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Abstract

Stackelberg planning is a recently introduced single-turn two-
player adversarial planning model, where two players are act-
ing in a joint classical planning task, the objective of the first
player being hampering the second player from achieving its
goal. This places the Stackelberg planning problem some-
where between classical planning and general combinatorial
two-player games. But, where exactly? All investigations of
Stackelberg planning so far focused on practical aspects. We
close this gap by conducting the first theoretical complex-
ity analysis of Stackelberg planning. We show that in gen-
eral Stackelberg planning is actually no harder than classical
planning. Under a polynomial plan-length restriction, how-
ever, Stackelberg planning is a level higher up in the polyno-
mial complexity hierarchy, suggesting that compilations into
classical planning come with a worst-case exponential plan-
length increase. In attempts to identify tractable fragments,
we further study its complexity under various planning task
restrictions, showing that Stackelberg planning remains in-
tractable where classical planning is not. We finally inspect
the complexity of meta-operator verification, a problem that
has been recently connected to Stackelberg planning.

Introduction
Stackelberg planning (Speicher et al. 2018a) is an adversar-
ial planning problem, in which two agents/players act con-
secutively in a joint classical planning task. The objective of
the first player (called the leader) is to choose and to play a
plan that maximally raises the cost of the second player (the
follower) to subsequently achieve its goal. This type of plan-
ning is useful for real-world adversarial settings commonly
found in the cyber-security domain (Speicher et al. 2018b;
Di Tizio et al. 2023). To solve Stackelberg planning tasks,
there so far exists just a single generic algorithm paradigm
called leader-follower search (Speicher et al. 2018a), which
searches over possible leader plans, solving a classical plan-
ning task for each. As the number of possible plans is ex-
ponential in the worst case, this makes one wonder how
the complexity of Stackelberg planning relates to classical
planning. Focusing on algorithmic improvements (Speicher
et al. 2018a; Torralba et al. 2021; Sauer et al. 2023), existing
works have neglected this question so far.
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We close this gap, providing the first theoretical analy-
sis of Stackelberg planning’s complexity. Stackelberg plan-
ning is a special case of general combinatorial two-player
games (Stockmeyer and Chandra 1979). And, indeed, as
many combinatorial games can, Stackelberg planning is re-
ducible to fully-observable non-deterministic (FOND) plan-
ning (Cimatti, Roveri, and Traverso 1998), using action
effect non-determinism to emulate all possible follower
choices. This narrows down Stackelberg planning’s com-
plexity to the range between classical planning (Bylander
1994) and FOND planning (Littman 1997). We show that
Stackelberg planning is PSPACE-complete, and thus is in
fact not harder than classical planning in general. However,
Stackelberg planning is ΣP

2-complete under a polynomial
plan-length restriction. This relates to results in FOND (Rin-
tanen 1999) and conformant planning (Baral, Kreinovich,
and Trejo 2000), and contrasts the NP-completeness of
the corresponding classical planning problem (Jonsson and
Bäckström 1998). Hence, unless NP = ΣP

2 , polynomial
compilations of Stackelberg planning into classical planning
have a worst-case exponential plan-length blow-up.

The analysis of tractable fragments has shown to be an im-
portant source for the development of domain-independent
heuristic in classical planning (e.g., Hoffmann and Nebel
2001; Domshlak, Hoffmann, and Katz 2015). With the vi-
sion of establishing a basis for the development of leader-
follower search heuristics, we analyze the complexity of
Stackelberg planning under various syntactic restrictions.
An overview of our results is given in Tab. 1.

Lastly, we explore a problem related to Stackelberg plan-
ning: meta-operator (Pham and Torralba 2023) verification.
Meta-operators are action-sequence wild cards, which can
be instantiated freely for every state satisfying the opera-
tor’s precondition as long as operator’s effects match. Pham
and Torralba have cast verifying whether a given action is a
valid meta-operator as a Stackelberg planning task. We show
that meta-operator verification PSPACE-complete and ΠP

2 -
complete under a polynomial plan-length restriction.

Proofs are provided in a technical report (Behnke and
Steinmetz 2024).

