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Abstract

Non-deterministic planning aims to find a policy that achieves
a given objective in an environment where actions have un-
certain effects, and the agent – potentially – only observes
parts of the current state. Hyperproperties are properties that
relate multiple paths of a system and can, e.g., capture secu-
rity and information-flow policies. Popular logics for express-
ing temporal hyperproperties – such as HyperLTL – extend
LTL by offering selective quantification over executions of a
system. In this paper, we show that planning offers a power-
ful intermediate language for the automated verification of
hyperproperties. Concretely, we present an algorithm that,
given a HyperLTL verification problem, constructs a non-
deterministic multi-agent planning instance (in the form of a
QDec-POMDP) that, when admitting a plan, implies the sat-
isfaction of the verification problem. We show that for large
fragments of HyperLTL, the resulting planning instance cor-
responds to a classical, FOND, or POND planning problem.
We implement our encoding in a prototype verification tool
and report on encouraging experimental results.

1 Introduction
AI planning is the task of finding a policy (aka. plan) that
ensures that a specified goal is reached. In this paper, we
present an exciting new application of planning: the auto-
mated verification of hyperproperties.

Hyperproperties and HyperLTL. Hyperproperties gen-
eralize traditional trace properties by relating multiple exe-
cutions of a system (Clarkson and Schneider 2008). A trace
property – specified, e.g., in LTL – reasons about individual
executions in isolation, which falls short in many applica-
tions. For example, assume we model the dynamics of a sys-
tem as a transition system over atomic propositions {o, h, l},
and want to specify that the output o of the system only de-
pends on the low-security input l and does not leak infor-
mation about the secret input h. We cannot specify this as a
trace property in LTL; we need to relate multiple executions
to observe how different inputs impact the output. Hyper-
LTL extends LTL with explicit quantification over execu-
tions (Clarkson et al. 2014), and allows for the specification
of such a property. For example, we can express observa-
tional determinism (OD) (Zdancewic and Myers 2003) as

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the following HyperLTL formula:

∀π. ∀π′. (lπ ↔ lπ′) → G(oπ ↔ oπ′) (OD)

This formula states that on any pair of executions π, π′

with identical low-security input, the output is (globally)
the same. In other words, the output of the system be-
haves deterministically w.r.t. the low-security input. For
non-deterministic systems, OD is often too strict, as any
given low-security input might lead to multiple outputs. A
relaxed notation – called non-inference (NI) (McLean 1994)
– can be expressed in HyperLTL as follows:

∀π. ∃π′.G
(
(oπ ↔ oπ′) ∧ (lπ ↔ lπ′) ∧ ¬hπ′

)
(NI)

That is, for any execution π, there exists another execution
π′ that has the same low-security behavior (via propositions
o and l), despite having a fixed “dummy” high-security in-
put (in our case, we require that h is always false, i.e., never
holds on π′). If NI holds, a low-security attacker cannot dis-
tinguish any high-security input from the dummy input.

HyperLTL Verification as Planning. Our goal is to au-
tomatically verify that a finite-state system T satisfies a
HyperLTL formula φ. We introduce a novel verification
approach that leverages the advanced methods developed
within the planning community. Concretely, we present a re-
duction that soundly converts a HyperLTL verification prob-
lem into a planning problem. Depending on the HyperLTL
formula, our encoding uses several advanced features sup-
ported by modern planning frameworks, such as uncertain
action effects (non-determinism) (Cimatti et al. 2003), par-
tial observations (Bertoli et al. 2006), and multiple agents.
We show that – by carefully combining these features – we
obtain a planning problem that is sound w.r.t. the HyperLTL
semantics: every plan can be translated back into a validity
witness for the original verification problem. As a conse-
quence, our encoding allows us to utilize mature planning
tools for the automated verification of HyperLTL properties.
We implement our encoding as a prototype and report on
encouraging results using off-the-shelf planners.

