
More Flexible Proximity Wildcards Path Planning with Compressed Path
Databases

Xi Chen1,3, Yue Zhang1,3, Yonggang Zhang*,2,3

1College of Software, Jilin University, China
2College of Computer Science and Technology, Jilin University, China

3Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, China
{xichen22, zhang yue19}@mails.jlu.edu.cn, zhangyg@jlu.edu.cn

Abstract

Grid-based path planning is one of the classic problems in
AI, and a popular topic in application areas such as computer
games and robotics. Compressed Path Databases (CPDs) are
recognized as a state-of-the-art method for grid-based path
planning. It is able to find an optimal path extremely fast
without state-space search. In recent years, researchers have
tended to focus on improving CPDs by reducing CPD size
or improving search performance. Among various methods,
proximity wildcards are one of the most proven improve-
ments in reducing the size of CPD. However, its proxim-
ity area is significantly restricted by complex terrain, which
significantly affects the pathfinding efficiency and causes
more additional costs. In this paper, we enhance CPDs from
the perspective of improving search efficiency and reducing
search costs. Our work focuses on using more flexible meth-
ods to obtain larger proximity areas, so that more heuristic in-
formation can be used to improve search performance. Exper-
iments conducted on the Grid-Based Path Planning Competi-
tion (GPPC) benchmarks demonstrate that the two proposed
methods can effectively improve search efficiency and reduce
search costs by up to 3 orders of magnitude. Remarkably, our
methods can further reduce the storage cost, and improve the
compression capability of CPDs simultaneously.

Introduction
Path planning, which has been studied for many years, is
one of the important problems in artificial intelligence and
widely applied in real-world scenes such as robotics and
computer games (Freund and Hoyer 1986; Cui and Shi
2011). Grid-based path planning is one of the most active
research directions on this problem. Over the years, numer-
ous excellent algorithms have been proposed, and the Grid-
Based Path Planning Competition (GPPC) (Sturtevant et al.
2015) has served as the cornerstone for the development
of these novel path-planning achievements. The impact of
these advancements is essential and far-reaching, and they
will revolutionize path planning in the coming years (Botea
2011; Uras and Koenig 2014; Harabor and Grastien 2014;
Rabin and Sturtevant 2016; Sturtevant and Rabin 2016; Uras
and Koenig 2017; Goldenberg et al. 2017; Cohen et al. 2017;

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Harabor and Stuckey 2018; Salvetti et al. 2018; Hu et al.
2019, 2021).

The Compressed Path Databases (CPDs) (Botea 2011;
Botea and Harabor 2013) known as a group of state-of-the-
art technique for grid-based path planning, are designed to
speed up the response and reduce the first move delay dur-
ing the agent’s path planning tasks (Zhao 2022). Each CPD
is a data structure that provides the optimal first move from
any start cell s to any target cell t. The process of find-
ing an optimal path is to iteratively search such a group of
CPDs to find the optimal move directions to reach the tar-
get without any state space search. The main disadvantage
of CPDs with ultra-fast pathfinding speed is the huge build
cost. Each CPD needs to be encoded by all-pairs of pre-
computation, and then compressed with encodes and store
the result. In recent years, researchers have mainly tend to
focused on reducing the size of the CPD such as single row
compression (SRC) (Strasser, Harabor, and Botea 2014),
heuristic redundant symbols (Chiari et al. 2019), proximity
wildcards (Chiari et al. 2019), bidirectional wildcards (Sal-
vetti et al. 2017), or improving the lookup performance such
as two-oracle path planning algorithm (Topping) (Salvetti
et al. 2018). Among them, the SRC performed best in GPPC
2014, and has become an important baseline for improving
CPDs.

The CPDs enhanced by proximity wildcards (CPDs PW),
replaces the storage symbols of qualified nodes in the largest
square centered on any node with wildcards to reduce the
preprocessing memory based on heuristic redundant sym-
bols. Their experiments are mainly based on Dragon Age:
Origins (DAO) (Sturtevant 2012), which verifies the excel-
lent compression capability of CPDs PW. It can achieve bet-
ter on 99% of the maps, and can even compress the map size
to 1/55 of the SRC on the map AR0044SR.

