
Abstraction Heuristics for Factored Tasks
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Abstract

One of the strongest approaches for optimal classical plan-
ning is A∗ search with heuristics based on abstractions of the
planning task. Abstraction heuristics are well studied in plan-
ning formalisms without conditional effects such as SAS+.
However, conditional effects are crucial to model many plan-
ning tasks compactly. In this paper, we focus on factored
tasks which allow a specific form of conditional effect, where
effects on variable x can only depend on the value of x.
We generalize projections, domain abstractions, Cartesian ab-
stractions and the counterexample-guided abstraction refine-
ment method to this formalism. While merge-and-shrink al-
ready covers factored task in theory, we provide an imple-
mentation that does so. In our experiments, we compare these
abstraction-based heuristics to other heuristics supporting
conditional effects, as well as symbolic search. On our new
benchmark set of factored tasks, pattern database heuristics
solve the most problems, followed by symbolic approaches
on par with domain abstractions. The more general Cartesian
and merge-and-shrink abstractions fall behind.

Introduction
In classical planning, we aim to find (minimum-cost) paths
in large, deterministic transition systems. In general, this
means that we search for a sequence of actions leading from
the initial state of the problem to a state which satisfies some
goal condition. Interesting classical planning problems have
too many states to find solutions using blind search. Heuris-
tic search has proven a very successful method for solving
classical planning problems (e.g., Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Helmert and Domshlak 2009;
Richter and Westphal 2010; Helmert et al. 2014; Domshlak,
Hoffmann, and Katz 2015). A heuristic is a function that es-
timates the cost from a given state to the closest goal state.
The guidance of a good heuristic helps the search to focus
on states that are likely part of a minimum-cost solution.

One family of heuristics are abstraction heuristics (e.g.,
Seipp and Helmert 2018). An abstraction is an equivalence
relation between states. The states of the original problem
within the same equivalence class are mapped to a single ab-
stract state. Each transition in the original problem induces
a transition between the corresponding abstract states in the
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abstraction. Since the abstract problem generally has fewer
states but preserves transitions between concrete states, it
is easier to solve than the original problem. Moreover, the
cost of a minimum-cost path between two concrete states
is lower-bounded by the cost of a minimum-cost path be-
tween the corresponding abstract states. Abstraction heuris-
tics can therefore use the abstract goal distance as an ad-
missible estimate of the goal distance in the original prob-
lem. The most common abstraction classes in planning are
pattern database (PDB) heuristics (Culberson and Schaeffer
1998), domain abstractions (Hernádvölgyi and Holte 2000),
merge-and-shrink (M&S) abstractions (Dräger, Finkbeiner,
and Podelski 2006), and Cartesian abstractions (Seipp and
Helmert 2013). These methods differ in the way they map
states to abstract states and can be ordered by increasing
generality: PDBs, domain abstractions, Cartesian abstrac-
tions, and M&S abstractions (Seipp and Helmert 2018).

Compact representations of planning problems often re-
quire conditional effects. Unfortunately, many common
heuristics including abstraction heuristics do not support
conditional effects. We aim to fill this gap and study fac-
tored tasks, a class of planning tasks that augments SAS+

tasks with limited forms of disjunctive preconditions, con-
ditional effects, and angelic nondeterminism. While the the-
ory on M&S already covers factored tasks, we show how
the other abstraction classes mentioned above can be ex-
tended to this formalism. Furthermore, we implement these
abstraction heuristics for the subset of factored tasks that can
be modeled in finite-domain representation (Helmert 2009).
We also provide a set of benchmark problems consisting of
the well-known permutation puzzles Pancakes, Burnt Pan-
cakes, Rubik’s Cube, and TopSpin as well as the Cave Diving
domain from the International Planning Competition 2014
(Vallati et al. 2015) and the domain for finding algorithms
for Matrix Multiplication (Speck et al. 2023).

In our experiments, we compare our abstraction heuris-
tics with previous approaches for solving planning problems
with conditional effects, such as hmax (Bonet and Geffner
2001), LM-cut with context splitting (Röger, Pommeren-
ing, and Helmert 2014) and symbolic search (Edelkamp,
Kissmann, and Torralba 2015; Torralba, Linares López, and
Borrajo 2016). The most problems are solved with PDBs,
followed by domain abstractions on par with symbolic ap-
proaches. The more general Cartesian and M&S abstractions

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

40



fall behind in terms of coverage. Most likely, this is because
computing meaningful abstractions for our benchmarks re-
quires more resources than we provide, rendering the sim-
pler PDB and domain abstraction heuristics preferable.

Factored Tasks
We consider classical planning with a factored task repre-
sentation (Helmert et al. 2014; Torralba and Sievers 2019;
Sievers and Helmert 2021). Earlier papers introduce factored
tasks with an automata-based representation. Here we give
an equivalent definition that is closer in spirit to planning
task representations like STRIPS and SAS+.

Factored tasks extend the SAS+ formalism (Bäckström
and Nebel 1995) with conditional effects, disjunctive pre-
conditions and goal conditions, and angelic nondetermin-
ism. However, all three features are restricted in such a way
that the structure of tasks can be understood by considering
one variable at a time: for example, each conditional effect
on a variable only depends on this variable.

A variable space is a tuple V = ⟨V1, . . . , Vn⟩ of variables
with a finite domain. We write dom(Vi) for the domain of Vi,
which can be an arbitrary finite set of values. A state of V is
a tuple ⟨d1, . . . , dn⟩ with di ∈ dom(Vi) for all 1 ≤ i ≤ n.
It follows that the set of all states is the Cartesian product
dom(V1)× · · · × dom(Vn). We denote this set by JVK.

