
Multi-Agent Temporal Task Solving and Plan Optimization

J. Caballero Testón1, Maria D. R-Moreno1,2
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Abstract

Several multi-agent techniques are utilized to reduce the com-
plexity of classical planning tasks, however, their applicabil-
ity to temporal planning domains is a currently open line of
study in the field of Automated Planning.
In this paper, we present MA-LAMA, a factored, centralized,
unthreated, satisfying, multi-agent temporal planner, that ex-
ploits the ’multi-agent nature’ of temporal domains to per-
form plan optimization.
In MA-LAMA, temporal tasks are translated to the con-
strained snap-actions paradigm, and an automatic agent de-
composition, goal assignment, and required cooperation anal-
ysis are carried out to build independent search steps, called
Search Phases. These Search Phases are then solved by con-
secutive agent local searches, using classical heuristics and
temporal constraints.
Experiments show that MA-LAMA is able to solve a wide
range of classical and temporal multi-agent domains, per-
forming significantly better in plan quality than other state-
of-the-art temporal planners.

Introduction
In numerous scenarios the systems we plan for are natu-
rally viewed as multi-agent (MA) systems, and, additionally,
MA systems inherently tend to require some degree of con-
currency between agents to operate efficiently. Some exam-
ples of temporal MA planning (MAP) scenarios that present
an “MA nature” can be found in the International Plan-
ning Competition (IPC) benchmark domains, e.g. Rovers
and Satellites, with independent homogeneous agents; and
Elevators or Logistics, where interaction between agents is
required.

In contrast, Automated Planning literature has classically
considered temporal and MAP as two individual lines of
work. This can be viewed in the MAP Survey (Torreño et al.
2017), where it is stated that the handling of scenarios de-
rived from temporal MA systems is an open point that needs
to be addressed, as MAP solvers tend to focus on classical
planning domains.

In that survey, they also present some classifications for
MAP solvers in terms of their taxonomy: threaded, with in-
terleaved planning and coordination, and unthreaded, deal-
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ing with planning and coordination separately. Their compu-
tational structure: centralized, with a monolithic design and
a central process, and distributed, sharing the planning task
across multiple processing units. And their privacy preser-
vation: providing strong, object cardinality or weak privacy,
depending on the extent to which each agent’s sensitive in-
formation is preserved. For plan quality optimization (one of
the main points of interest of this work), MAP systems tend
to make use of cost-aware classical planners, like LAMA
(Richter and Westphal 2010).

MAP techniques used across all types of MA solvers are
different from those used in temporal planners, which tend
to revolve around time and numeric reasoning to deal with
the inherent complexity of concurrent actions search spaces
(Rintanen 2007). Our objective with this paper is to test
the MAP techniques’ effectiveness in dealing with temporal
complexity, especially in areas where time reasoning-based
planners struggle, as not coupled with makespan plan qual-
ity optimization.

Therefore, our contribution involves the application of au-
tomated task decomposition, goal assignment, and required
cooperation MAP techniques to temporal tasks. This results
in a planning algorithm that exploits the MA and concur-
rent nature of temporal MA domains: MA-LAMA, a fac-
tored, centralized, unthreaded temporal MAP system that
operates with mixed pre-planning coordination and itera-
tive response planning, internal communication, and local
heuristic search.

The paper is structured as follows. The next section
presents the related literature. Then MA-LAMA is pre-
sented, first broadly and after, in a detailed per-component
view. Finally, we provide an empirical evaluation of the
planner, followed by the conclusions and future work.

Related Work
Literature on both MAP and temporal planning is extensive
as separate lines of work. To our knowledge, TFPOP (Braf-
man and Domshlak 2008) is the only MA planner that is
able to deal both with time and durative-actions. It follows
a centralized scheme, producing non-linear plans that main-
tain a thread of sequentially ordered actions per agent, ex-
ploiting the concept of coordination points for loosely cou-
pled agents and through CSP+planning. However, it was not
compared to any other MAP solver.
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Regarding MA planning, some examples of threaded
MA planners are: partial-order-planning (POP) based plan-
ners, as MH-FMAP (Torreño, Sapena, and Onaindia 2015),
which computes distributed versions of hDTG and hLand

heuristics; MAD-A∗ (Nissim and Brafman 2013), an opti-
mal solver based on local agent evaluation of each state;
GPPP (Maliah, Shani, and Stern 2014), which builds a re-
laxed public plan before each local planning stage; and
MAPlan (Fišer, Štolba, and Komenda 2015), which follows
a flexible distributed implementation of local agent state
search methods, as well as both local and global heuristics,
as hFF and LM-Cut, showing strong performance especially
with distributed computation agents.

For unthreaded MA planners, some approaches are: PMR
(Luis, Fernández, and Borrajo 2020), based on plan merging
and reuse with simultaneous planning by all agents; CMAP
(Borrajo and Fernández 2015), with weak privacy preserva-
tion in agents assembly and single-agent search; Distoplan
(Fabre et al. 2010), an optimal planner that exploits inde-
pendence between agents, not limiting their possible inter-
actions beforehand; PSM (Tožička, Jakubuv, and Komenda
2015), which expands Distoplan and introduces Planning
State Machines: agent local task representations that can be
merged or projected; A# (Jezequel and Fabre 2012), with
cost informed and constrained factored planning following
A∗ search; and DPP (Maliah, Shani, and Stern 2016), one of
the best performing unthreaded MAP solvers through accu-
rate public projection of MAP task information with object
cardinality privacy-preserving.