Despite the effectiveness of CPDs PW for advanced com-
pression, there are still some drawbacks:

1. Severely limited by complex terrain. Its area of concern is
square, causing it to miss out on expansion opportunities
and incur more search costs when it encounters obstacles
in any direction.

2. Inefficient search. Compression is not efficient enough,
resulting in more binary searches to find the target during
pathfinding, leading to inefficient search.

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

77

In this paper, our idea for the above problems is to expand
the proximity area by breaking its shape limitation without
weakening the compression capability. We propose the fol-
lowing two methods:
1. Rectangular Proximity Wildcards (RPW): This method

breaks the limitation of length and width, and expands
the shape of proximity area to a rectangle so that when
obstacles are encountered in either the length or width,
the other can still expand.

2. Coordinates Proximity Wildcards (CPW): This method
breaks the limitations of traditional geometry. To achieve
more flexible obstacle avoidance and improve the expan-
sion opportunities, four quadrants are divided with the
current node as the center, and the largest rectangle is ex-
panded in each quadrant. The areas drawn by the four
quadrants are all proximity areas of the current node.

We expand the scope of the experiment and utilized Baldurs
Gate II (BGII), DAO, Dragon Age II (DA), Warcraft, and
Starcraft (Sturtevant 2012), a total of 5 benchmarks con-
taining 454 maps, with SRC and CPDs PW as the experi-
mental baselines. The experimental results indicate that the
two methods we propose can efficiently enhance search effi-
ciency and reduce search costs by up to three orders of mag-
nitude. In addition, they can also improve the compression
capability of CPDs. Experiments demonstrate that the more
flexible the method is in avoiding obstacles, the less it is af-
fected by complex terrain, and the more efficient it is.

The paper is structured as follows: First, we provide an
overview of related work. Then, we introduce the fundamen-
tal principles of the CPDs and the key technologies utilized.
After that, we present a detailed description of the RPW and
CPW, along with description diagrams and algorithm pseudo
codes. We also present the experimental results and analysis,
and conclude the paper at the end.

Related Work
As a leading technique for optimal pathfinding, CPDs (Botea
2011) have received extensive attention since it was pro-
posed. Its main idea is to achieve speedup through prepro-
cessing and additional memory, which has shown excellent
performance in solving speed, but its huge memory cost
seems to be a huge burden.

Therefore, exploring better compression methods for
CPDs have become a research hotspot. The Copa (Botea and
Harabor 2013), which combines list trimming, run length
encoding, and sliding window compression to improve com-
pression capabilities at the cost of time loss, is one of the
best competitors in GPPC 2012. In 2014, SRC (Strasser,
Harabor, and Botea 2014), an algorithm that combines with
run length encoding (RLE) to compress rows, outperforms
Copa in both compression and query time, and is one of the
winners in GPPC 2014. Although SRC has excellent perfor-
mance in compression capability and speed, it still requires
huge memory overhead for large maps. To solve this prac-
tical bottleneck, wildcard substitutions (Salvetti et al. 2017)
are introduced, which use wildcards to replace part of the
CPD-encoded data, and can be combined with heuristics to
reduce the size of the CPD. Its main idea is that given any

start node s and target t, as long as either the route from
s to t or from t to s is feasible, a complete optimal path
can be established. This method has been shown to be ef-
fective, and the proximity wildcards (Chiari et al. 2019) are
an extension of it, with a new concept of redundant symbols
simultaneously proposed. The proximity wildcards uses re-
dundant symbols to define a square centered on the current
node, which is called the proximity area, and all nodes in
it can be optimally reached by the heuristic move. Experi-
ments verified that proximity wildcards are one of the most
effective methods to improve the compression capability of
CPDs. Still it is seriously affected by obstacles and therefore
runs with limited efficiency. Our work is related to proxim-
ity wildcards, but focuses on improving search performance
and using more flexible methods to reduce the impact of ob-
stacles on efficiency.