2 High-Level Overview
Before proceeding with a formal construction, we provide a
high-level intuition of our encoding. In HyperLTL, we can
quantify over the executions of a system (as seen informally
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in OD and NI). The overarching idea in our encoding is to
let the planning agent(s) control all existentially quantified
executions, such that any valid plan directly corresponds to
a witness for the existentially quantified executions.

Verification as Planning. As an example, assume we
want to verify that OD does not hold on a given system T ,
i.e., we want to find concrete executions π, π′ that violate
the body of OD. We can interpret this as a classical (single-
agent) planning problem: each planning state maintains two
locations in T , one for π and one for π′, and, in each step, the
actions update the locations for π, π′ by moving along the
transitions in T . The planning objective is to construct exe-
cutions for π, π′ that violate (lπ ↔ lπ′) → G(oπ ↔ oπ′).
Any successful plan (i.e., sequence of transitions) then di-
rectly corresponds to concrete paths π, π′ disproving OD.

Non-Deterministic Planning. Verification becomes more
interesting when the HyperLTL formula contains quanti-
fier alternations, such as NI. Following the above intuition,
a plan should provide a concrete witness for (the existen-
tially quantified) π′, but – this time – we need to consider
all possible executions for (the universally quantified) π.
Our idea is that we can approximate this behavior by view-
ing it as a fully observable non-deterministic (FOND) plan-
ning problem; intuitively, a plan controls the behavior of π′

while the behavior of π is non-deterministic. That is, each
action determines a successor location for π′ but also non-
deterministically updates the location of π. The agent’s ob-
jective is to ensure that the resulting paths π, π′, together,
satisfy G

(
(oπ ↔ oπ′) ∧ (lπ ↔ lπ′) ∧ ¬hπ′

)
(the LTL body

of NI). Any plan (which is now conditional on the non-
deterministic outcomes) thus defines a concrete execution
for π′, depending on the concrete execution for π.

Planning Under Partial Observations. In NI, π′ is quan-
tified after π, so the action sequence that defines the behav-
ior of π′ can be based on the behavior of π. This changes
when quantifiers trail existential quantification, e.g., in a for-
mula of the form ∃π. ∀π′. Here, we follow the same idea as
before but ensure that the actions controlling π are indepen-
dent of the current location of π′, i.e., the agent(s) act in a
partially observable non-deterministic (POND) domain.

3 Related Work
Non-Deterministic Planning. Non-deterministic plan-
ning provides a powerful intermediate language that encom-
passes problems such as reactive synthesis (Camacho et al.
2018), controller synthesis in MDPs, epistemic planning
(Engesser and Miller 2020), and generalized planning (Hu
and Giacomo 2011). Consequently, many methods and tools
have been developed (Pereira et al. 2022; Messa and Pereira
2023; Camacho et al. 2017; Geffner and Geffner 2018; Ro-
driguez et al. 2021; Muise, McIlraith, and Beck 2012; Kuter
et al. 2008), with some also supporting planning in partially
observable domains (Bertoli et al. 2006; Cimatti et al. 2003;
Bonet and Geffner 2011).

HyperLTL Verification. Model checking of HyperLTL
on finite-state transition systems is decidable, and exist-

ing complete algorithms utilize expensive automata com-
plementations or inclusion checks (Finkbeiner, Rabe, and
Sánchez 2015; Beutner and Finkbeiner 2023). There also
exist cheaper (but incomplete) methods based, e.g., on a
bounded model-checking (Hsu, Sánchez, and Bonakdar-
pour 2021). For ∀∗∃∗ HyperLTL properties (i.e., proper-
ties where no universal quantified appears below an exis-
tential quantifier), our encoding is closely related to game-
based (or, equivalently, simulation-based) approaches (Beut-
ner and Finkbeiner 2022a,b; Hsu et al. 2023), which inter-
pret verification as a game between universal and existential
quantifiers. In fact, non-deterministic planning can be seen
as a specialized form of turn-based games (Kissmann and
Edelkamp 2009). Crucially, the size of an (explicit-state)
game-based approach scales exponentially in the number
of quantified executions (Beutner and Finkbeiner 2022a),
making it impractical for larger instances. In contrast, the
planning-based approach in this paper can describe the prob-
lem in a factored representation and let the planner deter-
mine how to best explore the state space. Moreover, – by
utilizing partial observations – our planning-based encoding
is applicable to HyperLTL formulas with arbitrary quantifier
prefixes, not only ∀∗∃∗ formulas.