Other MA techniques include symmetry score based task
decomposition for classical (Nissim, Apsel, and Brafman
2012) and numeric planning (Shleyfman, Kuroiwa, and
Beck 2023).

In our case, MA-LAMA deals with MAP solving with
a traditional approach, considering sequential total-order
planning. We also make use of several MAP techniques
not yet mentioned, such as: task decomposition into local
search regions (Lansky 1991), exploiting loosely coupled
agents from TFPOP, coordination points detection and con-
straints definition from Planning First (Nissim, Brafman,
and Domshlak 2010), distributed planning graphs with co-
ordination constraints from DPGM (Pellier 2010), required
cooperation (Zhang, Sreedharan, and Kambhampati 2016),
also used in the MARC planner (Sreedharan, Zhang, and
Kambhampati 2015); satisfiability through sequential MAP
task solving from µ-SATPLAN (Dimopoulos, Hashmi, and
Moraitis 2012), and automatic MAP agent decomposition
from ADP (Crosby, Rovatsos, and Petrick 2013).

Several of these MA planners, and others, participated in
the 2015 Competition of Distributed and Multi-Agent Plan-
ning (CoDMAP) (Komenda, Štolba, and Kovács 2016), be-
ing the top performers ADP in coverage and CMAP-q in
quality for the centralized track, and PSM and MAPlan for
the distributed track overall.

Regarding temporal planning, several temporal plan-
ners incorporate techniques that MA-LAMA makes use of,
such as the snap-actions paradigm, continuous numeric ef-
fects treatment and temporal frontier state constraints from
OPTIC (Benton, Coles, and Coles 2012), from the COLIN

(Coles et al. 2012) family of planners; and TFLAP (Sapena,
Marzal, and Onaindia 2018) multi-heuristic search based on
hFF and hLand, which had good performance in the 2018
IPC temporal track.

Other participants in this competition were POPCORN
(Savaş et al. 2016), which is able to operate with control
parameters, TemPorAl (Cenamor et al. 2018), a portfolio
that was the top performer in the competition, and CP4TP
(Furelos-Blanco and Jonsson 2018), another portfolio. From
2014 IPC temporal track, notable participants were: IT-
SAT (Feyzbakhsh Rankooh and Ghassem-Sani 2015), a
SAT-Based Temporally Expressive Planner; YAHSP3 (Vi-
dal 2014), which computes lookahead relaxed plans and
uses them in state-space heuristic search; and Temporal FD
(TFD) (Eyerich, Mattmüller, and Röger 2012), that uses the
context-enhanced additive heuristic over a temporal search
space.

In contrast, MA-LAMA opens a new way to study tempo-
ral domains, as we aim to deal with the temporal complexity
of concurrent actions search spaces with MAP techniques,
and only make use of temporal techniques to maintain tem-
poral and numeric soundness.

Background
Following PDDL2.1 semantics (Fox and Long 2003), we de-
fine the input for our planning algorithm as:

Definition 1. Temporal Planning Tasks
A temporal planning task is defined as Λ =
⟨ρ, ϑ,Oinst, Odur, s0, g⟩ where:

• ρ is a set of atomic propositional facts,
• ϑ is a set of real-valued numeric fluents,
• Oinst is a set of grounded instantaneous actions,
• Odur is a set of grounded durative actions,
• s0 is the initial state, and
• g is the goal condition.

Instantaneous actions, ainst ∈ Oinst, and durative ac-
tions, adur ∈ Odur, differ from each other in the fact that
durative actions take time, dur(adur), to perform a state
transition from s to s′. Instantaneous actions preconditions,
pre(ainst), and effects, eff (ainst) are expanded to start con-
ditions, startCond(adur), end conditions, endCond(adur),
over all dur(adur) conditions, inv(adur), start effects, start-
Eff (adur), end effects endEff (adur) and numeric effects,
contEff (adur).

Start and end endpoints of adur, a⊢ and a⊣, can
be encoded as instantaneous actions, with pre(a⊢) =
startCond(adur), eff (a⊢) = startEff (adur), pre(a⊣) =
endCond(adur), and eff (a⊣) = endEff (adur). This decom-
position produces snap actions, allowing planners to reason
with concurrent operators, as it allows them to overlap. The
invariant condition, inv(adur), for a durative action (adur)
must be maintained throughout the open interval between a⊢
and a⊣.

For the numeric effects, we impose the same restrictions
as the COLIN family of planners: the contribution of any
durative action to the rate of change of each numeric fluent,
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υ ∈ ϑ, remains constant, so the rate of change of a certain
variable, δυ, is only modified when the snap actions are ap-
plied.

Additionally, a metric, M , can be defined to determine the
quality of a plan, and it would be the planner’s duty to find
which plan achieves a higher optimization of that metric.
Different planners support a wide range of metric formula-
tions, as the total-cost implementation in LAMA (Richter
and Westphal 2010) and time-dependent continuous costs in
OPTIC. In our case, we define M as a set of weighted nu-
meric variables, {w1∗υ1, w2∗υ2, ..., wn∗υn}where υn ∈ ϑ
and wn is a real number. υ can also be the duration of the
plan, the total-time.