The above works are all approaches to reduce the mem-
ory overhead of CPDs in finding optimal solutions, often ac-
companied by a significant loss of preprocessing time. In
2020, a centroid-based bounded suboptimal method (Zhao
et al. 2020) reduces the storage cost by computing only the
first-move array of selected nodes, which ensures that the
path costs are within the fixed bound of the optimal solu-
tion. This approach innovatively reduces preprocessing time
and storage cost by trading some suboptimality.

CPDs are also utilized to solve the Euclidean Shortest
Path Problem (ESPP) (Shen et al. 2020). In 2020, Shen et
al. proposed End Point Search (EPS). EPS is the state-of-art
ESPP algorithm and uses CPD to extract the shortest path
from the opposite end vertex v

′ ∈ Vopp to the current vertex
v and caches the shortest distance from each vertex vx to v
on the path.

Some works focus on improving search performance,
such as Topping (Salvetti et al. 2018), which is a combi-
nation of SRC and Jump Point Search+ (JPS+) (Harabor
and Grastien 2014). It first calls SRC to find the best direc-
tion for moving from the current node to the target and then
calls JPS+ to evaluate the feasible steps in that direction.
In most cases, Topping can be more than an order of mag-
nitude faster than SRC, but at the cost of nearly doubling
memory consumption. To deal with the huge memory over-
head, TOPS (Hu et al. 2021) and Topping+ (Hu et al. 2021)
are proposed. The TOPS reduces the preprocessing memory
by calculating only the CPD of jump points. The Topping+
extracts a series of complete paths from the successor start
nodes to the target. TOPS and Topping are competitive with
Topping while having smaller space requirements and better
time performance.

Background
Gridmap. A gridmap is a two-dimensional operating
environment for mobile agent, where each cell is either
traversable (white squares) or obstacle (black squares). It
has two common ways of defining neighbor: 4-connected
grids and 8-connected grids. In 4-connected grids, a
traversable cell has a maximum of four neighbors, and the
directions of movements are: East, South, West and North
(symbolized as E, S, W, N), with a move cost of 1 per

78

Figure 1: 8-Connected grid map.

cell. As shown in Figure 1, for any node n on the map, the
8-connected grid map allows diagonal movement, adding
movable directions: Northwest, Northeast, Southwest, and
Southeast (symbolized as NW, NE, SW, SE), the linear
move cost c⃗ is 1, and the diagonal move cost d⃗ is

√
2 . A

path planning problem on a gridmap starts at cell s called
the start node and ends with cell t called the target node.
The goal is to find the most efficient path with the minimum
cost from s to t. The formula s′ = s + kd⃗ + mc⃗ (k and
m are integers) means that moving from node s to node
s′ needs k times along the direction d⃗ and m times along
the direction c⃗. If k and m are negative integers, it means
reverse movement. In this paper, we assume that diagonal
movements are not allowed if they will touch an obstacle
cell.
Compressed Path Databases (CPDs). CPD is a data struc-
ture that encodes the optimal first move from any node s to
a target node t on a map. It is the result of compressing the
first move array using run length encoding (RLE) (Strasser,
Harabor, and Botea 2014). The first move array T (s) of
node s stores the first move of the shortest path from node s
to each reachable node t, computed by Dijkstra. CPDs are
constructed by computing a first move array for each node
in the map in offline preprocessing. Chiari et al. redefined
CPD as consisting of the first move array (the original
meaning of CPD) and auxiliary search data due to the
specificity of their methods (such as proximity wildcards).
We use this definition, i.e. the CPD size is the sum of the
first move array size and the auxiliary data size. The size of
the first move array represents the method’s compression
capability. Each binary search extracts the next move in
the first move array of the current node based on the target
position.
Run Length Encoding (RLE). RLE compresses the first
move array by more compactly representing the substrings
(called runs) made up of repetitions of the same symbol.
It marks obstacles and source node with the wildcard ”*”,
because they don’t need to be searched. Taking Figure
2 as an example, the first row can be compressed into
NNN*NNNNN. Usually we use a substring to represent
the whole map, so the first row is represented as 1N, and
this map is represented as 1N; 15E; 19W; 23N; 24E; 28W;

Figure 2: Example of the first move array for node s.