4 Preliminaries
For a set X , we write X+ for the set of finite non-empty
sequences over X , and Xω for the set of infinite sequences.

4.1 Non-Deterministic Planning
As a basic planning model, we use Qualitative Dec-
POMDPs (QDec-POMDP), a general framework that en-
compasses multiple agents, non-deterministic effects, and
partial observations (Brafman, Shani, and Zilberstein 2013).
Definition 1. A QDec-POMDP is a tuple G = (I, S, S0,
{Ai}, δ, {Ωi}, {ωi}, G), where I is a finite set of agents; S
is a finite set of states; S0 ⊆ S is a set of initial states;
for each i ∈ I , Ai is a finite set of actions, and we define
A⃗ := ⊗i∈IAi as the set of joint actions; δ : S × A⃗ → 2S is
a (non-deterministic) transition function; for each i ∈ I , Ωi
is a finite set of observations; ωi : S → Ωi defines i’s local
observation; and G ⊆ S is a set of goal states.

We write {ai} ∈ A⃗ for the joint action where each agent
i ∈ I chooses action ai. A local policy for an agent i ∈ I ,
is a conditional plan that picks an action based on the his-
tory of observations, i.e., a function fi : Ω+

i → Ai. We
can represent a policy fi as an (infinite) tree of degree |Ωi|
where nodes are labeled with elements from Ai. A joint pol-
icy {fi} assigns each agent i ∈ I a local policy fi. A fi-
nite path p ∈ S+ is compatible with {fi} if and only if
(1) p(0) ∈ S0 (i.e., the path starts in an initial state), and
(2) for every 0 ≤ j < |p| − 1, p(j + 1) ∈ δ(p(j), {ai}),
where ai := fi(ωi(p(0)) · · ·ωi(p(j))) for every i ∈ I . That
is, in the jth step, we compute the joint action {ai}, where
each ai is determined by policy fi based on the past ob-
servations made by i on the prefix p(0) · · · p(j). We write
Exec({fi}) ⊆ S+ for the set of all {fi}-compatible paths.

The objective of the agents is to reach a goal state in G.
Following Cimatti et al. (2003), we distinguish between dif-
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ferent levels of reachability. A policy is a weak plan if some
p ∈ Exec({fi}) reaches a state in G, i.e., {fi} can reach the
goal provided the non-determinism is resolved favorably. A
policy is a strong plan if there exists an N ∈ N such that ev-
ery p ∈ Exec({fi}) with |p| ≥ N reaches G, i.e., the goal is
guaranteed to be reached, irrespective of non-deterministic
outcomes. Finally, a policy is a strong cyclic plan if, for ev-
ery p ∈ Exec({fi}), either p reaches a state in G or there
exists some p′ ∈ Exec({fi}) that extends p (i.e., p is a pre-
fix of p′) and p′ reaches a state in G.1

4.2 Transition Systems
We assume that AP is a fixed set of atomic propositions. As
the basic system model, we use finite-state transition sys-
tems (TS), which are tuples T = (L, linit ,D, κ, ℓ) where L
is a finite set of locations (we use “locations” to distinguish
them from the “states” in a planning domain), linit ∈ L is an
initial location, D is a finite set of directions, κ : L×D → L
is the transition function, and ℓ : L→ 2AP labels each loca-
tion with an evaluation of the APs. Note that we use explicit
directions in order to uniquely identify successor locations;
we can easily model any transition function L→ (2L \{∅})
using sufficiently many directions. A path in T is an infinite
sequence p ∈ Lω such that (1) p(0) = linit , and (2) for every
j ∈ N, there exists some d ∈ D s.t. p(j + 1) = κ(p(j), d).
We define Paths(T ) ⊆ Lω as the set of all paths in T .