From this input, MA-LAMA translates it and utilises in-
ternally the multi-valued planning tasks (MPTs) representa-
tion, also referred as SAS+ planning problems (Bäckström
and Nebel 1995). For ease of presentation, we consider a
simplified version of MPTs that omits axioms and with con-
ditional effects compiled away.

Definition 2. Multi-valued planning tasks (MPTs)
A multi-valued planning task (MPT) is a 4-tuple ⟨V, I,G,A⟩
where:

• V is a finite set of multi-valued variables υ,
• I is the initial state for V ,
• G is the goal condition and a partial state of V , and
• A is a set of instantaneous actions.

The key difference between the two planning task rep-
resentations is that variables in an MPT are multi-valued,
rather than standard booleans in PDDL2.1. However, for our
work we need to extend the MPT definition to fully encom-
pass all the temporal task components, thus, we include the
set of multi-valued numeric variables, N, and the metric, M,
resulting in our extended MPT (eMPT) definition:

Definition 3. Extended Multi-valued planning tasks
(eMPTs)
An extended multi-valued planning task (eMPT) is a 6-tuple
⟨V, I,G,A,N,M⟩ where:

• V , I , G, A are defined as in the MPT Definition.
• N , a finite set of multi-valued numeric variables, n, each

defined by a real numeric value and a finite set of exclu-
sive states, and

• M , a metric to measure the plan quality, directly as-
signed from the temporal task.

This extension allows us to deal with any numeric opera-
tion as an effect over N . We will expand on how to calculate
the possible values for each numeric variable n in the MA-
LAMA details section.

The MPT representation also allows us to build the causal
graph (CG), which represents dependencies among vari-
ables according to the available actions and is the root of
the MA task decomposition techniques.

Definition 4. Causal Graphs
For a MPT Φ with a set of variables V , the Causal Graph of
Φ, CG(Φ) is the directed graph with a set of vertex V that
contains an arc (υ, υ′) iff υ ̸= υ′ and there exists an action

that can affect the value of υ′, requiring a precondition that
specifies the value of υ.

MA-LAMA Overview
MA-LAMA is a satisfying temporal planner that utilizes
MA task decomposition and required cooperation tech-
niques to deal with the temporal complexity of concurrent
action search spaces. Additionally, it is designed to deliver
fast and highly optimized solutions for MAP tasks.

Let us provide a comprehensive overview of the internal
functioning of MA-LAMA, shown in Figure 1. The first step
involves a translation of the temporal task, where the dura-
tive actions are transformed to snap actions, adding the same
control predicates between a⊢ and a⊣ actions as the COLIN
planner (Coles et al. 2012). Then, the snap temporal task is
encoded into an eMPT and two MA algorithms take place:

• Agent Decomposition (AD): following the ideas of ADP
(Crosby, Rovatsos, and Petrick 2013), MA-LAMA de-
composes the eMPT in terms of mostly independent en-
tities, called agents.

• Goal Categorization and Assignment (GCA): coordina-
tion points are computed following the principles of re-
quired cooperation (Zhang, Sreedharan, and Kambham-
pati 2016), and the task goals are categorized into coop-
eration and coordination subsets. Then, the goals are as-
signed to agents based on metric estimations, creating in-
dividual eMPTs to be solved subsequently and in groups,
in what we call Search Phases.

We impose sequenced decision-making between these
two algorithms, as our findings indicate that making use in
the AD of the information obtained in the GCA does not
guarantee to lead the planner to better solutions. Instead, we
found that these are linked with near-optimal solving of lo-
cal eMPTs, and thus, the AD is designed to prioritize smaller
agents and, subsequently, simpler eMPTs.

Several eMPTs are solved for each Search Phase, taking
as an input the temporal constraints imposed by the previous
agent eMPT and, similarly, Search Phases inherit the initial
state from the solution of the previously solved one.

For each eMPT, we launch a modified version of the
LAMA planner, with numeric, temporal and constraints
frameworks built on top. Each eMPT is solved by a WA*
search using two classical heuristics: hFF (Hoffmann and
Nebel 2001) and hLand (Hoffmann, Porteous, and Sebastia
2004) (Sebastia, Onaindia, and Marzal 2006).

All eMPTs in each Search Phase generate a partial plan
based on snap actions, so, after all phases are solved, we
need to launch a Unify module that translates them to the
temporal paradigm and assembles them, checking their tem-
poral soundness and producing the full temporal plan.

Finally, MA-LAMA preserves weak privacy if a decom-
position is found by the AD.

MA-LAMA Insight
MA-LAMA makes use of the LAMA MPT representation,
inherited from Fast Downward (FD) (Helmert 2006), which
only needs to be modified to support the snap task numeric
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Figure 1: MA-LAMA general structure. The input is a
PDDL2.1 temporal task that is decomposed to launch sev-
eral constrained Search Phases. All partial plans are unified
at the end to produce a full temporal plan as output.

conditions, numCond, and any form of contEff during the
temporal task instantiation and multi-valued variables com-
putation through the invariant search.