A factored state set for V is a tuple D = ⟨D1, . . . , Dn⟩ of
subsets Di ⊆ dom(Vi). It serves as a compact representation
of the (non-factored) state set JDK = D1 × · · · × Dn ⊆
JVK. State sets represented by factored state sets are called
Cartesian sets (Seipp and Helmert 2018).

A factored state relation for variable space V is a tuple
R = ⟨R1, . . . , Rn⟩ of relations Ri ⊆ dom(Vi)×dom(Vi). It
serves as a compact representation of the (non-factored) re-
lation JRK ⊆ JVK× JVK with ⟨s, s′⟩ ∈ JRK iff ⟨si, s′i⟩ ∈ Ri

for all 1 ≤ i ≤ n. Factored state relations are a natural gen-
eralization of factored state sets in the sense that we can de-
termine membership in the relation by conducting separate
tests for each variable. A factored operator o is defined by a
factored state relation trans(o) and its operator cost cost(o).

A factored task is a 4-tuple Π = ⟨V ,O, I, G⟩, where V is
a variable space,O is a finite set of factored operators, and I
and G are factored state sets representing the initial and goal
states.

The semantics of tasks are defined via transition systems.
A transition system is a 5-tuple T = ⟨S,O, T, SI, SG⟩,
where S is a finite set of states, O is a finite set of opera-
tor labels1 with associated cost, T ⊆ S × O × S is a finite
set of labeled transitions, and SI, SG ⊆ S are the initial and
goal states.

The factored task Π = ⟨V ,O, I, G⟩ represents the tran-
sition system JΠK = ⟨JVK,O, JOK, JIK, JGK⟩, where JOK =
{⟨s, o, s′⟩ | o ∈ O, ⟨s, s′⟩ ∈ Jtrans(o)K}. The objective of
classical planning is to find a path from an initial to a goal
state in JΠK. The multiple initial states and nondeterminism

1We call these operator labels instead of operators to empha-
size that within a transition system, they only serve as opaque la-
bels rather than objects with internal structure like the operators of
a factored task.

of operators (a single state can have multiple successors via
the same operator) are interpreted angelically, i.e., the plan-
ning algorithm may choose which initial state or which suc-
cessors to use (Torralba and Sievers 2019).

Note that factored tasks may have an empty set of initial
states or goal states. If so, they are trivially unsolvable be-
cause there cannot exist a path from an initial to a goal state
in these cases. We say a factored task with n variables is
trivially unsolvable if Ii = ∅ or Gi = ∅ for some 1 ≤ i ≤ n.
A trivial operator is an operator with Ri = ∅ for some
1 ≤ i ≤ n which therefore induces no transitions in the
represented transition system (Sievers and Helmert 2021).

We remark that we need neither multiple initial states nor
(angelically) nondeterministic operators for this paper, but
they can be supported at no additional difficulty and allow
us to treat some things more generally and more uniformly.
In particular, they make regression very simple for factored
tasks: by swapping the initial and goal states and replacing
each transition relation trans(o)i by its inverse trans(o)−1

i ,
we obtain a new factored task whose transition system is the
inverse of the original transition system.

Comparison to SAS+ Factored tasks generalize SAS+

tasks. SAS+ tasks can be understood as factored tasks
⟨⟨V1, . . . , Vn⟩,O, I, G⟩ with the following restrictions:

• There is a single initial state: |Ii| = 1 for all 1 ≤ i ≤ n.

• Variables either have a single goal value or no goal con-
dition: |Gi| = 1 or Gi = dom(Vi) for all 1 ≤ i ≤ n.

• For all o ∈ O and all 1 ≤ i ≤ n, the relation Ri =
trans(o)i has one of the following forms:

– Ri = {⟨d, d⟩ | d ∈ dom(Vi)}: the operator has no
precondition or effect on Vi

– Ri = {⟨d, d⟩} for exactly one d ∈ dom(Vi): the oper-
ator has a precondition and no effect on Vi

– Ri = {⟨d, d′⟩} for exactly one pair d, d′ ∈ dom(Vi):
the operator has a precondition and an effect on Vi

– Ri = {⟨d, d′⟩ | d ∈ dom(Vi)} for exactly one
d′ ∈ dom(Vi): the operator has an effect and no pre-
condition on Vi

For tasks that can be compactly expressed in SAS+, fac-
tored task representations are somewhat more verbose for
aspects such as variables not appearing in a precondition or
effect. This is not a concern for this paper, but we note that
practical implementations sometimes special-case these as-
pects to reduce verbosity (Sievers 2018).

Conversely, factored tasks allow representing some as-
pects compactly that are impossible to represent directly in
SAS+. For example, if dom(Vi) = {1, 2, 3, 4, 5} an operator
can use the relation Ri = {⟨2, 3⟩, ⟨3, 2⟩, ⟨4, 4⟩} to express
the disjunctive precondition (Vi = 2)∨ (Vi = 3)∨ (Vi = 4)
and the conditional effects (Vi = 2) � (Vi := 3) and
(Vi = 3)�(Vi := 2). Expressing the same transition seman-
tics in SAS+ requires either exponential-size compilation or
introducing auxiliary state variables and operators split into
multiple stages, which can negatively affect planning algo-
rithms (Nebel 2000).
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The same is true for the angelic nondeterminism sup-
ported by factored tasks. For example, we can easily ex-
press an operator with the meaning “For each of the vari-
ables V1, . . . , Vk, choose either 1 or 2 as the new value”,
but this would require 2k operators or an operator split into
multiple stages using auxiliary states in SAS+.