4.3 HyperLTL
As the basic specification language for hyperproperties, we
use HyperLTL, an extension of LTL with explicit quantifi-
cation over (execution) paths (Clarkson et al. 2014). Let
V = {π, π′, . . .} be a set of path variables. HyperLTL for-
mulas are generated by the following grammar

ψ := aπ | ψ ∧ ψ | ¬ψ | Xψ | ψUψ

φ := Qπ. φ | ψ
where a ∈ AP , π ∈ V , and Q ∈ {∀, ∃} is a quantifier.
We use the usual derived boolean constants and connectives
true, false,∨,→,↔, and the temporal operators eventually
(Fψ := true Uψ), and globally (Gψ := ¬F¬ψ).

Given a TS T = (L, linit ,D, κ, ℓ), we evaluate a Hyper-
LTL formula in the context of a path assignment Π : V ⇀
Lω (mapping path variables to paths) and j ∈ N as follows:

Π, j |=T aπ iff a ∈ ℓ
(
Π(π)(j)

)
Π, j |=T ψ1 ∧ ψ2 iff Π, j |=T ψ1 and Π, j |=T ψ2

Π, j |=T ¬ψ iff Π, j ̸|=T ψ

Π, j |=T Xψ iff Π, j + 1 |=T ψ

Π, j |=T ψ1 Uψ2 iff ∃k ≥ j.Π, k |=T ψ2 and
∀j ≤ l < k.Π, l |=T ψ1

Π, j |=T Qπ. φ iff Qp ∈ Paths(T ).Π[π 7→ p], j |=T φ

1A strong cyclic plan is one that always preserves the possi-
bility of reaching a goal state, i.e., at every point during the plan’s
execution, the non-determinism can be resolved favorably such that
the goal is reached. Our definition expresses exactly this: either p
already reaches G or some extension of p can reach the goal. This
definition is equivalent to the one of Cimatti et al. (2003).

The atomic formula aπ holds whenever a holds in the cur-
rent position j on the path bound to π (as given by ℓ).
Boolean and temporal operators are evaluated as expected
by updating the current evaluation position j, and quantifi-
cation adds paths to Π. We refer to Finkbeiner (2023) for
details. We say T satisfies φ, written T |= φ, if ∅, 0 |=T φ,
where ∅ denotes the path assignment with empty domain.
Example 1. As an example, consider the transition sys-
tem T in Figure 1a and the HyperLTL formula φ :=
∀π1. ∃π2.G(aπ1 ↔ X aπ2). The formula expresses that for
any path π1, there exists some path π2 that mirrors π1 with
a one-step delay. It is easy to see that T |= φ.

5 Verification via Planning
We want to automatically verify that T |= φ. To this
end, we present a novel encoding into a planning problem,
thus leveraging the extensive research and tool development
within the planning community. As already outlined in Sec-
tion 2, our main idea is to interpret existential quantifica-
tion in φ as being resolved by an agent that picks tran-
sitions in T to construct a path. Throughout this section,
we assume that T = (L, linit ,D, κ, ℓ) is the fixed TS and
φ = Q1π1 . . .Qnπn. ψ is the fixed HyperLTL formula over
path variables π1, . . . , πn. We distinguish between temporal
reachability (Section 5.1) and temporal safety (Section 5.2).

5.1 Encoding For Temporal Reachability
We first consider the case in which the LTL body of φ ex-
presses a temporal reachability property (i.e., “something
good happens eventually”).