Additionally, as we have expanded the original MPTs def-
inition to eMPTs, we need to determine the possible val-
ues for the multi-valued numeric variables, n ∈ N . For
each numeric variable n, the set of states, ϵ is obtained by:
∀a ∈ A→ ϵ = ϵ ∪ {n ∈ N : n ∈ contEff (a)}, plus the un-
defined state, u. contEff (a) and numCond(a) are expanded
so that all numeric operations that can be solved before the
search are solved. Thus, in our eMPTs and for each fluent
numeric variable, we encode the current numeric value and
last applied numeric effect.

Next, we will review in detail each MA-LAMA execution
module, starting with Agent Decomposition (AD) and Goal
Categorization and Assignment (GCA), and continuing with
Constrained Search and Unify, as shown in Figure 1.

Agent Decomposition
Most variables decomposition divides the domain variables
between private, variables (that cannot be changed by and
are not required by other agents) and public (representing
the environment in which the agents operate), P .

We borrow from Crosby et al. (2013) their variable de-
composition definition. In short, a variable decomposition
of an eMPT divides it into a set of variable groups, Ω =
{Ω1,Ω2, ...,Ωn}, and a set of public variables, P , that can
be empty. In their work, they also define Agent Variable De-
compositions (ADP); variable decompositions where there
are no joint actions and no external actions that can af-
fect any agent internal variables. We choose not to impose
this restriction and, therefore, we obtain not merged single
agents and will deal with required cooperation in a later
stage.

Algorithm 1 gives a pseudo-code overview of the MA-
LAMA Agent Decomposition (AD) module, which pro-
duces a set of eMPTs ⟨V, I,G,A,N,M⟩, where all com-
ponents are set except G.

We consider three main stages in the AD module:

Algorithm 1: Agent Decomposition (AD)
Input: eMPT ⟨V, I,G,A,N,M⟩
Output: Agent Decomposed Task set Φ =
{Φ1,Φ2, ...,Φn}

1: Find Possible Agents
2: CG generation
3: Ω← {ν ∈ V : ν root node of CG\2 way cycles}
4: Ω← AssembleAgents(Ω)
5: Extend Private Agent Sets
6: repeat
7: for Ωn ∈ Ω do
8: Ωn ← Ωn ∪ {υ ∈ V : υ only successor of ∪ Ωn}
9: end for

10: until Ω can no longer be refined
11: An ← {a ∈ A, υ ∈ Ωn : ∃υ ∈ ∪eff (a) ∪ ∪pre(a)}
12: Extend Public Agent Sets
13: repeat
14: for Ωn ∈ Ω do
15: Ωn ← Ωn ∪{υ ∈ V : υ is connected with ∪ Ωn in

the CG ∧ υ not yet assigned}
16: end for
17: until every υ ∈ V is assigned
18: An ← {a ∈ A : ∪eff (a) ∪ ∪pre(a) ∈ Ωn ∧ a not

assigned in previous step}
19: Nn ← {n ∈ N : n ∈ ∪contEff ({a ∈ An}) ∪
∪numPre({a ∈ An})}

20: In ← {v ∈ I : v ∈ Vn}
21: Mn ← {(w ∗ n) ∈M : n ∈ Nn}
22: return {Ωn, In, ∅, An, Nn,Mn}

1) Find Possible Agents starts with the ADP basis: remov-
ing 2-way cycles from the CG and taking resulting root
nodes that still have one successor left as possible agents.
Then, the algorithms differ, as we aim for different objec-
tives with the decomposition: minimize local agent search
space for MA-LAMA, and minimize mandatory agent coor-
dination in ADP.

We run an Assemble Agents step before expanding all
agent sets so that possible agents are more refined and re-
ally coupled agents are merged. The full assembly step can
be summarized in one rule:

For two possible agents [υ, υ′] in a root node set Ω, υ and
υ′ are assembled if there is a path between υ and υ′ in the
CG.
2) Extend Private Agent Sets Agents sets are then ex-
panded so that every υ ∈ V that is the only successor of
an agent set, Ωn, is added to it. This process is repeated until
all sets can no longer be refined, and a set of actions is added
to each agent such that, for every action a ∈ A, it is added
to the private set of actions of a certain agent, An, if there
exists a variable υ that exists in eff (a) or pre(a).

This results in a private set of variables, Ωn and actions
An for each agent; therefore, the rest of the variables and
actions are assumed public, P .
3) Extend Public Agent Sets Agent variable sets are com-
pleted with all the variables that are reachable in the CG
for a certain agent, n: actions not yet assigned are added to
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Ωn following the same past rule, but using the new com-
plete variable set; numeric variables N and the metric M
components are added to Nn and Mn if they appear in the
conteff(a) or numCond(a) for every a ∈ An; and the initial
state I values are added to an agent n if they appear in Vn.