33E; 37W; 41S; 42SE. Where the letters denote optimal
first moves to move the source node s to the corresponding
position and the numbers are subscripts starting from 1 after
reducing the 2D first-move array to a 1D array.
Heuristic move. The heuristic move refers to the first move
of node s to ignore obstacles and move towards the goal. It
is determined by the shortest heuristic distance computed
by the heuristic function Fe(n, t), where ω(s, n) is the
cost from source s to node n and fe(n, t) is the heuristic
distance function from n to t. E is a set of feasible edges,
where (s, n) ∈ E means that the path from s to t is feasible.
In this paper, we use the Euclidean distance to compute the
heuristic move. We also use the redundant symbol h to mark
the nodes where the heuristic move coincides with the first
move to improve efficiency. That is, if the Fe(n, t) returns
a first move that belongs to the first move array T (s), then
add the redundant symbol h to T (s).

fe(s, t) =
√
(s.x− t.x)2 + (s.y − t.y)2 (1)

Fe(s, t) = argmin
(s,n)∈E

{ω(s, n) + fe(n, t)} (2)

Proximity Wildcards. Proximity wildcards compute the
largest square proximity area centered on s, where
traversable nodes must have the heuristic redundant symbol
h. If the target node t is within the proximity area of s, the
heuristic move can be applied directly, otherwise search for
the first move.

Rectangular Proximity Wildcards
According to proximity wildcards, nodes within the prox-
imity area of source node s can be optimally reached via
heuristic move. However, the proximity area of proximity
wildcards is in a square shape, meaning that if the neighbor
in any direction of s is an obstacle, the proximity area will
stop expanding. This scenario is common in complex terrain,
thus making it less effective in such terrain. In this section,
we introduce a method called Rectangular Proximity Wild-
cards (RPW), whose region of interest is rectangular. The
main advantage of RPW is that if the length or width of the
proximity area stops expanding, expansion can still continue
in the other direction, as shown in Figure 3.
Definition 1: Given a node s and a function Fx(s, t), the
width of largest proximity rectangle R centered on s is ex-
pressed as rec(s).x and length is expressed as rec(s).y, for

79

Figure 3: Proximity areas. RPW’s line is solid while proxim-
ity wildcards ’s line is dashed. Source node is shown in gray.
Heuristic moves coinciding with the first moves are shown
in bold.

Algorithm 1: CPDHRP(s, t)
Input: start node s, target node t
Output: first-move m

1: X ← rec(s).x.
2: Y ← rec(s).y.
3: if |s.x− t.x| ≤ X

2 ∧ |s.y − t.y| ≤ Y
2 then

4: return Fx(s, t)
5: else
6: m← CPD(s, t)
7: if m = h then
8: return Fx(s, t)
9: else

10: return m
11: end if
12: end if

any node n ∈ R, there is fx(s, n) ∈ T (n), T is the first-
move array of s, and rec(s).x ∗ rec(s).y is the maximum
value d ∈ N .

The cells in the proximity rectangle are all optimally
reachable from s by heuristic moves, and we denote each
such cell with the wildcard character ”*”. As shown in Fig-
ure 3, the compression result of the first move array with
the proximity wildcards is 1N; 5h; 10N; 14h; 19W; 26h;
27E; 28h; 37W; 43h, a total of 10 RLE runs and the com-
pression result using RPW is 1N; 5h; 10N; 14h; 19W; 27E;
28h; 37W; 45h, a total of 9 RLE runs.

RPW has a larger proximity area than that of proximity
wildcards, which typically leads to more efficient compres-
sion and more readable encoding due to the need for fewer
RLE runs. This provides a solid foundation for improving
search performance. In the online search, RPW is able to
flexibly respond to complex terrain changes, and its larger
proximity area can help to apply more heuristic moves, ef-
fectively improving search efficiency and reducing cost. The
CPD lookup function modified using RPW is shown in Al-
gorithm 1.

