though Theorem 3
gives a blueprint on how the alive relation, which is a neces-
sary element of the verification process, can be computed, it
requires enumerating (almost) the whole state space. Hence,
we leverage Lemmas 1 to 4 to determine some alive rela-
tions in polynomial time (if sequences of events satisfying
Lemma 4 are generated greedily). Although such a simplifi-
cation compromises the completeness of the verification ap-
proach, it allows us to leverage classical planners without
a large overhead to generate linear execution strategies in a
subclass of scenarios.

The verification algorithm is summarised in Algorithm 1.
We start in the partial state containing only the goal facts
and iteratively regress through the plan to the initial state.
In an intermediate step, we look for whether we can, for
all relevant variables, claim the alive relation from a par-
tial state sp, determined by either ha(ai) or the initial state
(after we processed all actions of the sequence), to the cur-
rent partial state s. At first, we process variables whose val-
ues differ in s and sp by leveraging Lemma 4 (Line 6). If
we can find a sequence of events satisfying the lemma, we
may need to update prew(ai) by considering extra precon-
ditions needed to ensure applicability of the event sequence
(because of condition (iii) of Lemma 4, we need to consider
only the precondition of the first event, i.e., pre(e1)), and we
also update sp reflecting that the sequence of events has been
applied (Line 7). If in any case, we fail to apply Lemma 4,

92

Domain Type 1 2 3 4 5
AUV VLES 0.08 0.09 0.10 0.11 0.13
AUV FOND-1 9.56 39.15 - - -
HR VLES 0.06 0.07 0.07 0.09 0.12
HR FOND-1 15.48 - - - -
AUV-bf VLES 0.11 0.12 0.14 0.16 0.24

Table 1: Runtime results (in s) on the benchmark domains.

then we conclude that the verification has failed. Then, we
process variables whose values are the same in s and sp. We
leverage Lemmas 1–3 (note that Lemma 3 can be applied at
most once in the i-th step) and if none of them can be ap-
plied, we conclude that the verification has failed. If we use
Lemma 2, then the “Cond-vals” function works as follows
(for other lemmas it returns an empty variable assignment).
For each event e not proven to be unreachable modifying the
respective value of v, we try to invalidate its precondition by
looking for another variable that is not (yet) considered in sp
(and neither in prew(ai)) such that we can find a leaf node in
the variable’s NDTG having a different value than the value
of the variable in pre(e). If we find such a variable and its
value, we add it into prew(ai) (Line 15). Note that the un-
reachability checks that are part of some of the lemmas are
done on the abstraction level, i.e., by checking for the non-
existence of paths in NDTGs of respective variables.

Experimental Evaluation
Our experiments aim to demonstrate the potential of our
method for Verifying Linear Execution Strategies (VLES) in
terms of scalability despite possibly large non-deterministic
branching caused by actions of nature. To give a perspective,
we compared our VLES method with a method based on
FOND planning that considers that nature can apply at most
one event in its turn (FOND-1) (Chrpa, Pilát, and Gemrot
2019), which is an easier problem to solve (as we consider
infinite sequences of events nature can apply in its turn).

For the comparison, we use the AUV domain introduced
by Chrpa, Gemrot, and Pilát (2020), where an AUV (con-
trolled by the agent) has to collect resources in a grid en-
vironment in which there are ships (controlled by nature)
passing through in their designed corridors (columns of the
grid). If a ship enters the cell with the AUV, then the AUV
is destroyed. In our case, we consider that each ship can
pass through the area only once. We designed 5 problems
ranging from 4x4 to 8x8 grid size, 4 to 8 resources, and 1
to 5 ships. To show the negative examples, in which VLES
does not succeed in verifying plans (because linear execu-
tion strategies do not exist), we designed a variant of AUV
(denoted as AUV-bf) in which ships can move in their cor-
ridors in both directions and can never leave the area. The
benchmark problems are the same as for the AUV domain.
We have also designed a HomeRobot (HR) domain that in-
volves a robot (controlled by the agent) that needs to make
up rooms. Rooms are connected by a corridor, so to move
between rooms one has to enter the corridor first. There are
also humans (controlled by nature) that can move between
rooms as well. The corridor, however, has limited space and

at most one entity can be there at the same time. We designed
5 problems ranging from 4 to 12 rooms, and 2 to 6 humans.