Background
Classical Planning We assume STRIPS notation (Fikes
and Nilsson 1971). A planning task is a tuple Π =
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Plan existence Optimal planning

Syntactic restrictions PLANSAT STACKELSAT PLANMIN STACKELMIN METAOPVER

∗ preconds ∗ effects
|π| not bounded PSPACE PSPACE (Theorem 1) PSPACE PSPACE (Theorem 2) PSPACE (Theorem 10)

∗ preconds ∗ effects
|π| ∈ O(nk)

NP ΣP
2 (Theorem 3) NP ΣP

2 (Theorem 3) ΠP
2 (Theorem 11)

1 precond 1+ effect NP ΣP
2 (Theorem 4) NP ΣP

2 (Corollary 1) –

∗+ preconds 1 effect P NP (Theorem 5) NP ΣP
2 (Theorem 7) –

0 preconds 2 effects P P for ∞ effects (Theorem 6) NP ΣP
2 (Theorem 8) –

0 preconds 1 effect
non-unit cost

P P for ∞ effects (Theorem 6) P NP (Theorem 9) –

Table 1: Overview of our complexity results. For comparison, the PLANSAT and PLANMIN columns show the complexity
of classical planning under the respective task restrictions, as given by (Bylander 1994). All results prove completeness with
respect to the different complexity classes. ∗ means arbitrary number, + only positive, ∗+ arbitrary positive, and n+ n positive.

⟨V,A, I,G⟩ consisting of a set of propositional state vari-
ables (or facts) V , a set of actions A, an initial state I ⊆ V ,
and a goal G ⊆ V . For p ∈ V , p and ¬p are called liter-
als. A state s is a subset of V , with the interpretation that all
state variables not in s do not hold in s. Each action a ∈ A
has a precondition pre(a), a conjunction of literals, an add
effect (also called positive effect) add(a) ⊆ V , a delete ef-
fect (negative effect) del(a) ⊆ V , and a non-negative cost
c(a) ∈ N0. A planning task has unit costs iff for all actions
c(a) = 1. a is applicable in a state s iff s |= pre(a). Execut-
ing a in s yields the state sJaK = (s\del(a))∪add(a). These
definitions are extended to action sequences π in an iterative
manner. The cost of π is the sum of costs of its actions. π is
called an s-plan if π is applicable in s and G ⊆ sJπK. π is an
optimal s-plan if c(π) is minimal among all s-plans. An (op-
timal) plan for Π is an (optimal) I-plan. If there is no I-plan,
we say that Π is unsolvable. Two decision problem formu-
lations of classical planning are considered in the literature.
PLANSAT is the problem of given a planning task Π , de-
ciding whether there exists any plan for Π . PLANMIN asks,
given in addition a (binary-encoded) cost bound B, whether
there is a plan π for Π with cost c(π) ≤ B. Both problems
are known to be PSPACE-complete (Bylander 1994).

Stackelberg Planning A Stackelberg planning task (Spe-
icher et al. 2018a) is a tuple ΠLF = ⟨V,AL, AF , I, GF ⟩,
where the set of actions is partitioned into one for each
player. A leader plan is an action sequence πL =
⟨aL1 , . . . , aLn⟩ ∈ (AL)n that is applicable in I . πL in-
duces the follower task ΠF (πL) = ⟨V,AF , IJπLK, GF ⟩.
An (optimal) follower response to πL is an (optimal) plan
for ΠF (πL). We denote by cF (πL) the cost of the opti-
mal follower response to πL, defining cF (πL) = ∞ if
ΠF (πL) is unsolvable. Leader plans are compared via a
dominance order between cost pairs where ⟨cL1 , cF1 ⟩ weakly
dominates ⟨cL2 , cF2 ⟩ (⟨cL1 , cF1 ⟩ ⊑ ⟨cL2 , cF2 ⟩), if cL1 ≤ cL2
and cF1 ≥ cF2 . ⟨cL1 , cF1 ⟩ (strictly) dominates ⟨cL2 , cF2 ⟩
(⟨cL1 , cF1 ⟩ ⊏ ⟨cL2 , cF2 ⟩), if ⟨cL1 , cF1 ⟩ ⊑ ⟨cL2 , cF2 ⟩ and

⟨cL1 , cF1 ⟩ ̸= ⟨cL2 , cF2 ⟩. To simplify notation, we write πL
1 ⊏

πL
2 if ⟨c(πL

1 ), c
F (πL

1 )⟩ ⊏ ⟨c(πL
2 ), c

F (πL
2 )⟩. A leader plan

πL is optimal if it is not dominated by any leader plan. Pre-
vious works have considered algorithms for computing the
set of all optimal solutions, called the Pareto frontier.