Finally, the output of the algorithm is a set of tasks, Φ =
{Φ1,Φ2, ...,Φn}, one for each agent and without any goal
assigned. This set is the input for the Goal Categorization
and Assignment stage.
Theorem 1 The algorithm presented in this sub-section
for finding an agent decomposition given an eMPT is both
sound and complete
Sketch of Proof We rely on Crosby et al. (2013) Theorem
6.1 Sketch of Proof, as we share most of the decomposition
definition with them. First, if variables identified during the
”Find Possible Agents” stage also serve as root nodes in the
causal graph, it is guaranteed that a decomposition will be
produced. Second, if a decomposition exists, the ”Find Pos-
sible Agents” stage will always identify a minimum of two
root variables that will not be merged. Finally, as we do not
impose the ”merge restriction” to our definition, not merged
linked in the CG agents do not affect soundness.

Goal Categorization and Assignment
Algorithm 2 shows the Goal Categorization and Assignment
(GCA). The objective is to further exploit the MA nature of
the domains by studying how the goals from the original
temporal task, G, can be assigned to the agent eMPT set, Φ,
to achieve optimized solutions.

The basis of the GCA algorithm is the Required Cooper-
ation (RC) Analysis (Zhang, Sreedharan, and Kambhampati
2016), in which they formally describe the possible agent
interactions within an MPT. From now on, we will refer
to goals that require Type-1 RC (Heterogeneous Agents) or
Type-2 RC (Homogeneous Agents) Causal Loops interac-
tions as coordination goals and goals that require Type-2
RC Traversability interactions, or no RC at all, as coopera-
tion goals. The output of the GCA is a set of Search Phases,
each one aiming to solve a goal subset of coordination or
cooperation {g} ∈ G.

We consider three main stages for the GCA module:
1) Coordination Points Variables Coordination points are
certain points in an agent plan where it possibly influences or
is influenced by other agents. Following this idea, we obtain
variables that may be coordination points in our Φ by ex-
tracting from P all variables that are both a precondition in
one agent’s actions and an effect in another agent’s actions.
2) Single Goal Relaxed Plans Obtention Then, we launch a
relaxed (ignore delete effects and ignore numCond()) search
for each goal g ∈ G and agent eMPT Φn ∈ Φ and calculate
a metric value for the relaxed solution, computing numeric
variables limits and using the worst-case scenario for fluents
in contEff().

If a solution is found for any of Φn, then the goal is con-
sidered a cooperation goal, and our aim is then changed to
find the most optimized relaxed solution through iterative
relaxed searches and for each agent that can achieve it.

If a solution is not found, g requires coordination, and
a relaxed search is launched for the same g with the full

Algorithm 2: Goal Categorization and Assignment (GCA)
Input: Agent Task Set, Φ = {Φ1,Φ2, ...,Φn}, and goals, G
Output: Cooperation and Coordination Search Phases, σ =
{σ1, σ2, ..., σn}

1: Coordination Points Variables
2: CoorP ← ∅ (Coordination Points)
3: for {Φn,Φm} ∈

(
Φ
2

)
do

4: CoorP ← CoorP ∪ {υ ∈ P : ∃(an ∈ An, am ∈
Am) : υ ∈ pre(an) ∧υ ∈ eff(am) }

5: end for
6: Single Goal Relaxed Plans Obtention
7: Gcoop, Gcoord ← ∅ (Coord and Coop goal sets)
8: for g ∈ G do
9: Solg ← ∅ (relaxed solutions set)

10: for Φ ∈ do
11: Solg ← Solg ∪ relaxedSearch(Φn, g)
12: end for
13: if Solg ̸= ∅ then
14: Gcoop ← Gcoop ∪ g, Solg
15: else
16: Solg ← relaxedSearch(Φ, g)
17: Solg ← CoorP in Solg
18: Gcoord ← Gcoord ∪ g, Solg
19: end if
20: end for
21: Goal Assignment and Search Phases Creation
22: σcoop ← Gcoop,MinCostAssignment(Φ, Gcoop)
23: σcoord ← ∅
24: for gcoord ∈ Gcoord do
25: σn ← gcoord ∪ CoorP in gcoord.Solg , Φn in

gcoord.Solg
26: σcoord ← σcoord ∪ σn

27: end for
28: return σcoop ∪ σcoord

task eMPT, trying to minimize the number of used agents
in the relaxed solution. The values for variables selected as
possible coordination points are stored for later use in the
Search Steps creation. The optimization of all relaxed search
processes takes place for a configurable amount of time or
until the complete search space has been explored.
3) Goal Assignment and Search Phases Creation We deal
with coordination and cooperation goals in different ways:

• for cooperation goals, all goals are assigned in a way that
minimizes the total sum of all relaxed metrics in a single
Search Phase, σ1, where agents involved, Φn ∈ Φ, are
those with at least one goal assigned, and

• for coordination goals, one Search Phase is created for
each, {σ2, ..., σn}, where agents involved are those that
appear in the relaxed plan, additionally, the coordination
points for each agent are also assigned as goals.

We check if the assignments are valid from a numeric con-
ditions perspective before continuing. If there is no relaxed
solution for one of the agents in a Search Phase, the process
is restarted assigning weights to each agent metric estima-
tion, lowering the use of constrained agents.
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Theorem 2 The algorithm presented in this sub-section for
goal assignment among an agent task set is both sound and
complete.
Sketch of Proof We demonstrate that, given any valid eMPT
set, a valid and solvable goal assignment is generated. First,
if no decomposition has been found, all goals are assigned
to the full task. Second, if a certain goal can be attained by
the full task, it is assigned to an agent that can also attain
it, as our first relaxed searches only make use of each sin-
gle agent operator, or it is marked as a coordination goal
and is assigned to a group of involved agents through a full
task relaxed-search. Finally, it can be demonstrated that co-
ordination points for coordination goals cover the remaining
case from the AD, involving merging linked agent sets in the
causal graph.