DFA. A deterministic finite automaton (DFA) over some
alphabet Σ is a tuple A = (Q, q0, ϱ, F ) where Q is a finite
set of states, q0 ∈ Q is an initial state, ϱ : Q × Σ → Q
is a deterministic transition function, and F ⊆ Q is a set
of marked states. An infinite word u ∈ Σω is accepted
by A if the unique run eventually reaches some state in
F . We say φ is a temporal reachability formula if ψ (the
LTL body of φ) is recognized by a DFA, i.e., some DFA
Aψ = (Qψ, q0,ψ, ϱψ, Fψ) over alphabet 2AP×{π1,...,πn} ac-
cepts exactly those infinite words that satisfy ψ (recall that
the atoms in ψ have the form aπi

∈ AP × {π1, . . . , πn}).

Planning Encoding. We write V∃ := {πi | Qi = ∃} for
the set of existentially quantified path variables in φ, and,
analogously, V∀ for the set of universally quantified ones.
Definition 2. Define the QDec-POMDP Greach

T ,φ as

Greach
T ,φ := (I, S, S0, {Ai}, δ, {Ωi}, {ωi}, G),

where

I :=
{
i | πi ∈ V∃

}
,

S :=
{
⟨l1, . . . , ln, q⟩ | q ∈ Qψ ∧ l1, . . . , ln ∈ L

}
,

S0 :=
{
⟨linit , . . . , linit , q0,ψ⟩

}
,

Ai := D,
Ωi :=

{
⟨l1, . . . , li⟩ | l1, . . . , li ∈ L

}
,

G :=
{
⟨l1, . . . , ln, q⟩ | q ∈ Fψ ∧ l1, . . . , ln ∈ L

}
,
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Figure 1: In Figure 1a, we depict a transition system T over AP = {a} using directions D = {dA, dB}. In Figure 1b, we give
a DSA for the LTL body G(aπ1 ↔ X aπ2) from Example 1, where we mark state q3 as losing. In Figure 1c, we sketch the
QDec-POMDP Gsafe

T ,φ constructed for the verification instance in Example 1 (see Example 2 for details).

the transition function δ is defined as
δ
(
⟨l1, . . . , ln, q⟩, {di ∈ D}πi∈V∃

)
:={

⟨κ(l1, d1), . . . , κ(ln, dn), q′⟩ | {di ∈ D}πi∈V∀ ∧

q′ = ϱψ
(
q,
⋃n
i=1

{
(a, πi) | a ∈ ℓ(li)

})}
,

and the observation functions {ωi} are defined as
ωi(⟨l1, . . . , ln, q⟩) := ⟨l1, . . . , li⟩.

Let us step through this definition. As already hinted in
Section 2, we add one agent i for each existentially qualified
path variable πi ∈ V∃. Each state has the form ⟨l1, . . . , ln, q⟩
and tracks a current location for each of the paths (where
li ∈ L is the current location for path πi), and the cur-
rent state of Aψ . Intuitively, the planning problem simu-
lates π1, . . . , πn by keeping track of their current location
(l1, . . . , ln), and letting the actions chosen by the agents (for
existentially quantified paths) or the non-determinism (for
universally quantified paths) fix the next location. We start
each πi in the initial location linit and start the run of Aψ

in the initial state q0,ψ . The actions of each agent then di-
rectly correspond to directions in T . When given a joint ac-
tion {di}πi∈V∃ (i.e., a direction for each existentially quan-
tified path), the transition function considers all possible di-
rections for universally quantified paths ({di}πi∈V∀ ) and up-
dates each location li based on the direction di. Existentially
quantified paths thus follow the direction selected by the re-
spective agent, and universally quantified ones follow a non-
deterministically chosen direction. In each step, we also up-
date the state of Aψ: For each 1 ≤ i ≤ n, we collect all
APs that hold in the current location (ℓ(li)) and index them
with πi, thus obtaining a letter in 2AP×{π1,...,πn} which we
feed to the transition function of Aψ . As argued in Section 2,
each agent i controlling πi ∈ V∃ may only observe the paths
π1, . . . , πi quantified before πi, so the observation set Ωi of
agent i consist exactly of tuples of the form ⟨l1, . . . , li⟩ and
the observation function ωi projects each state to the observ-
able locations. Lastly, the goal consists of all states in which
the automaton has reached one of Aψ’s marked states.