Stackelberg Planning Decision Problems
We distinguish between two decision-theoretic formulations
of Stackelberg planning, akin to classical planning:
Definition 1 (STACKELSAT). Given ΠLF , STACKELSAT
is the problem of deciding whether there is a leader plan πL

that makes ΠF (πL) unsolvable.
Definition 2 (STACKELMIN). Given ΠLF , and two
binary-encoded numbers BL, BF ∈ N0. STACKELMIN is
the problem of deciding whether there is a leader plan πL

with ⟨c(πL), cF (πL)⟩ ⊑ ⟨BL, BF ⟩.
Interpreting the leader’s objective as rendering the fol-

lower’s objective infeasible, the first definition directly mir-
rors the PLANSAT plan-existence decision problem. Sim-
ilarly, the second definition mirrors PLANMIN in looking
for solutions matching a given quantitative cost bound. It is
worth mentioning that both decision problems are implicitly
looking for only a single point in the Pareto frontier, whereas
previous practical works dealt with algorithms computing
this frontier entirely. In terms of computational complex-
ity, this difference is however unimportant. In particular, an-
swering even just a single STACKELMIN question does in
fact subsume the computation of the entire Pareto frontier –
if the answer is no, one necessarily had to compare the given
bounds to every element in the Pareto frontier.

As in classical planning, STACKELSAT can be easily
(with polynomial overhead) reduced to STACKELMIN:
Proposition 1. STACKELSAT is polynomially reducible to
STACKELMIN.

Given that Stackelberg planning is a proper generaliza-
tion of classical planning, the Stackelberg decision prob-
lems are guaranteed to be at least as hard as the respective
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classical planning decision problem. By applying Immer-
man–Szelepcsényi theorem (Szelepcsényi 1987; Immerman
1988), we can prove that it is also no harder than classical
planning in the general case:

Theorem 1. STACKELSAT is PSPACE-complete.

Theorem 2. STACKELMIN is PSPACE-complete.

In spite of these results, algorithms for Stackelberg plan-
ning are significantly more complicated than their classi-
cal planning counterparts. In particular, the results raise the
question of whether it is possible to leverage the classical
planning methods directly for solving Stackelberg tasks via
compilation. Polynomial compilations necessarily exist as
per the theorems, yet, it is interesting to investigate which
“side-effects” these might need to have. In order to investi-
gate these questions, we turn to a more fine granular analy-
sis by considering the complexity under various previously
studied syntactic classes of planning tasks.

Stackelberg Planning under Restrictions
Polynomial Plan Length
For classical planning, it is commonly known that restrict-
ing the length of the plans to be polynomial in the size of
the planning task description, makes the decision problems
become NP-complete (Jonsson and Bäckström 1998).

Definition 3 (Polynomial Stackelberg Decision). Given
ΠLF with non-0 action costs, and two binary-encoded num-
bers BL, BF ∈ N0 that are bounded by some polynomial
p ∈ O(ℓk) for ℓ = |V | + |AL| + |AF |. STACKELPOLY is
the problem of deciding whether there is a leader plan πL

such that ⟨c(πL), cF (πL)⟩ ⊑ ⟨BL, BF ⟩.
We restrict the action cost to be strictly positive, ensuring

that considering leader and follower plans with polynomial
length is sufficient to answer the decision problem. STACK-
ELPOLY is harder than the corresponding classical problem.

Theorem 3. STACKELPOLY is ΣP
2 -complete.

This result implies that, unless NP = ΣP
2 which would

collapse the polynomial hierarchy (Arora and Barak 2007,
Theorem 5.6), polynomial compilations of Stackelberg plan-
ning into classical planning come with a worst-case expo-
nential plan-length increase.

Bylander’s Syntactic Restrictions
Bylander (1994) studied the complexity of classical plan-
ning under various syntactic restrictions, drawing a concise
borderline between planning’s tractability and infeasibil-
ity. Bylander distinguishes between different planning task
classes based on the number of action preconditions and ef-
fects, and the existence of negative preconditions or effects.
Table 1 provides an overview of the main classes. Here, we
take up his analysis and show that even for the classes where
classical planning is tractable, Stackelberg may not be. We
consider STACKELSAT and STACKELMIN in this order.