Constrained Search
The Constrained Search process receives as an input the
full set of Search Phases, σ = {σ1, σ2, ..., σn}, each with
a set of eMPT, Φ = {Φ1,Φ2, ...,Φn}. We launch a multi-
heuristic constrained search over each eMPT, inheriting tem-
poral constraints, (Φn, υ, t, d), set by the public variables,
P , between each agent search, so that interactions between
agents are only considered when necessary.

Definition 5. Temporal Constraints
A Temporal Constraint, (Φn, υ, t, d), states that the agent,
Φ, sets a certain value, υ, at the moment, t, for the a certain
duration, d.

We will now divide the search description in two: first,
each individual search characteristics are explained, and
then, details on solving whole Search Phases are provided.

1) Search details For each eMPT, We launch a WA* for-
ward total-order search with two classical heuristics, hFF

(Hoffmann and Nebel 2001), Cost-Sensitive FF/add variant,
and hLand (Hoffmann, Porteous, and Sebastia 2004) (Se-
bastia, Onaindia, and Marzal 2006). This choice is based on
the fact that most MA temporal domains revolve their tem-
poral complexity over the concepts of cooperation and co-
ordination, so the eMPTs that we solve at this point tend to
not require complex necessary simultaneity.

During search, all states are evaluated concerning both
heuristics, and, when choosing which state to expand, the
search algorithm alternates between both based on numer-
ical priorities. Inherited from the LAMA planner, we also
make use of preferred-operators, which represent operators
that are estimated to be useful in a given state.

A temporal framework is introduced to deal with local
concurrency, incorporating constraints among snap-actions
to guarantee that the preconditions for the new actions are
satisfied in the frontier state, as well as keep track of the
makespan and running actions’ start-end times for each
state.

We follow the same principles as the numeric framework,
including the necessary mechanisms to be able to deal with
continuous numeric operations and numeric preconditions.

Note that our only aim with these frameworks is to guar-
antee temporal and numeric soundness.

Figure 2: A Cooperation Search Phase: each agent, Φn, pro-
duces temporal constraints for the next. All agents share the
initial state, S0, and produce a combined final state, Sf . The
phase makespan, t, is the longest agent plan makespan.

Figure 3: Coordination Search Phase structure, where each
agent, Φn, produces the initial state, S, for the next. The final
state, Sf is produced by the last agent. The makespan of the
phase, t, is the sum of all agent local plans.

2) Solving Search Phases All Search Phases need a tem-
poral constraints system for two main purposes:

• for cooperation goals, to assure that restrictions over
variables υ ∈ P are preserved, and

• for coordination goals, to synchronize the agents around
the coordination points.

In practice, temporal constraints are used as conditions in
cooperation Search Phases (see Figure 2), computing them
as inv() = v, starting at time, t, for the duration, d. When a
cooperation agent finds a solution, it also computes a set of
Temporal Constraints, containing all times a variable v ∈ P
value was required or changed. Consecutive agents use this
list as limitations to their own local search graphs and add
their own restrictions when they find a solution.

We solve coordination Search Phases, Figure 3, follow-
ing the agent order dictated by the coordination points, ob-
taining the coordination goal at the end. Each agent inherits
from the last a set of temporal constraints representing the
already obtained subgoals and end states, which serve as the
initial state for each local search.

Metric optimization in each Search Phase type is achieved
differently. First, a cooperation Search Phase will be as op-
timized as its individual eMPTs are. Since several goals are
achieved per agent, the ones with more goals are prioritized,
so they solve their eMPTs less restricted by temporal con-
straints. Coordination Search Phases eMPTs generally only
solve one goal, so they are not as promising in terms of
numeric optimization. On the other hand, temporal concur-
rency can still be improved, and it is handled in the next step.

Unify
The final step in MA-LAMA execution consists of the uni-
fication of all partial plans for each Search Phase to obtain a
full temporal plan.
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Domain MA-L CMAP ADP
Blocksworld 20 19 (1) 20

Depot 17 (3) 17 (3) 16 (4)
DriverLog 20 19 (1) 20
Elevators 20 18 (2) 20
Logistics 20 19 (1) 20
Rovers 20 20 20

Satellites 20 20 20
Sokoban 14 (6) 13 (7) 17 (3)

Taxi 20 20 20
Wireless 6 (14) 5 (15) 9 (11)

Woodwork 16 (4) 15 (5) 20
Zenotravel 20 19 (1) 20

Total 213 204 222
Domain MA-L TFLAP OPTIC TFD POPC
Rovers 11 1 (10) 8 (3) 10 (1) 6 (5)
Satellite 11 11 7 (4) 5 (6) 0 (11)

Zenotravel 16 14 (2) 8 (8) 16 7 (9)
Logistics 20 20 20 20 0 (20)

Taxi 20 18 (2) 20 20 20
Total 78 54 63 71 33

Table 1: Coverage results (not solved domains in parenthe-
sis) for CoDMAP non-temporal (up) and CoDMAP and IPC
temporal (down) MA domains. All executions are limited to
10 minutes and 4GB of RAM.