Abstractions
Most current planning algorithms use heuristic search algo-
rithms to perform a progression search through the transition
system JΠK. Two such heuristic search algorithms are A∗

(Hart, Nilsson, and Raphael 1968) and IDA∗ (Korf 1985),
which use a heuristic function to estimate the cost to reach
the goal from each search node. They guarantee an optimal
(minimum-cost) solution if the heuristic is admissible, i.e.,
never overestimates the cost to the goal.

Abstractions are a common source of admissible heuris-
tics in the planning literature. The four most widely stud-
ied classes of abstractions are projections used for pattern
database (PDB) heuristics (Edelkamp 2001), domain ab-
stractions (Hernádvölgyi and Holte 2000), Cartesian ab-
stractions (Seipp and Helmert 2018), and merge-and-shrink
(M&S) abstractions (Sievers and Helmert 2021). In this sec-
tion we introduce the general concept of abstraction and
these specific classes. In the following section, we extend
heuristics using these classes of abstractions from SAS+ to
factored tasks.

Let T = ⟨S,O, T, SI, SG⟩ be a transition system. An ab-
straction∼ is an equivalence relation over S with the mean-
ing that the distinction between states in the same equiva-
lence class is ignored. We write s∼ for the equivalence class
to which state s ∈ S belongs and define S∼ = {s∼ | s ∈ S}
for sets of states S.

The abstraction ∼ induces the abstract transition system
T ∼ = ⟨S∼,O, T∼, S∼

I , S∼
G ⟩ where T∼ = {⟨s∼, o, t∼⟩ |

⟨s, o, t⟩ ∈ T}. The abstraction heuristic h∼ maps state s to
the minimum path cost from s∼ to any t∼ ∈ S∼

G in T ∼. By
construction, every path in T corresponds to a path in T ∼.
Consequently, the minimum path cost from s∼ to t∼ in T ∼

is a lower bound on the minimum path cost from s to t in
T . Together with the definition of the abstract goal states, it
follows that abstraction heuristics are admissible.

Abstraction heuristics for planning exploit that the set of
states S is represented by a variable space, i.e., S = JVK for
some V = ⟨V1, . . . , Vn⟩.

Pattern Databases PDBs are based on projections onto a
subset of the variables P ⊆ {V1, . . . , Vn} called the pattern.
Two states s and t are equivalent in the abstraction iff si = ti
for all Vi ∈ P . Sievers, Ortlieb, and Helmert (2012) explain
how to compute PDBs efficiently for SAS+ tasks and how
to support efficient heuristic computation via table lookup.

Domain Abstractions In a projection, each state variable
is either represented faithfully (for variables in the pattern)
or not at all (for variables outside the pattern). Domain ab-
stractions generalize this idea by defining an equivalence
relation ∼i ⊆ dom(Vi) × dom(Vi) for each state variable
Vi. Two states s and t are equivalent under such a domain

abstraction if they are equivalent in each of these relations:
s ∼ t if si ∼ ti for all state variables Vi.

Projections can be expressed as domain abstractions by
using the identity relation {⟨d, d⟩ | d ∈ dom(Vi)} as the
equivalence relation for variables in the pattern (all values
of the variable are distinguished) and the universal relation
dom(Vi)×dom(Vi) for variables outside the pattern (all val-
ues are considered equivalent).

Kreft et al. (2023) describe a state-of-the-art implementa-
tion of domain abstraction heuristics for SAS+ tasks based
on the counterexample-guided abstraction refinement prin-
ciple (CEGAR).

Cartesian Abstractions An abstraction∼ is called Carte-
sian if all equivalence classes under ∼ are Cartesian sets.
Domain abstractions (and therefore also projections) are a
special case of Cartesian abstractions: if we consider a do-
main abstraction with equivalence relations ∼i for the indi-
vidual variables, then all equivalence classes are of the form
D1 × · · · ×Dn, where Di is an equivalence class of ∼i.

Cartesian abstractions strictly generalize domain abstrac-
tions because they do not require a global decision on how to
partition variable domains into equivalence classes. The de-
cision which values of state variables are grouped together
is made individually at the level of each abstract state.

Seipp and Helmert (2018) describe an efficient implemen-
tation of Cartesian abstractions for SAS+ tasks based on the
CEGAR principle.

Merge-and-Shrink Abstractions The most general class
of abstractions we consider are merge-and-shrink (M&S)
abstractions (Sievers and Helmert 2021). To generate an
M&S abstraction, we begin with a pool of abstract transi-
tion systems that represent all projections to a single state
variable. This pool of transition systems is repeatedly trans-
formed by replacing two transition systems with their prod-
uct (merging) and reducing the size of a transition system by
applying a local abstraction (shrinking) until only a single
abstract transition system remains, which then defines the
abstraction heuristic.2

M&S can represent arbitrary abstractions, which makes
this approach even more general than Cartesian abstrac-
tions. However, not all abstractions can be represented com-
pactly in the merge-and-shrink framework, and in this regard
the precise relationship to Cartesian abstractions is an open
question. M&S abstractions are known to properly general-
ize pattern database heuristics for SAS+ tasks, also in the
sense that the computation is similarly compact and effi-
cient (Helmert, Haslum, and Hoffmann 2007; Sievers and
Helmert 2021), and it is easy to extend this result to do-
main abstractions. The existing theory of M&S abstractions
covers the full generality of factored tasks (Helmert et al.
2014; Sievers and Helmert 2021), but the implementations
described in the literature are limited to SAS+.