For generating plans as an input to VLES (i.e., solving
classical planning problems considering both actions and
events and then removing events from the plans), we used
LAMA (Richter and Westphal 2010) and for solving FOND-
1 problems we used PRP (Muise, McIlraith, and Beck 2012).
The time limit for each problem was 900 seconds and the
memory limit was 4GB. The experiments were run on AMD
Ryzen 5 5500u 2.1GHz, 16GB RAM, Ubuntu 22.04.2

Table 1 shows the runtime comparison of VLES and
FOND-1 approaches (note that both planning and verifi-
cation runtimes are included in the VLES case). The re-
sults show that VLES scales reasonably well despite the
increase in the number of events nature can apply, regard-
less of whether it found linear execution strategies (AUV
and HR) or not (AUV-bf). Note that FOND-1 results are
shown to demonstrate the detrimental impact on perfor-
mance non-deterministic branching can have (FOND-1 con-
siders a milder assumption than planning against nature
does) rather than to make a direct comparison against VLES,
which is incomplete in general. Nevertheless, the results of
VLES indicate that focusing on linear execution strategies
in planning against nature has good potential despite the in-
completeness of such an approach.

Conclusion
In this paper, we have formalized the problem of planning
against nature as a concurrent game structure and how to
tackle it by using ATL model checking (Alur, Henzinger,
and Kupferman 2002). We then focused on linear execution
strategies resembling sequential plans and have shown that
if actions in a linear execution strategy are enriched with
wait-for preconditions, the strategy then uniquely specifies
when the agent has to apply a given action and when it
has to wait. We have shown under which circumstances a
linear execution strategy is valid (i.e., guarantees eventual
goal achievement) and how wait-for preconditions can be
extracted. We have then proposed a method for verifying se-
quential plans that also computes wait-for preconditions. Al-
though the method is incomplete and works on a subclass of
problems, we have experimentally shown that focusing on
linear execution strategies in planning against nature has the
potential to alleviate the high computational demand.

In the future, we plan to investigate how we can effec-
tively generalize the abstraction approach (e.g. by leveraging
ideas such as Merge and Shrink (Sievers and Helmert 2021))
and how to extract more complex social laws that would help
with generating action sequences forming the basis of linear
execution strategies. We also plan to combine linear execu-
tion strategy generation and verification into a generate-and-
test loop that would cover a larger class of problems.

Acknowledgements
This research is supported by the Czech Science
Foundation (project no. 23-05575S) and by the Euro-

2Our source code and benchmarks are available at:
https://github.com/lchrpa/Verification-of-Plans-Against-Nature.

93

pean Union under the project ROBOPROX (reg. no.
CZ.02.01.01/00/22 008/0004590), and by the Israeli
Ministry of Science and Technology.

References
Ai-Chang, M.; Bresina, J. L.; Charest, L.; Chase, A.; Hsu, J. C.;
Jónsson, A. K.; Kanefsky, B.; Morris, P. H.; Rajan, K.; Yglesias,
J.; Chafin, B. G.; Dias, W. C.; and Maldague, P. F. 2004. MAP-
GEN: Mixed-Initiative Planning and Scheduling for the Mars
Exploration Rover Mission. IEEE Intelligent Systems, 19(1):
8–12.
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. J. ACM, 49(5): 672–713.
Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S. 2018.
Alternating-time Temporal Logic on Finite Traces. In Lang, J.,
ed., Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, 77–83. ijcai.org.
Bonet, B. 2010. Conformant plans and beyond: Principles and
complexity. Artif. Intell., 174(3-4): 245–269.
Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In Pro-
ceedings of the Eighteenth International Conference on Auto-
mated Planning and Scheduling, ICAPS 2008, 28–35. AAAI.
Chrpa, L.; Gemrot, J.; and Pilát, M. 2020. Planning and Act-
ing with Non-Deterministic Events: Navigating between Safe
States. In The Thirty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2020, 9802–9809. AAAI Press.
Chrpa, L.; Pilát, M.; and Gemrot, J. 2019. Compiling Planning
Problems with Non-deterministic Events into FOND Planning.
In Proceedings of the RCRA International Workshop.
Chrpa, L.; Pilát, M.; and Med, J. 2021. On Eventual Applicabil-
ity of Plans in Dynamic Environments with Cyclic Phenomena.
In Proceedings of the 18th International Conference on Prin-
ciples of Knowledge Representation and Reasoning, KR 2021,
184–193.
Chrpa, L.; Pinto, J.; Ribeiro, M. A.; Py, F.; de Sousa, J. B.; and
Rajan, K. 2015. On mixed-initiative planning and control for
Autonomous underwater vehicles. In IROS, 1685–1690.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic model
checking. Artif. Intell., 147(1-2): 35–84.
Cimatti, A.; and Roveri, M. 2000. Conformant Planning via
Symbolic Model Checking. J. Artif. Intell. Res., 13: 305–338.
Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W. 2018.
Avoiding Dead Ends in Real-Time Heuristic Search. In Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial In-
telligence.
De Giacomo, G.; and Lespérance, Y. 2021. The Nondetermin-
istic Situation Calculus. In Proceedings of the 18th Interna-
tional Conference on Principles of Knowledge Representation
and Reasoning, KR 2021, 216–226.
Dean, T.; and Wellman, M. 1990. Planning and Control. Mor-
gan Kaufmann Publishers.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artif. Intell., 173(5-6): 503–535.
Hoffmann, J.; and Brafman, R. I. 2006. Conformant planning
via heuristic forward search: A new approach. Artif. Intell.,
170(6-7): 507–541.