The unification process of each agent in a Search Phase,
Φn ∈ σj , snap partial plan, is simple, as we have already
dealt with concurrency and constraints in all cases but in
between coordination Search Phases. The partial plans for
each Search Phase are obtained by assembling each Φn par-
tial plan concurrently for cooperation Search Phases, and
consecutively in coordination Search Phases.

To combine all partial plans, we first check for each coor-
dination Search Phase pair, σn, σm, and the variables from
P that are affected in their respective snap partial plans,
Pn, Pm. If Pn ∩ Pm = ∅, then both σn and σm are added to
the complete temporal plan concurrently.

Finally, all remaining partial plans are combined consec-
utively. During this process, we also calculate the total cost
of the final plan; check that the temporal, numeric, and logic
constraints soundness is maintained; and change the snap
actions plan paradigm to temporal.

Experimentation
Our experimentation is divided into two sections. First, we
study the coverage results of MA-LAMA in temporal and
non-temporal domains against other classical and temporal
solvers, and second, we analyze MA-LAMA quality perfor-
mance against other state-of-the-art temporal planners.

Coverage for Classical and Temporal Tasks
We first check the coverage of MA-LAMA in classical and
temporal domains, results can be seen in Table 1.

The initial MA-LAMA benchmark analysis is performed
under classical planning, aiming to obtain the only fea-
sible comparison with other MA planners. We study the
CoDMAP domains against the ADP-legacy and CMAP-q

planners. Those are the winners for the competition cover-
age and quality tracks, and both share internal functionalities
with MA-LAMA: ADP-legacy, which shares the root of the
agent decomposition, and CMAP-q, which obfuscates the
domain and uses the LAMA planner during the search.

We obtain a similar coverage performance to ADP-legacy
when an agent decomposition is found, and to CMAP-q if
the decomposition is invalid (does not match the competi-
tion original domain). Compared to ADP, the slightly worse
coverage performance of MA-LAMA is explained by this,
as we solve fewer domains when no decomposition is found.

For MA temporal domains, we compare against other
state-of-the-art temporal planners, already mentioned in the
related work section: OPTIC, TFLAP, TFD and POPCORN.
We exclude Yahsp3, as its single-thread version is outper-
formed by TFD and does not work with metrics in our tests,
and both TemPorAl and CP4TP, as they are portfolios. The
domains we chose are Rovers, Satellites, and Zenotravel
from IPC, and adapted Taxis and Logistics from CodMAP
to make them temporal, as Logistics presents required coop-
eration and Taxis allows us to check a less complex scenario.

In this case, MA-LAMA outperforms all planners, espe-
cially for the IPC domains, where only TFLAP in Satel-
lites and TFD in Zenotravel are able to match MA-LAMA.
Regarding the agent decomposition, we obtain the ones a
human operator would set: planes in Zenotravel, rovers in
Rovers, satellites in Satellites, planes and trucks in Logis-
tics, and taxis in Taxis. Additionally, only Logistics con-
tained coordination goals, but this did not affect coverage
performance.

We can conclude that the AD and GCA algorithms are
suitable to deal with MA temporal domains and that MA-
LAMA is able to solve a wide range of problems in MA clas-
sical domains, and improves state-of-the-art coverage per-
formance for the most complex MA temporal domains.

Plan Quality Performance
In this section, we will study the plan quality performance
in MA temporal domains, the main focus of our planner. For
the reasons we outlined in the previous point, we launched
the same five planners: OPTIC, TFLAP, TFD, POPCORN,
and MA-LAMA. Results are detailed in Table 2. We con-
sider problems once the MA nature becomes relevant.

MA-LAMA dominates in Rovers (weighted battery) and
Zenotravel (weighted fuel + makespan) domains, delivering
better quality plans in all instances for Rovers and almost all
for Zenotravel, where TFLAP also wins in some problems.
These two domains are launched with metrics that are not
completely coupled with the makespan of the plan, and the
two best-performing planners (TFLAP only in Zenotravel)
make use of classical heuristics and do not reason with time,
meaning that this can be an advantage when optimizing met-
rics not coupled with the makespan.

For Satellites (makespan), results are mixed, as MA-
LAMA gives better solutions in four problems and OPTIC
and TFD in three. Planners that reason with time perform
better with the makespan metric, but as instances get more
complex, MA-LAMA deals better with them and delivers
better solutions in the last problems.
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Domain Planner 9 10 11 12 13 14 15 16 17 18 19 20

Rovers
(w battery)

MA-L 48.6 19.0 89.0 155.8 79.8 102.3 77.0 135.3 33.2 313.4 388.6
POPC 130.2 37.2 93.4 - - 156.8 184.3 - 136.6 - -
TFD 101.1 47.2 100 172.1 94.1 215.2 100.2 214.6 224.4 346.0 -

TFLAP - - - - - 137.3 - - - - -
OPTIC 99.9 38.8 96.5 215.6 143.8 184.7 198.7 217.4 - - -

Satellites
(makespan)