2The full algorithm also applies further transformations called
label reduction and pruning, which are not important for this dis-
cussion (Sievers and Helmert 2021).
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Abstraction Heuristics for Factored Tasks
We now describe how to extend the four abstraction classes
from SAS+ to factored tasks. The main contributions are
the extensions for domain abstractions and counterexample-
guided Cartesian abstraction refinement (Cartesian CE-
GAR) because the PDB case is straightforward and the
M&S case is already covered in the literature.

Pattern Databases The efficient implementation of pat-
tern databases for SAS+ tasks Π is based on the idea of
syntactic projection: remove all state variables that are not
part of the pattern from the compact task representation, then
use the resulting task to produce the abstract transition sys-
tem. For SAS+ tasks, this approach is conservative (every
transition of JΠK has a corresponding transition in the ab-
stract transition system) and induced (every transition in the
abstract transition system has a corresponding transition in
JΠK) and hence results in exactly the transition system JΠK∼.

For more general classes of planning tasks, this is not nec-
essarily the case. Consider the pattern {V2, V3} and an op-
erator with the unconditional effect (V2 := 1) and the con-
ditional effect (V1 = 0) � (V3 := 1). If we naively define
the syntactic projection to receive the unconditional effects
(V2 := 1) and (V3 := 1), the resulting abstract transition
system misses transitions that should be present: in Π the
operator can sometimes change V2 without changing V3, but
in the projected task it cannot. There are ways to avoid this
problem, but they all have a price such as accepting non-
induced abstractions (reducing heuristic quality) or making
it NP-hard to test if an induced transition exists.

For factored tasks, this problem does not arise because de-
pendencies between different state variables as in the prob-
lematic conditional effect do not exist. For factored tasks,
syntactic projection is conservative and leads to an induced
abstraction with one caveat: if the problem is trivially un-
solvable or has trivial operators, projecting away the respon-
sible variables may lead to solvable abstractions or non-
induced transitions of the operator. Hence, we need to check
that the sets of original initial and goal states are nonempty
and discard all operators o, for which Jtrans(o)K = ∅. This is
easy to do in linear time in the size of the task representation.
We do not prove this result formally because it follows from
the general relationship between PDBs and M&S (Sievers
and Helmert 2021).

Domain Abstractions Like PDBs, domain abstractions
can be implemented for SAS+ as syntactic domain abstrac-
tions. We assign a value between 1 and the number of equiv-
alence classes to each equivalence class in ∼i. Then, we re-
place all variable values with the number representing their
corresponding equivalence class wherever they occur in the
task representation. Again, this approach is conservative and
leads to an induced abstraction, resulting exactly in JΠK∼.
Extending it to general conditional effects comes with the
same problems as PDBs.

For domain abstractions of factored tasks, we can again
point out the relationship to M&S and use the more general
result to show that they are conservative and induced. Start-
ing with the set of transition systems of atomic projections,

we can first shrink all these factors according to the equiv-
alence relations in each variable domain. From Sievers and
Helmert (2021) we know that shrinking is an induced and
conservative transformation. Now we can merge the factors
same as in the PDB case, to end up with a transition system
that is induced and conservative. Moreover, it is isomorphic
to the transition system obtained through syntactic domain
abstraction.

Note that even though projections are a special case of do-
main abstractions semantically, the usual definition of syn-
tactic projection is not a special case of syntactic domain ab-
straction. While syntactic projection removes variables that
are not in the pattern from the variable set, preconditions,
effects, initial states and goals entirely, syntactic domain ab-
straction replaces these occurrences based on abstractions of
the variable domains. With this, the caveat we mention for
PDBs does not apply here: if a factored state set or relation
is empty in the original problem, then it is also empty in the
syntactic domain abstraction.

Another notable difference to the case of PDBs is the fol-
lowing observation: abstract transition systems may be non-
deterministic even if the original transition system is deter-
ministic. Consider for example a factored task with a single
variable V1 with dom(V1) = {x, y, z} and a factored oper-
ator o = ⟨{⟨x, y⟩, ⟨y, z⟩}⟩. There is at most one outgoing
transition labeled with o in every state of the induced tran-
sition system. Now let x ∼1 y and x ̸∼1 z in the domain
abstraction and let 1 denote the equivalence class of x and
y and 2 denote the equivalence class of z. We end up with
the relation R∼

1 = {⟨1, 1⟩, ⟨1, 2⟩} which means there are
two outgoing transitions labeled with o in the abstract state
representing V1 = 1. This observation is one of the justifica-
tions for considering angelic nondeterminism in our factored
task representation.

Cartesian Abstractions In the literature, Cartesian ab-
stractions are usually discussed together with the algo-
rithm used to compute them: Cartesian CEGAR (Seipp
and Helmert 2018). Cartesian CEGAR imposes a hierarchi-
cal structure on the Cartesian sets representing the abstract
states. This structure plays an important role regarding the
efficiency of the algorithm and the heuristic lookup after its
termination. We follow the literature and only consider this
special case of Cartesian abstractions. It remains an open
question whether and how we can deal with Cartesian ab-
stractions that do not follow such a hierarchy.