Coordinates Proximity Wildcards

RPW has effectively improved the search efficiency of
CPDs, but the use of traditional geometry as a proximity
area still has significant limitations. When faced with ex-
tremely complex and narrow maps (such as bridge maps), in
more cases, the area of RPW would be very restricted, even
as large as proximity wildcards. In this section, we propose
a more flexible method called Coordinates Proximity Wild-
cards (CPW), as shown in Figure 4.
Definition 2: Given a node s and a function Fx(s, n), the
CPW area C consists of four largest rectangles Rm with s as
the corner. The length and width of each quadrant rectangle
Rm are expressed as rec(s)m.x and rec(s)m.y, m ∈ [1, 4].
For any node n ∈ C, fx(s, n) ∈ T (n), T is the first-move
array of s.

We replace the traditional geometry centered on the
source node with quadrants centered on the source node, and
expand the largest rectangle in each quadrant. As shown in
Figure 5, the compression result of the first move array us-
ing PW is 1NW; 2h; 7SW; 8h, with a total of 4 RLE runs.
The compression result using RPW is 1NW; 3h; 7SW; 8h,
a total of 4 RLE runs. The compression result using CPW is
1NW; 7SW, a total of 2 RLE runs. From a search perspec-
tive, the proximity area of PW is 1, i.e., its proximity area
contains only source node d. The proximity area of RPW
is 3, which means that two nodes can be reached directly
by the heuristic move without calling the CPD lookup func-
tion. The proximity area of CPW is 6 times than that of PW.
A more flexible expansion method can make the proximity
area larger, which effectively reduces CPD calls and helps to
improve search efficiency. However, the size of the auxiliary
data required by CPW is four times that of PW and RPW,
because each of its proximity areas needs to store the side
lengths of the four largest rectangles.

The CPW proximity area determination function
GetCPW(s, t) is shown in Algorithm 2. GetCPW(s, t) first
delimits the coordinate proximity area with the current node
s as the origin, then checks which quadrant the target node t
is located in, and whether t is within the proximity area of s.
The CPD lookup function improved with CPW is based on
Algorithm 1 and replaces the third line with GetCPW(s, t).

Algorithm 2: GetCPW(s, t)

Input: start node s, target node t
Output: true or false

1: for n = 1 to 4 do
2: X.n← rec(s)n.x.
3: Y.n← rec(s)n.y.
4: end for
5: Judge t in the nth quadrant of s
6: if |s.x− t.x| ≤ X.n ∧ |s.y − t.y| ≤ Y.n then
7: return true.
8: end if
9: return false.

80

Figure 4: Proximity areas of CPW

Figure 5: Comparison of proximity areas. For the sake of il-
lustration, we use PW here to represent the proximity wild-
cards method.

Experiments
We conducted experiments on five game benchmarks from
GPPC (Sturtevant et al. 2015): BGII, DAO, DA, Warcraft
and Starcraft. BGII is a small map set with 120 maps. Each
map has a varying number of nodes ranging from 100 to
60,000. The DAO and DA are medium-sized map sets with
156 and 67 maps respectively, with nodes in each map dis-
tributed between 100 and 140,000. Warcraft contains 36
maps, while Starcraft contains 75 maps. Both of them are
large map benchmarks with each map having 50,000 to
760,000 nodes. We use SRC and CPDs PW as experimental
baselines. SRC is the original algorithm without the methods
we proposed, and it is primarily used to verify the effective-
ness of the methods. The CPDs PW is an essential reference.
We have applied our methods to SRC and the results are as
follows:
• CPDs RPW. Algorithm improved by rectangular prox-

imity wildcards (RPW).
• CPDs CPW. Algorithm enhanced by coordinates prox-

imity wildcards (CPW).
There are two stages in experiments: offline preprocess-

ing and online search. In the preprocessing stage, we primar-
ily observe the compression cost and compression capability
through RLE runs and the first move array size after a com-
pression task is completed. We also measure memory stor-

age by CPD size. It is important to mention that the CPD for
CPDs PW, CPDs RPW, and CPDs CPW are all composed
of the first move array and the auxiliary data, while the CPD
size of SRC is equal to the first move array.