Definition 4. Let m,n ∈ N0 ∪ {∞}. STACKELSATm
n is

the problem of deciding STACKELSAT for Stackelberg tasks
so that | pre(a)| ≤ m and | add(a)| + | del(a)| ≤ n hold

for all actions a. If m is preceded by “+”, actions have
no negative preconditions. If n is preceded by “+”, actions
have no delete effects. STACKELMINm

n is defined similarly.
We omit m (n) if m = ∞ (n = ∞). We consider only

cases where the classical-planning decision problems are in
NP. Stackelberg planning is PSPACE-hard when classical
planning is.

Plan Existence
Bylander (1994) has shown that PLANSAT is already NP-
complete for tasks with actions that even have just a single
precondition and a single effect. Here we show that the cor-
responding Stackelberg decision problem is even one step
above in the polynomial hierarchy:
Theorem 4. STACKELSAT1

+1 is ΣP
2 -complete.

Bylander (1994) has shown that PLANSAT is polynomial
if only positive preconditions and only a single effect per
action are allowed. Even under these restrictive conditions,
STACKELSAT however still remains intractable:
Theorem 5. STACKELSAT+

1 is NP-complete.
Stackelberg plan-existence however becomes easy, when

forbidding preconditions throughout. While this class of
tasks seems to be trivial at first glance, optimal Stackelberg
planning actually remains intractable as we show below.
Theorem 6. STACKELSAT0 is polynomial.

Optimal Planning
As per Proposition 1, optimal Stackelberg planning is in
general at least as hard as deciding plan existence. All in-
tractability results shown for STACKELSAT carry over to
STACKELMIN. As in all classes analyzed in the previous
section, the consideration of polynomially length-bounded
plans is sufficient for hardness, ΣP

2 yields a sharp upper
bound to the complexity of STACKELMIN, per Theorem 3.
Corrolary 1. STACKELMIN1

+1 is ΣP
2 -complete.

The results for STACKELSAT only provide a lower
bound to the complexity of STACKELMIN. This lower
bound may be strict as demonstrated by Thm. 7 and 8:
Theorem 7. STACKELMIN+1

1 is ΣP
2 -complete.

Theorem 8. STACKELMIN0
2 is ΣP

2 -complete.
Optimal Stackelberg planning remains intractable even

when all actions have no preconditions and may have only
at most one effect.
Theorem 9. STACKELMIN0

1 is NP-complete in general, but
polynomial when additionally assuming unit cost.

Complexity of Meta Operator Verification
Pham and Torralba (2023) have recently leveraged Stack-
elberg planning for synthesizing meta-operators in classi-
cal planning. Meta-operators, like macro-actions (Fikes and
Nilsson 1971), are artificial actions that aggregate the effect
of action sequences, therewith introducing shortcuts in state-
space search. Formally, given a classical planning task Π
and an action σ that is not in Π’s action set, σ is a meta-
operator for Π if, for every state s |= pre(σ) that is reach-
able from I , there exists a sequence π of Π’s actions such
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that sJσK = sJπK. Whether a given σ is a meta-operator can
be verified by solving a Stackelberg planning task.

Here, we consider the question whether using an expres-
sive and computationally difficult formalism like Stackel-
berg planning is actually necessary. For this, we determine
the computational complexity of meta-operator synthesis
and compare it to that of Stackelberg planning.
Definition 5 (Meta-Operator Verification). Given Π and a
fresh action σ. METAOPVER is the problem of deciding
whether σ is a meta-operator for Π .

Like for Stackelberg planning, the complexity of meta-
operator verification in general remains the same as that of
classical planning:
Theorem 10. METAOPVER is PSPACE-complete.

In other words, meta-operator verification could as well
be compiled directly into a classical rather than a Stackel-
berg planning task. But how difficult or effective would such
a compilation be? To shed light on this question, we again
turn to a length bounded version of the problem.
Definition 6 (Polynomial Meta-Operator Verification).
Given Π with non-0 action costs, a fresh action σ, and two
binary-encoded numbers BP , BM ∈ N0 that are bounded
by some polynomial p ∈ O(ℓk) for ℓ = |V | + |A|. poly-
METAOPVER is the problem of deciding whether for all
states s |= pre(σ) reachable from I with a cost of at most
BP , there exists π with c(π) ≤ BM and sJπK = sJσK.