Ingrand, F.; and Ghallab, M. 2017. Deliberation for autonomous
robots: A survey. Artif. Intell., 247: 10–44.
Iocchi, L.; Nardi, D.; and Rosati, R. 2000. Planning with sens-
ing, concurrency, and exogenous events: logical framework and
implementation. In KR 2000, Principles of Knowledge Repre-
sentation and Reasoning Proceedings of the Seventh Interna-
tional Conference, 678–689.
Jonsson, P.; and Bäckström, C. 1998. State-Variable Planning
Under Structural Restrictions: Algorithms and Complexity. Ar-
tif. Intell., 100(1-2): 125–176.
Karpas, E.; Shleyfman, A.; and Tennenholtz, M. 2017. Auto-
mated Verification of Social Law Robustness in STRIPS. In
Proceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling, ICAPS 2017, 163–171.
Komenda, A.; Novák, P.; and Pechoucek, M. 2014. Domain-
independent multi-agent plan repair. J. Network and Computer
Applications, 37: 76–88.
Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
Computational Complexity of Probabilistic Planning. J. Artif.
Intell. Res., 9: 1–36.
Mausam; and Kolobov, A. 2012. Planning with Markov Deci-
sion Processes: An AI Perspective. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan & Claypool
Publishers.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
Non-Deterministic Planning by Exploiting State Relevance. In
Proceedings of the Twenty-Second International Conference on
Automated Planning and Scheduling, ICAPS 2012, Atibaia, São
Paulo, Brazil, June 25-19, 2012.
Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993. CIRCA:
a cooperative intelligent real-time control architecture. IEEE
Trans. Systems, Man, and Cybernetics, 23(6): 1561–1574.
Palacios, H.; and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded Width.
J. Artif. Intell. Res., 35: 623–675.
Patra, S.; Mason, J.; Ghallab, M.; Nau, D. S.; and Traverso, P.
2021. Deliberative acting, planning and learning with hierarchi-
cal operational models. Artif. Intell., 299: 103523.
Pnueli, A. 1977. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer Science (sfcs
1977), 46–57.
Pommerening, F.; and Helmert, M. 2015. A Normal Form
for Classical Planning Tasks. In Brafman, R. I.; Domshlak,
C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the
Twenty-Fifth International Conference on Automated Planning
and Scheduling, ICAPS 2015, 188–192. AAAI Press.
Reiter, R. 1996. Natural Actions, Concurrency and Continuous
Time in the Situation Calculus. In Proceedings of the Fifth Inter-
national Conference on Principles of Knowledge Representation
and Reasoning (KR’96), 2–13.
Richter, S.; and Westphal, M. 2010. The LAMA Planner: Guid-
ing Cost-Based Anytime Planning with Landmarks. Journal of
Artificial Intelligence Research (JAIR), 39: 127–177.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A Com-
positional Theory of Transformations of Factored Transition
Systems. J. Artif. Intell. Res., 71: 781–883.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A Base-
line for Probabilistic Planning. In ICAPS 2007, 352–359.

94