The online search is the stage we focus on most. In the
online search stage, we measure search efficiency and search
cost through runtime and binary searches. Due to the large
different in map sizes in the same benchmarks, the data dis-
tribution varies greatly. Therefore, we use factor Cmetrici
to describe the metrics we observed above and define it as
Equation 3.

Cmetrici =
realnumSRC(metrici)

realnumx(metrici)
(3)

The factor Cmetrici is the result of dividing the SRC run-
ning results for the same map by the running results of
each CPD variant. metrici represents the i-th metric, and
realnumx(metrici) denotes the real value of the i-th met-
ric of CPD variant x. x can be assigned to CPDs PW,
CPDs RPW, and CPDs CPW. We define the factors of each
metric as follows:

• CRLE−runs. Compression cost factor.
• Cfirst−move. Compression capability factor.
• CCPD. Memory factor.
• Cbinary−search. Binary search factor.

All algorithms are implemented in C++, and the experi-
mental environment is Ubuntu 20.04.3 LTS, with processor
AMD R⃝ Ryzen 9 5900*12core processer*24 and 31.4GiB
RAM.

Preprocessing
Compared to CPDs PW, our methods show evident im-
provements on all maps in the preprocessing stage. Fig-
ure 6 shows the distribution of the compression cost factor
CRLE−runs. The CRLE−runs of our methods are always
higher than CPDs PW, with CPDs CPW performing best.
Taking the map hrt000d as an example, the RLE runs of
CPDs PW on this map is 2.34e6, but CPDs RPW is 1.18e4
less than it, and RLE runs of CPDs CPW is only 2.04e6. Our

81

Figure 6: Compression cost factor CRLE−runs. The compression cost factor is CRLE−runs for completing a compression task.

Figure 7: Compression capability factor Cfirst−move and Memory factor CCPD. (a) to (e) show the compression capability
factor Cfirst−move, indicating the compression capability of methods. (f) to (j) show the memory factors CCPD, indicating the
memory occupied by the CPD size, and the CPD size is the sum of the first move array and auxiliary data sizes.

methods can perform the compression task more efficiently
and produce more concise and readable compressed results
by reducing RLE runs. This is beneficial for cost-saving and
search purposes.

Figure 7 (a) to (e) show the distribution of compres-
sion capability factor Cfirst−move. The Cfirst−move of
our methods is significantly higher, resulting in smaller
first-move arrays. CPDs CPW has the highest Cfirst−move,
which means that it has the best compression capabil-
ity among the three variants. The memory factor CCPD

is shown in Figure 7 (f) to (j). We can observe that
CPDs RPW’s CCPD is typically slightly higher than
CPDs PW, but CPDs CPW only performs better in War-
craft, with noticeable drawbacks in other maps. This is due
to the fact that the size of CPDs CPW’s auxiliary data (prox-
imity distance) is equal to four times of CPDs PW and
CPDs RPW, resulting in larger CPD size and higher mem-

ory cost. Therefore, we may sometimes encounter scenarios
where the memory gain is less than the expenditure, and this
situation will be more common in small maps.

Online Search
The first advantage of our methods during the search stage is
more efficient search, as shown in Figure 8. CPDs RPW and
CPDs CPW are much faster than CPDs PW, because of the
more concise first move array generated by the preprocess-
ing stage and larger proximity areas that effectively speed
up the search. It can be observed that in some maps, the
CPDs CPW, which has larger proximity areas, takes more
time to search than CPDs RPW. This is because the com-
plexity of the CPD query function directly affects the time
taken by each call, and the CPDs CPW has the most com-
plex query function, followed by that of the CPDs RPW.

82

Figure 8: Runtime (unit: ns). Runtime is the time taken to complete a path extraction, and we use it to measure search efficiency

Figure 9: Binary search factor Cbinary−search. (x’) is a version of (x) that hides outliers. The binary search factor
Cbinary−search is the quotient of binary searches required by SRC and CPDs X to complete a search task.