The parameters BP and BM define the perimeter around
the initial state respectively the reached state under which
the meta-operator conditions are to be verified. As for Stack-
elberg planning, we require that the cost of all actions is
strictly positive, which together with the cost bounds ensures
that the radius of the perimeter is polynomially bounded.

Polynomial meta-operator verification too is on the sec-
ond level of the polynomial hierarchy. Again, this means that
under the assumption that the polynomial hierarchy does not
collapse, polynomial compilations of meta-operator verifi-
cation into classical planning in the worst case, come with
an exponential plan-length blow-up.
Theorem 11. polyMETAOPVER is ΠP

2 -complete.
Note that polyMETAOPVER is therefore in the co-

complexity-class of polynomial Stackelberg plan-existence,
i.e., they belong to co-classes on the same level of the poly-
nomial hierarchy. This may not be surprising given the sub-
tle difference between meta-operator verification and Stack-
elberg plan existence: while the latter asks for the existence
of a (leader) action sequence where all induced (follower)
action sequences satisfy some property, meta-operator veri-
fication swaps the quantifiers.

We want to point out that this duality can be exploited
further, showing analogous results for Bylander’s (1994)
task classes. Contrary to Stackelberg planning, however, the
identification of tractable fragments is less useful for meta-
operator verification due to the lack of the monotonicity in-
variance of the meta-operator condition. An action being a
meta-operator in a task abstraction does not imply that the
action is a meta-operator in the original task, and vice versa.
We hence do not further explore this analysis here.

Related Work
Stackelberg planning is strongly linked to conditional plan-
ning under partial observability (Bonet and Geffner 2000)
and non-deterministic actions (Cimatti, Roveri, and Traverso
1998). Conditional plan existence in partially observable de-
terministic (POD) planning can be seen as the co-problem
to STACKELSAT for the Stackelberg task where the leader
enumerates the initial states, and the follower has the POD
task’s actions and goal. As hinted at in the introduction, there
is a simple reduction of Stackelberg plan existence to FOND
plan existence. In a nutshell, the FOND planning task in-
herits the leader actions and contains a single action with
a non-deterministic effect per original follower action, and
which non-deterministically sets a termination flag T (ini-
tially false). Leader planning and follower planning are split
into two separate phases, distinguished by auxiliary facts.
In the leader phase, it is possible to apply only leader ac-
tions and an action that will cause a transition into the fol-
lower phase. In the follower phase, only the follower’s non-
deterministic action can be applied. There is a Stackelberg
plan iff there is a strong cyclic plan for the goal ¬GF ∧ T.

Both planning under partial observability and planning
under non-deterministic effects are more challenging prob-
lems than Stackelberg planning in the general case, e.g.,
FOND planning is EXP-complete (Littman 1997) and
POND planning even 2-EXP-complete (Rintanen 2004).
But, there are interesting relations to our results under a
polynomial plan length bound. Rintanen (1999) showed that
polynomially-length-bounded conditional planning is ΠP

2
complete, the co-result to our Thm. 3. His hardness proof is
very similar to ours, with technical differences owed to the
different planning formalisms. Bonet (2010) studied condi-
tional planning with non-deterministic actions, proving that
polynomially bounded plan existence for conditional plans
with at most k branching points is ΣP

2k+k-complete. Stack-
elberg planning corresponds to k = 1, the difference be-
tween determinism and non-determinism causing the ΣP

2
vs. ΣP

4 complexity results. For conditional planning under
partial observability, Baral, Kreinovich, and Trejo (2000)
showed that plan existence is ΣP

2-complete. Turner (2002)
analyzed a wide range of different planning formalisms un-
der a polynomial plan-length bound, but his formalism sup-
ported arbitrary boolean formulae as preconditions, making
even length-1 plan existence already NP-complete.

Conclusion
Stackelberg planning remains PSPACE-complete, like clas-
sical planning, in general, but is ΣP

2 complete under a poly-
nomial plan-length bound. Hence, unless the polynomial hi-
erarchy collapses to its first level, a polynomial reduction of
Stackelberg planning into classical planning is not possible
in general. We showed that Stackelberg planning remains in-
tractable under various syntactical restrictions, even in cases
where classical planning is known to be tractable. Lastly,
we have proven similar results for meta-operator verifica-
tion, specifically PSPACE-completeness in general and ΠP

2 -
complete for the polynomial plan-length bounded case, with
similar implications as the results for Stackelberg planning.
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