MA-L 134.5 205.9 230.3 132.9 129.1 192.2 120.2 93.5 153.6 247.9 555.9
TFD - - 262.5 104.1 87.7 - - - 93.9 283.4 -

TFLAP 217.6 479.4 385.4 634.9 361.0 462.9 370.2 385.5 296.3 509.5 948.8
OPTIC 115.7 150.9 171.8 149.1 108.6 - - 83.7 100.6 - -

Zenotravel
(makespan
+ w fuel)

MA-L 35.9 237.7 76.7 103.2 123.7 268.3 182.6 210.3 324.4 154.6 373.4 398.2
POPC 719.7 - 313.7 213.5 - - - - - - - -
TFD 652.0 268.7 208.2 146.4 194.7 1464.6 242.8 574.4 1756.1 880.9 1674.4 3301.3

TFLAP 214.0 196.1 81.8 81.9 92.6 391.0 133.0 303.7 504.8 414.6 - -
OPTIC 131.0 283.3 - 400.3 130.1 291.7 - - - - - -

Logistics
(w fuel)

MA-L 177.0 168.0 192.0 247.0 188.0 263.0 231.9 210.0 170.5 308.4 266.2 197.0
TFD 177.0 168.0 304.0 247.0 168.0 521.0 434.4 332.4 216.2 290.0 221.0 235.2

TFLAP 177.0 158.0 172.0 247.0 158.0 239.0 287.0 244.0 217.0 264.8 311.0 256.0
OPTIC 187.0 158.0 206.0 247.0 178.0 253.0 272.4 213.9 192.8 318.0 313.2 229.2

Table 2: Plan quality for IPC benchmarks (Rovers, Satellites and Zenotravel), and temporal CodMAP domains (Logistics and
Taxi), limited to 10 minutes and 4GB of RAM. Absence of a planner indicates that it solved no problems. ”w” means weighted.

CodMAP logistics, which includes mandatory coordina-
tion goals, is significantly less complex than the IPC do-
mains, as several planners find optimal (or near optimal)
solutions for several instances. In these cases, MA-LAMA
depends on the GCA algorithm to deliver the best solution,
as a non-optimal goal assignment results in a non-optimal
final solution. Similarly to the previous case, as problems
incorporate more agents and variables, all planners begin
to struggle to optimize the solutions, and the MA nature of
MA-LAMA proves to be an advantage.

Lastly, we study the search time for each planner in the
Rovers domain, shown in Figure 4. POPCORN and TFLAP
are excluded since they do not solve most problems. In less
complex instances, the search time for all planners is similar,
however, once the number of agents increases, OPTIC stops
finding solutions and TFD notably increases its search time.
In contrast, MA-LAMA search time is stable through the
whole domain, notably improving search time in instances
with high agent counts, and only displaying peaks when the
individual agent eMPTs are harder, as in p13.

To conclude, experiments infer that the MA techniques
in MA-LAMA perform suitable decompositions for MA
temporal domains and that MA-LAMA delivers better plan
quality performance than other state-of-the-art temporal
solvers in the most complex problems for all tested domains.

Conclusions and Future Directions
This paper introduced MA-LAMA, a multi-agent planner
optimized for temporal domains, leveraging concurrent ac-
tions search spaces and employing Agent Decomposition
(AD) and Goal Categorization and Assignment (GCA) al-
gorithms for the effective decomposition of tasks. This ap-
proach notably enhances plan quality and coverage in com-
plex MA temporal domains, surpassing existing state-of-the-
art temporal planners.

However, MA-LAMA’s current limitations include its in-

Figure 4: Search Time in seconds for each problem (no of
agents) in Rovers IPC domain.

ability to incorporate temporal or numeric information dur-
ing search, affecting performance in domains lacking clear
decomposition. Future enhancements could integrate tech-
niques like symmetry-based decompositions or search time
reasoning to broaden its applicability across a wider range of
MA domains. Furthermore, the AD algorithm’s potential ex-
pansion to more comprehensively address MA domain chal-
lenges presents a promising avenue for research.

The exploration of MA-LAMA alongside other planners
in a portfolio approach, predicated on a pre-search analysis
of domain structures, could further optimize planner selec-
tion and performance across varied scenarios. As we con-
tinue to refine MA-LAMA, addressing these limitations and
exploring new integration strategies will be pivotal in ad-
vancing MA planning efficiency and effectiveness.
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Savaş, E.; Fox, M.; Long, D.; and Magazzeni, D. 2016. Planning
Using Actions with Control Parameters. European Conf. on Artifi-
cial Intelligence.
Sebastia, L.; Onaindia, E.; and Marzal, E. 2006. Decomposition of
planning problems. AI Communications, 19: 49–81.
Shleyfman, A.; Kuroiwa, R.; and Beck, J. C. 2023. Symmetry De-
tection and Breaking in Linear Cost-Optimal Numeric Planning.
Proc. of the Int. Conf. on Automated Planning and Scheduling,
33(1): 393–401.
Sreedharan, S.; Zhang, Y.; and Kambhampati, S. 2015. A first
multi-agent planner for required cooperation (MARC). Proc.
of the Competition of Distributed and Multi-Agent Planners
(CoDMAP’15), 17–20.
Torreño, A.; Onaindia, E.; Komenda, A.; and Štolba, M. 2017. Co-
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