The number of binary searches
Map #Cell SRC PW RPW CPW

AR0041SR 2282 8258 131 76 2
AR0418SR 1428 2501 13 6 0
AR0408SR 354 1092 25 13 3

orz105d 679 2642 36 12 5
orz107d 637 1791 54 22 4
lgr605d 2983 8169 83 36 21

Table 1: Examples of exceptional binary searches. #Cell is
the number of nodes contained in the map.

The second advantage of CPDs RPW and CPDs CPW in
online search is the lower search cost. Figure 9 shows a sig-
nificant difference in binary searches required by the three
variants to complete search tasks. Of the three, CPDs CPW
has the highest Cbinary−search, indicating that it requires the

least number of binary searches. In both BGII and DAO, we
obtained some results where Cbinary−search reached hun-
dreds or even thousands of orders of magnitude. These sur-
prisingly improved effects are often observed in small maps,
some of which we list in Table 1. We find that the distri-
bution of Cbinary−search becomes more stable and concen-
trated as the map size increases. For example, the interquar-
tile range of CPDs CPW would be 37 (52-15), 16 (22-6) in
DAO, and just under 2 in Warcraft and Starcraft.

We also discovered that methods with larger proximity
areas are more effective in search and compression. Accord-
ing to the above experiments, the proximity area primarily
enhances methods in the following two aspects:

1. More adequate heuristics. A larger proximity area
can contain more heuristic information, increasing the
chances of discovering the target.

2. More concise search space. In the preprocessing stage,

83

Number of wins
Set SRC PW RPW CPW

Starcraft (75) 1 15 19 28
DAO (156) 1 53 60 106
BGII (120) 0 92 102 115

Table 2: Comparative results with Topping on the number of
binary searches. The number in brackets is the map number.

a larger proximity area helps to compress the first move
array into a more concise substring, increasing the speed
of finding the first move.

Our methods vs Topping
In this section, we conduct a search cost comparison exper-
iment with Topping, a representative algorithm in another
research area. It significantly improves search performance
at the expense of huge storage costs and inefficient compres-
sion.

We select three representative benchmarks to experiment
with and present the results in Table 2. Experiments con-
firm the effectiveness of our methods, and CPDs CPW is
even competitive with Topping in terms of search costs. Top-
ping’s pathfinding is performed jointly by the SRC oracle
and the JPS+ oracle. We only compare the number of binary
searches performed by the SRC oracle in Topping. Experi-
mental results show that CPDs CPW performs best among
the variants and has an absolute advantage in binary searches
on 68% of medium maps and 96% of small maps, and occu-
pies a place on large maps. Note that our methods use only
half the memory size of Topping.

Conclusion and Future Work
As the leading technology for path planning, CPDs have
the bottleneck of huge storage overhead. A method called
proximity wildcards significantly improves the compression
capability of CPDs with surprising results in reducing stor-
age costs. However, it is severely limited by complex terrain,
making the search inefficient and and generating more costs.

In this paper, we extend proximity wildcards and propose
two methods, RPW and CPW, which can be more flexible in
avoiding obstacles to compute larger proximity areas in re-
sponse to complex terrain changes. Meanwhile, we have ex-
tended the experiment scale to five benchmarks. The experi-
mental results demonstrate that rectangular proximity wild-
cards (RPW) and coordinates proximity wildcards (CPW)
can flexibly deal with complex terrain and significantly im-
prove search performance while gaining compression bene-
fits.

Our future work mainly focuses on the following direc-
tions:

1. Exploring ways to reduce time while maintaining opti-
mality, compression and search capability. Investigating
new encoding alternatives to RLE is an interesting re-
search direction.

2. Exploring a combination algorithm compatible with
CPDs that has powerful search performance without
causing internal interaction storage costs.

Acknowledgments
This research was funded by the National Natural Science
Foundation of China (Grant No. 62076108, 61872159) and
Key R&D projects of Jilin Provincial Science and Technol-
ogy Development Plan (Grant No. 20240207002JH).