Because Cartesian abstractions generalize domain ab-
stractions and projections, extending the Cartesian CEGAR
algorithm to more expressive classes of planning tasks leads
to similar problems and other problems besides. However,
the algorithm can be efficiently extended to factored tasks.

Consider the transition system T = ⟨S,O, T, SI, SG⟩, an
operator label o ∈ O and a state set S ⊆ S . We define:
• the progression of S through operator o:

progr(S, o) = {s′ | s ∈ S, ⟨s, o, s′⟩ ∈ T}
• the regression of S through operator o:

regr(S, o) = {s | s′ ∈ S, ⟨s, o, s′⟩ ∈ T}
• the set of states in which o is applicable:

applicable(o) = {s | ⟨s, o, s′⟩ ∈ T}
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Our main observation is that the Cartesian CEGAR al-
gorithm can be extended to any transition system with the
following properties:
(P1) SI and SG are Cartesian sets.
(P2) For every Cartesian set S and every operator label o,

progr(S, o) and regr(S, o) are Cartesian sets.
(P3) For every o ∈ O, applicable(o) is a Cartesian set.

Moreover, the algorithm can be made as efficient as in the
SAS+ case if all Cartesian sets are represented as factored
state sets and progr(S, o) and regr(S, o) have efficient im-
plementations for such representations.

Factored tasks satisfy all these properties. Let Π =
⟨⟨V1, . . . , Vn⟩,O, I, G⟩ be a factored task. Property (P1) is
obvious because I and G are factored state sets.

For property (P2), consider S = D1×· · ·×Dn and opera-
tor o with trans(o) = ⟨R1, . . . , Rn⟩. Because factored tasks
consider each state variable separately, we get

progr(S, o) = D′
1 × · · · ×D′

n,where

D′
i = {d′ ∈ dom(Vi) | d ∈ Di, ⟨d, d′⟩ ∈ Ri}.

Regression is analogous. Intuitively, Cartesian sets can be
progressed/regressed through operators of factored tasks by
progressing/regressing each state variable separately.

Property (P3) can be seen analogously, but also follows
from (P2) in general because applicable(o) = regr(S, o) for
all operators o, and the set of all states S is Cartesian.3

We now show how to extend Cartesian CEGAR using the
three properties. As a reminder, Cartesian CEGAR is an iter-
ative algorithm that maintains an abstract transition system
T represented as an explicit digraph. Each iteration of the al-
gorithm finds an optimal solution (minimum-cost path from
an initial state to a goal state) for T and checks whether this
solution works in the original planning task. If not, the al-
gorithm determines a flaw (a reason why the solution does
not work) and addresses it by splitting one abstract state into
two abstract states.

Checking the solution and finding a flaw is the respon-
sibility of the function FINDFLAW, which forms the heart
of the Cartesian CEGAR approach. We focus our discus-
sion on this function; all other components of the approach
are straightforward to adapt. Algorithm 1 shows FIND-
FLAW for the factored task setting. The original version
for SAS+ tasks is Algorithm 2 in the paper of Seipp and
Helmert (2018).

For simplicity, the algorithm is written as if it operated
directly on Cartesian sets. In the implementation, these are
represented as factored state sets, which efficiently support
the necessary operations such as set intersection and com-
parison to the empty set. Note that the algorithm uses proper-
ties P1–P3, as it uses all of SI, SG, progr, regr and applicable
and requires the sets it operates on to be Cartesian. Note also
that apart from the properties P1–P3, the algorithm is com-
pletely agnostic to the task representation.

The input to the algorithm is the found abstract solution,
represented as a trace, i.e., the abstract states (= Cartesian

3Of course this makes (P3) a redundant property. We find it
useful to state nevertheless because we use it in the following.

Algorithm 1: Abstract trace verification. Try to con-
vert the given abstract solution into a solution for the
planning task. If this fails, return a flaw of the form
⟨A,B1, B2⟩: a Cartesian set A that must be split to
separate B1 ⊆ A from B2 ⊆ A.

1 function FINDFLAW(⟨A0, o1, A1, . . . , on, An⟩)
2 Poss← A0 ∩ SI
3 for i = 1 to n do
4 { invariants: Poss ̸= ∅, Poss ⊆ Ai−1 }
5 if Poss ∩ applicable(oi) = ∅ then
6 { flaw found: violated precondition }
7 return ⟨Ai−1,Poss, Ai−1 ∩ applicable(oi)⟩
8 if progr(Poss, oi) ∩Ai = ∅ then
9 { flaw found: cannot get to next abstract state }

10 return ⟨Ai−1,Poss, Ai−1 ∩ regr(Ai, oi)⟩
11 Poss← progr(Poss, oi) ∩Ai

12 if Poss ∩ SG = ∅ then
13 { flaw found: goal not reached }
14 return ⟨An,Poss, An ∩ SG⟩
15 return “no flaw”

sets) A0, . . . , An that form the path interleaved with the op-
erator labels o1, . . . , on that label the used transitions be-
tween these abstract states. The case n = 0 is allowed, in
which case the trace is simply ⟨A0⟩, which must then be
both an abstract initial state and an abstract goal state.

FINDFLAW verifies the trace step by step. At any point,
Poss is a Cartesian set representing the concrete states that
the part of the trace that was verified so far can lead to. (In
the original algorithm by Seipp and Helmert, this is always
a single state because SAS+ tasks have a single initial state
and deterministic operators.) Poss is always nonempty: if at
any stage it would become empty, this signifies a flaw, and
the algorithm returns.