Theorem 1. Assume φ is a temporal reachability formula.
If Greach

T ,φ admits a strong plan, then T |= φ.

Proof Sketch. We can use the policies in a strong plan for
Greach
T ,φ to construct Skolem functions for existentially quan-

tified paths in φ. The full proof is provided in the full version
(Beutner and Finkbeiner 2024).

Remark 1. In the HyperLTL semantics, an existentially
quantified path πi is chosen based on all paths quantified
before πi. In our encoding, we abstract this selection with a
step-wise action selection, so the agents can construct exis-
tentially quantified paths based only on the prefixes of previ-
ously quantified paths. This lack of information leads to in-
completeness, i.e., in some cases T |= φ, but Greach

T ,φ does not
admit a strong plan. We can counteract this incompleteness
by providing the agents with information about the future be-
havior of universally quantified executions using prophecies
(Beutner and Finkbeiner 2022a).

5.2 Encoding for Temporal Safety
We can also handle the case in which the LTL body of φ
denotes a temporal safety property.

DSA. A deterministic safety automaton (DSA) over alpha-
bet Σ is a DFA-like tuple A = (Q, q0, ϱ, F ). An infinite
word u ∈ Σω is accepted by A if the unique run never visits
a state in F . We say φ is a temporal safety formula if ψ is
recognized by a DSA Aψ = (Qψ, q0,ψ, ϱψ, Fψ). For exam-
ple, the NI formula in Section 1 and the HyperLTL formula
from Example 1 are temporal safety formulas.

Planning Encoding. Different from reachability proper-
ties, safety properties reason about infinite executions (and
not only finite prefixes thereof). To encode this as a planning
problem, we add special sink states swin and slose , and mark
swin as the unique goal state. From any state ⟨l1, . . . , ln, q⟩
where q ∈ Fψ , we then deterministically move to slose .
From any state ⟨l1, . . . , ln, q⟩ where q ̸∈ Fψ , we extend
the transitions from Definition 2 with an additional non-
deterministic transition to swin . The agents can thus never
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ensure a visit to swin , but a strong cyclic plan guarantees
that we never visit a losing state in Fψ . We denote the re-
sulting QDec-POMPD with Gsafe

T ,φ ; a full description can be
found in the full version (Beutner and Finkbeiner 2024).

Theorem 2. Assume φ is a temporal safety formula. If Gsafe
T ,φ

admits a strong cyclic plan, then T |= φ.
Example 2. We consider the verification instance (T , φ)
from Example 1. In Figure 1b, we depict a DSA for the
LTL body of φ. In Figure 1c, we sketch the resulting QDec-
POMDP Gsafe

T ,φ . Each action from D = {dA, dB} for agent
2 (controlling the existentially quantified path π2) non-
deterministically leads to two successor states, which we
visualize using immediate decision nodes labeled by direc-
tions. For example, in the initial state ⟨lA, lA, q0⟩, the ac-
tion (aka. direction) dA non-deterministically leads to states
⟨lA, lA, q1⟩ and ⟨lB , lA, q1⟩. For simplicity, we omit swin

and slose : All states where the automaton has reached the
losing state q3 (surrounded by the red dashed box) transi-
tion to slose , and all other states have an additional non-
deterministic transition to swin . The QDec-POMDP Gsafe

T ,φ
admits a strong cyclic plan by always following the action
marked by the orange arrow, proving that T |= φ.

5.3 Encoding for Full HyperLTL
Our construction can also be extended to handle full Hyper-
LTL by reducing to planning problems with temporal goals
specified in LTL (Camacho et al. 2017; Camacho and McIl-
raith 2019). In this paper, we restrict our construction to
the case of reachability and safety properties as (1) this suf-
fices for almost all properties of interest, and (2) it allows us
to employ the multiplicity of automated planners that yield
strong (cyclic) plans for non-temporal objectives.