References
Botea, A. 2011. Ultra-fast optimal pathfinding without run-
time search. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 7, 122–127.
Botea, A.; and Harabor, D. 2013. Path planning with com-
pressed all-pairs shortest paths data. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 23, 293–297.
Chiari, M.; Zhao, S.; Botea, A.; Gerevini, A. E.; Harabor,
D.; Saetti, A.; Salvetti, M.; and Stuckey, P. J. 2019. Cutting
the size of compressed path databases with wildcards and re-
dundant symbols. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 29,
106–113.
Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig,
S.; and Kumar, T. 2017. The FastMap algorithm for shortest
path computations. arXiv preprint arXiv:1706.02792.
Cui, X.; and Shi, H. 2011. A*-based pathfinding in modern
computer games. International Journal of Computer Sci-
ence and Network Security, 11(1): 125–130.
Freund, E.; and Hoyer, H. 1986. Pathfinding in multi-robot
systems: Solution and applications. In Proceedings. 1986
IEEE International Conference on Robotics and Automa-
tion, volume 3, 103–111.
Goldenberg, M.; Felner, A.; Palombo, A.; Sturtevant, N.;
and Schaeffer, J. 2017. The compressed differential heuris-
tic. AI Communications, 30(6): 393–418.
Harabor, D.; and Grastien, A. 2014. Improving jump point
search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 24, 128–135.
Harabor, D.; and Stuckey, P. 2018. Forward search in con-
traction hierarchies. In Proceedings of the International
Symposium on Combinatorial Search, volume 9, 55–62.
Hu, Y.; Harabor, D.; Qin, L.; and Yin, Q. 2021. Regarding
goal bounding and jump point search. Journal of Artificial
Intelligence Research, 70: 631–681.
Hu, Y.; Harabor, D.; Qin, L.; Yin, Q.; and Hu, C. 2019. Im-
proving the combination of JPS and geometric containers. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, 209–213.
Rabin, S.; and Sturtevant, N. 2016. Combining bounding
boxes and JPS to prune grid pathfinding. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 30,
746–752.

84

Salvetti, M.; Botea, A.; Gerevini, A.; Harabor, D.; and Saetti,
A. 2018. Two-oracle optimal path planning on grid maps. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 28, 227–231.
Salvetti, M.; Botea, A.; Saetti, A.; and Gerevini, A. E. 2017.
Compressed path databases with ordered wildcard substitu-
tions. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 27, 250–258.
Shen, B.; Cheema, M. A.; Harabor, D. D.; and Stuckey,
P. J. 2020. Euclidean pathfinding with compressed path
databases. In International Joint Conference on Artificial
Intelligence-Pacific Rim International Conference on Artifi-
cial Intelligence 2020, 4229–4235. Association for the Ad-
vancement of Artificial Intelligence (AAAI).
Strasser, B.; Harabor, D.; and Botea, A. 2014. Fast first-
move queries through run-length encoding. In Proceedings
of the International Symposium on Combinatorial Search,
volume 5, 157–165.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI in
Games, 4(2): 144 – 148.
Sturtevant, N.; Traish, J.; Tulip, J.; Uras, T.; Koenig, S.;
Strasser, B.; Botea, A.; Harabor, D.; and Rabin, S. 2015.
The grid-based path planning competition: 2014 entries and
results. In Proceedings of the International Symposium on
Combinatorial Search, volume 6, 241–250.
Sturtevant, N. R.; and Rabin, S. 2016. Canonical Orderings
on Grids. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 683–689.
Uras, T.; and Koenig, S. 2014. Identifying hierarchies for
fast optimal search. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 28, 878–884.
Uras, T.; and Koenig, S. 2017. Feasibility study: Subgoal
graphs on state lattices. In Proceedings of the International
Symposium on Combinatorial Search, volume 8, 100–108.
Zhao, S. 2022. Improving Pruning and Compression Tech-
niques in Path Planning. Ph.D. thesis, Monash University.
Zhao, S.; Chiari, M.; Botea, A.; Gerevini, A. E.; Harabor, D.;
Saetti, A.; and Stuckey, P. J. 2020. Bounded suboptimal path
planning with compressed path databases. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 30, 333–341.

85