There are three kinds of flaws that can arise: 1) violated
preconditions, 2) divergence of concrete and abstract traces,
and 3) not ending in a goal state. The conditions for detect-
ing these flaws are similar to the original algorithm and we
refer to Seipp and Helmert (2018) for a detailed discussion.

Whenever a flaw is found, the algorithm identifies three
Cartesian sets A, B1 and B2. The set A is an abstract state
in the current abstraction that must be split to repair the flaw.
The set B1 ⊆ A consists of the states of the planning task
that the verified part of the trace leads to; the set B2 ⊆ A
consists of the states that would have needed to be reached
in order to continue with the verification of the trace.

The sets B1 and B2 are always nonempty and disjoint. To
repair the flaw, Cartesian CEGAR selects a variable V for
which the values allowed in B1 and B2 are disjoint. (Such a
variable must exist because B1 and B2 are disjoint.) It uses
V to partition A into two new Cartesian sets A1 and A2 with
B1 ⊆ A1 and B2 ⊆ A2. The algorithm replaces A in the ab-
stract transition system with A1 and A2, adding the neces-
sary transitions and marking the new abstract states as initial
and goal states as needed. This concludes the iteration of the
CEGAR loop and our discussion of Cartesian CEGAR.
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Merge-and-Shrink For M&S, the existing theory already
covers factored tasks and therefore does not need to be ex-
tended (Helmert et al. 2014; Sievers and Helmert 2021).
However, the existing implementations described in the lit-
erature require SAS+. We extended the implementation to
support the kinds of conditional effects supported in factored
tasks, but this does not require new theory.

Experiments
Given the success of abstraction-based planning algorithms
for SAS+ tasks, it is natural to ask whether these ap-
proaches also work well for factored tasks. To evaluate
this, we implement the necessary extensions in the Scorpion
planner (Seipp, Keller, and Helmert 2020), an extension of
Fast Downward (Helmert 2006). The task representation ex-
pected as input to these systems supports neither multiple
initial states, disjunctive preconditions and goal conditions,
nor angelic nondeterminism. While it would be interesting to
consider these generalizations as well, here we focus solely
on factored conditional effects. By considering only this
addition we can easily compare our algorithms to existing
planners that support conditional effects but not necessarily
the other features of factored tasks.

We use Downward Lab (Seipp et al. 2017) for running
our experiments on Intel Xeon E5-2660 processors running
at 2.2 GHz with a time limit of 30 minutes and a memory
limit of 8 GiB. In the following, we describe the tasks we
use for our evaluation, give an overview of the compared
planner configurations, and evaluate their performance. Our
code, benchmarks, and data are published online (Büchner
et al. 2024).

Benchmarks
We are not aware of an existing set of benchmark problems
for factored tasks. Related work often considers problems
from the International Planning Competition (IPC). All IPC
domains without conditional effects are factored tasks after
transforming them into a finite-domain representation with
the Fast Downward translator (Helmert 2009). However,
since they can be solved with the existing techniques for
building abstractions, studying those domains does not re-
quire our extensions of these techniques. Within the IPC do-
mains from 1998–2023, there is exactly one domain which
induces factored tasks that are not SAS+ when translated
with Fast Downward, namely Cave Diving (20 tasks) from
IPC 2014 (Vallati et al. 2015). Speck et al. (2023) describe
Matrix Multiplication, another domain satisfying this crite-
rion (11 tasks). To go beyond these two domains, we im-
plemented problem generators that create (factored) finite-
domain representations of the following domains: Pancakes
(e.g., Dweighter 1975) and its variation Burnt Pancakes
(e.g., Gates and Papadimitriou 1979), Rubik’s Cube (e.g.,
Korf 1997), and TopSpin (e.g., Holte et al. 2006). For each
of them, we generate 100 tasks of varying difficulty.

Permutation problems such as the ones in the list above
can be modeled naturally as factored tasks. Consider, for
example, the Pancakes domain where a stack of differently
sized pancakes must be ordered by size. The only way to

change the order is by inserting a spatula into the stack and
flipping all pancakes above that point. There are n!

(n−k)! pos-
sible situations for the top k pancakes. Hence, modeled as a
SAS+ task with one variable for every pancake, a problem
with n pancakes requires

∑n
k=1

n!
(n−k)! operators. In finite-

domain representation, we only require n operators, one for
every k with conditional effects for changing the position of
every pancake depending on its current position.

Besides the possibility to model these kinds of problems
compactly as factored tasks, the selected domains are in-
teresting for our analysis because abstraction heuristics are
considered the state of the art for solving some of these
and similar problems (e.g., Korf 1997; Hernádvölgyi and
Holte 2000; Korf and Felner 2002). While the state-of-the-
art methods are domain-specific, it is interesting to see how
our domain-independent approaches perform on these kinds
of problems.

The scarcity of IPC domains of interest for our analysis
does not imply that the IPC domains cannot benefit from
our generalizations. Consider for example a Logistics prob-
lem (McDermott 2000) with n trucks and m locations per
city. A grounded PDDL, STRIPS, or SAS+ problem has
O(nm2) drive actions, while a factored task with our rep-
resentation only has O(n).4 This similarly applies to other
transportation-style domains, but also to other domains like
Schedule or Woodworking. Planning systems designed to
deal with factored representations directly could therefore
benefit from our generalizations even more than we show
in our experiments limited to planners requesting input in
finite-domain representation.