5.4 Factored Representation
In our construction, we used an explicit-state (flat) represen-
tation of the problem with |L|n · |Qψ| many states. In prac-
tice, many planning formats (e.g., STRIPS, PDDL, SAS)
allow for a factored description of the state space, using
roughly n · |L| + |Qψ| many fluents that track the current
location of each path individually. For example, the QDec-
POMDP from Figure 1c can be represented compactly by
tracking the locations of π1 and π2 individually. The possi-
bility of using a factored representation is a core motivation
for using planning tools for HyperLTL verification.

5.5 Classical, FOND, and POND Planning
In general, our encoding yields a planning problem that
combines multiple agents, non-determinism, and partial ob-
servations. In many situations, however, the resulting prob-
lem does not require all these features: (1) For ∃∗ properties,
the planning problem is classical, i.e., it consists of a single
agent (controlling all paths), deterministic actions, and full
information. (2) For ∀∗∃∗ properties (e.g., NI), the problem
involves a single agent (controlling all existentially quanti-
fied paths) acting under full information (FOND planning).
(3) For ∀∗∃∗∀∗ properties, the problem involves a single
agent acting under partial observations (POND planning).

∃∃ ∀∃

Model Size PG Size PDDL tPG tHyPlan tPG tHyPlan

BAKERY3 31016.4 8.0/75.7 4.8 1.2 4.5 0.9
BAKERY5 614.6 7.7/19.0 0.6 0.5 0.7 1.1
MUTATION 1807.5 8.5/9.8 0.7 0.3 0.6 0.4
NI C 37.5 7.7/13.5 0.2 0.3 0.5 0.4
NI I 948.3 8.5/104.3 0.6 0.4 0.7 1.3
NRP C 688.3 7.7/23.0 0.5 0.5 0.5 0.4
NRP I 1018.6 7.7/22.2 0.5 0.3 0.4 0.4
SNARK CON 105854.7 7.7/192.1 19.2 6.9 21.0 5.1
SNARK SEQ 17415.6 8.0/32.4 3.3 0.6 5.6 2.4

Table 1: We compare HyPlan with a PG-based encoding.
We list the size of the PG, the number of actions/objects
in HyPlan’s PDDL encoding, and the verification times in
seconds (averaged over multiple runs).

6 Implementation and Experiments
We have implemented our encoding for ∀∗∃∗ HyperLTL for-
mulas in a prototype called HyPlan. Our tool produces
FOND planning instance in an extension of PDDL, featur-
ing (oneof p1 ... pn) expressions in action effects;
A format widely supported by many FOND planners. We
compare HyPlan against the parity-game (PG) based en-
coding for ∀∗∃∗ properties (Beutner and Finkbeiner 2022a).
For our experiments, we collect the 10 NuSMV models from
Hsu, Sánchez, and Bonakdarpour (2021) and generate ran-
dom formulas of the form ∃π. ∃π′.Fψ and ∀π. ∃π′.Gψ
where ψ is a temporal-operator-free formula. As remarked
in Section 5.5, for the ∃∃ properties, HyPlan produces clas-
sical planning problems, which we solve using Scorpion
(Seipp and Helmert 2018). The ∀∃ properties yield FOND
planning problems, which we solve using MyND (Mattmüller
et al. 2010). In Table 1, we report the average size of the en-
codings, as well as the time taken for the ∃∃ and ∀∃ prop-
erties. As noted in Section 3, the size of the PG is exponen-
tial in the number of paths, whereas the PDDL description is
factored and delegates the exploration to the planner. Conse-
quently, we observe that off-the-shelf planners perform com-
petitively compared to explicit-state PG solvers.

7 Conclusion
We have presented a novel application of non-deterministic
planning: the verification of hyperproperties. Our encoding
is applicable to HyperLTL formulas with arbitrary quan-
tifier prefixes, and our preliminary experiments show that
off-the-shelf planners constitute a competitive alternative to
explicit-state games. Moreover, further development of non-
deterministic planners (for which our work provides addi-
tional incentives) directly improves our verification pipeline.
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