Heuristics
We use the following heuristics.

Blind Heuristic Our baseline is blind search (BLIND).

hmax Heuristic A common admissible heuristic that sup-
ports conditional effects is the hmax heuristic (Bonet and
Geffner 2001) which we denote by HMAX in our evaluation.

Pattern Database Heuristics For PDBs, the crucial deci-
sions are how to choose the patterns and how to combine
their individual heuristic values. For the generation of pat-
tern collections we use the following two approaches:

PDB-SYS This configuration systematically generates all
interesting patterns up to a certain size (Pommerening,
Röger, and Helmert 2013). For our benchmarks, this
strategy is feasible for patterns of size up to 3.

PDB-CEGAR Rovner, Sievers, and Helmert (2019) pro-
pose generating patterns using the CEGAR algorithm.
We adapt it to work for factored tasks but use their recom-
mended settings: The time limit for generating patterns
is 100 seconds, each induced abstraction may contain at
most 1M states while the entire collection is limited to
10M states, and blacklisting triggers after 75 seconds or
if no new patterns are found for 20 seconds.

4Driving a truck from anywhere to anywhere within its city.
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Cave Diving (20) 7 7 7 7 7 7 7 7 7 7 7
Matrix Multiplication (11) 7 7 7 7 7 7 7 7 7 7 7
Pancakes (100) 39 39 35 53 52 52 59 49 51 44 43
Burnt Pancakes (100) 35 38 30 48 49 49 53 44 46 40 40
Rubik’s Cube (100) 36 42 35 56 50 59 66 51 58 47 46
TopSpin (100) 24 31 22 49 51 49 58 45 49 44 32

Total (431) 148 164 136 220 216 223 250 203 218 189 175

out of memory 283 1 – 73 62 23 119 228 80 114 249
out of time – 266 295 138 153 185 62 – 133 128 7

Table 1: Number of solved tasks per domain and summary of reasons for failure.

We combine the abstract goal distances of each pattern
by taking the maximum. We also tested combining them
with saturated cost partitioning (Seipp, Keller, and Helmert
2020), a state of the art approach for combining abstraction
heuristics in SAS+, but taking the maximum performed sig-
nificantly better on our benchmarks, so we only report re-
sults for the maximum below.

Domain Abstraction Heuristics Using CEGAR was also
suggested for generating domain abstractions (Kreft et al.
2023). Extending it to factored tasks is not as straightfor-
ward as for PDBs because, as we mention above, domain ab-
stractions may become nondeterministic even if the original
problem is deterministic (which is the case for our bench-
marks). This introduces a type of flaw that cannot occur in
the SAS+ case or the PDB case, but we have handled it
above for Cartesian CEGAR: Applying the abstract plan to
the original problem may diverge from the abstract trace. In-
corporating this in the algorithm is easy enough, by storing
not only the abstract plan but also the sequence of abstract
states and returning a flaw as soon as the concrete state does
no longer correspond to the abstract state when executing
the abstract plan in the concrete problem. We consider two
configurations of domain abstractions:

DOM-SINGLE This strategy computes a single domain ab-
straction with at most 1M states using the recommended
refinement strategy of picking flaws randomly.

DOM-MULTI In this configuration, we compute a collec-
tion of domain abstractions such that individual abstrac-
tions have at most 10K states while the entire collection
may have up to 1M states. To get diverse abstractions, we
initialize each run by choosing an arbitrary goal variable
and represent it with the identity relation in the initial
abstraction. The refinement strategy is again picking one
random flaw in every iteration. Blacklisting is activated
from the start. During search we maximize over all indi-
vidual estimates.

Cartesian Abstraction Heuristic By CARTESIAN we de-
note the Cartesian CEGAR algorithm adapted to factored
tasks in this paper. We limit neither the number of states nor
transitions. The abstraction refinement loop terminates once
the refinement finds a valid plan, 900 seconds passed, or less
than 500 MiB of free memory remain.

We also considered computing collections of Cartesian
abstractions, one for each goal fact (Seipp and Helmert
2014). However, both taking their maximum or computing
an saturated cost partitioning performed significantly worse
than just using a single Cartesian abstraction, so we do not
report these numbers.

Merge-and-Shrink Heuristic The last abstraction-based
configuration we consider is merge-and-shrink (M&S). It
uses bisimulation as its shrink strategy (Nissim, Hoffmann,
and Helmert 2011), strongly connected components as the
merge strategy (Sievers, Wehrle, and Helmert 2016), and ex-
act label reduction (Sievers and Helmert 2021). We limit the
abstraction size to at most 50K states.

Planners
We run an A∗ search for each of the heuristics described in
the previous section. In addition, we evaluate the following
planning algorithms:

A∗ with Context-Splitting LM-Cut By LM-CUT we de-
note an A∗ search using the landmark-cut heuristic extended
with context-splitting to support conditional effects (Röger,
Pommerening, and Helmert 2014). We use the implementa-
tion from Metis (Sievers and Katz 2018) which also supports
partial order reduction based on strong stubborn sets (Wehrle
and Helmert 2014) and structural symmetry pruning based
on orbit space search (Shleyfman et al. 2015; Domshlak,
Katz, and Shleyfman 2015). Since our experiments showed
that both of these pruning methods fail to prune the state
spaces of our benchmarks, we only report results for plain
LM-Cut with context splitting.
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Symbolic Search Finally, we evaluate two planning sys-
tems based on symbolic search.

SYMBA∗ This planner won the optimal track of the IPC
2014 (Torralba, Linares López, and Borrajo 2016).

SYMBB We also run symbolic bidirectional blind search
(Edelkamp, Kissmann, and Torralba 2015) using the im-
plementation from SymK (Speck 2022).

Coverage Evaluation
Table 1 shows how many problems of each domain are
solved by the approaches above and the reasons for failure.
In all domains, PDB-CEGAR solves the most problems.
Summarizing coverage over all domains, PDB-CEGAR
solves 243 tasks, many more than its closest contenders
PDB-SYS, SYMBA∗, DOM-MULTI and SYMBB, which
all solve similarly many problems (216–223 tasks). DOM-
SINGLE, CARTESIAN and M&S fall further behind, but still
solve more problems than HMAX, BLIND and LM-CUT.
Looking at individual domains yields a similar ranking be-
tween the tested planners. As expected, planners like HMAX
and LM-CUT mainly fail due to exhausting the time limit
because they perform costly calculations during the search.
For the blind heuristic and single-abstraction heuristics (ex-
cept for CARTESIAN), usually memory is the limiting fac-
tor. For the remaining approaches, the reasons for failure are
mixed. The fact that CARTESIAN runs out of time so often
stands out in comparison to related work. This is presumably
due to the transition checks taking longer in the presence of
many conditional effects.

We now analyze our extensions of the abstraction heuris-
tics. Their number of solved tasks is inversely proportional
to the generality of the underlying abstraction class. This
is a surprising result, as it seems reasonable to assume that
the more general classes can represent more specific infor-
mation when needed, resulting in more accurate heuristics.
Indeed, CARTESIAN excels in terms of heuristic quality: its
heuristic is often perfect when given enough time to refine
the abstraction. Within our resource limits, however, this is
only the case for the simpler problems and starting from a
certain difficulty level in every domain, the resulting heuris-
tics become less accurate, resulting in expanding many more
states than the less general PDB and domain abstraction
heuristics. The more general M&S heuristics, however, per-
form significantly worse in terms of expansions, both for
simple and hard problems.

Runtime Evaluation
One major advantage of the CEGAR-based approaches is
their inherent mechanism to terminate once a plan is found
within the CEGAR loop. Because of its capability to re-
fine the abstraction very locally where needed, CARTESIAN
benefits more from this compared to PDB-CEGAR, DOM-
SINGLE and DOM-MULTI. In particular, the more restrictive
abstraction classes generate larger abstractions faster. Since
we limit their maximal abstraction size, they often terminate
the refinement due to this limit before finding a solution.

Figure 1 compares the overall running times of our ab-
straction heuristics to HMAX. We use HMAX as the refer-

ence algorithm because its running time scales quite con-
sistently with the difficulty level of the underlying planning
task. We can see that there are many tasks where HMAX
and CARTESIAN find solutions immediately. While DOM-
SINGLE finds solutions quickly for some tasks, eventually it
takes longer to compute the abstraction than it takes HMAX
to find a solution. However, DOM-SINGLE can make up for
this precomputation time with heuristic quality and has a
somewhat constant solving time between 10 and 100 sec-
onds, depending on the domain. This effect is more pro-
nounced in the cases of DOM-MULTI and PDB-CEGAR,
where precomputation times are clearly visible as horizon-
tal lines for the different domains. The plots reveal that the
task difficulty has limited influence on the search time of
the planner once precomputations are completed. M&S also
has a precomputation phase which only starts to pay off for
problems where HMAX needs 10 or more seconds to solve
them. Compared to the other methods, however, M&S re-
quires more and more time as problems get harder.

In contrast, PDB-SYS consistently solves tasks faster
than HMAX starting from 0.1 seconds. While PDB-SYS also
requires precomputations, this does not show as clearly as
for the other methods. This is most likely because the num-
ber of interesting patterns up to a certain size depends mostly
on the number of variables in the problem, which gradually
increases with the difficulty level for most of our benchmark
domains. The only exception here is Rubik’s Cube for which
we use a constant-size cube and initialize tasks using ran-
dom walks of varying lengths starting from the goal. When
the number of variables becomes too large, precomputing all
interesting patterns runs out of time or memory which is the
reason why PDB-SYS does not outperform PDB-CEGAR
coverage-wise, even though it has a clear speed advantage.

Conclusions and Future Work

We extend the theory on common abstraction heuristics for
classical planning. In particular, we study factored tasks, a
generalization of SAS+ featuring limited forms of disjunc-
tive preconditions, conditional effects, and angelic nonde-
terminism. We compare implementations of our abstraction
heuristics against other planning approaches supporting con-
ditional effects on a newly created benchmark set. Our ex-
periments reveal that PDBs are most successful in terms
of overall coverage. The most accurate heuristics, however,
are obtained with Cartesian CEGAR when given enough re-
sources for the precomputation.

Since our benchmarks only feature the extension of condi-
tional effects, it would be interesting to evaluate our abstrac-
tion heuristics on problems which also include disjunctive
preconditions and angelic nondeterminism. Designing plan-
ning systems capable of dealing with inputs containing these
features is an interesting line of future research. It includes
the automatic translation from common problem specifica-
tion languages like PDDL to factored task representations
that make full use of the formalism.
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Figure 1: Runtimes in seconds split by domain: HMAX on the x-axis and our abstraction heuristics on the y-axis.
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