
Exact Multi-objective Path Finding with Negative Weights

Saman Ahmadi1, Nathan R. Sturtevant2, Daniel Harabor3, Mahdi Jalili1

1 School of Engineering, RMIT University
2 Department of Computing Science, University of Alberta
3 Department of Data Science and AI, Monash University

saman.ahmadi@rmit.ed.au, nathanst@ualberta.ca, daniel.harabor@monash.edu, mahdi.jalili@rmit.edu.au

Abstract
The point-to-point Multi-objective Shortest Path (MOSP)
problem is a classic yet challenging task that involves find-
ing all Pareto-optimal paths between two points in a graph
with multiple edge costs. Recent studies have shown that em-
ploying A* search can lead to state-of-the-art performance in
solving MOSP instances with non-negative costs. This paper
proposes a novel A*-based multi-objective search framework
that not only handles graphs with negative costs and even
negative cycles but also incorporates multiple speed-up tech-
niques to enhance the efficiency of exhaustive search with A*.
Through extensive experiments, our algorithm demonstrates
remarkable success in solving difficult MOSP instances, out-
performing leading solutions by several factors.

Introduction
The point-to-point Multi-objective Shortest Path Problem
(MOSP) is a classic network optimisation problem that in-
volves finding all Pareto-optimal paths between a pair of
(Origin, Destination) locations in graphs with multiple link
attributes. The problem has a wide range of real-world ap-
plications in diverse areas such as transportation planning,
telecommunication networks, and robotics. MOSP can be
modelled to plan paths that are optimal in terms of fuel con-
sumption, distance, and arrival time in maritime transporta-
tion (Wang, Mao, and Eriksson 2019), to select emergency
routes for major chemical accidents (Xu, mei Gai, and Salhi
2021), or to simultaneously minimise difficulty, risk, and el-
evation of planned paths for mobile robots in harsh situations
(Jeddisaravi, Alitappeh, and Guimarães 2016).

MOSP and its bi-objective variant BOSP (Bi-objective
Shortest Path) are well-studied topics in both network op-
timisation and AI literature, and have attracted growing in-
terest in recent years. Salzman et al. (2023) presented an
overview of some of the existing solutions to both problems
algorithms, highlighting the significance of heuristic-guided
search, in particular A* (Hart, Nilsson, and Raphael 1968),
in reducing overall computation time. Currently, there are
several specialised algorithms designed to tackle BOSP on
a large scale, such as Bi-objective search with A* (Ulloa
et al. 2020; Ahmadi et al. 2021a). Among the recent at-
tempts at optimally solving MOSP, three novel solutions,

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

namely EMOA* (Ren et al. 2022), TMDA (Maristany de las
Casas et al. 2023), and LTMOA* (Hernández et al. 2023),
have been successful in efficiently utilising best-first search
to address the problem. EMOA* follows the search strategy
of NAMOA*dr of Pulido, Mandow, and Pérez-de-la-Cruz
(2015a) but employs balanced binary search trees to store
non-dominated partial paths expanded during the search.
The recent TMDA algorithm adapts one-to-all MDA of de las
Casas, Sedeño-Noda, and Borndörfer (2021) to a point-to-
point MOSP solution using heuristic-guided search. Despite
NAMOA*dr where the search priority queue contains all un-
explored paths, the multi-objective search of TMDA fol-
lows a Dijkstra-like queueing approach (Dijkstra 1959) and
stores at most one (best) path per graph node into the pri-
ority queue. LTMOA* is another A*-based algorithm that
performs a linear-time dominance check prior to expanding
partial paths. The dominance check is necessary to ensure
that the (partial) path is not dominated by any previously ex-
panded path in all objectives, thus reducing the search effort
by avoiding unnecessary expansions. Based on the results, it
is evident that all EMOA*, TMDA, and LTMOA* outperform
NAMOA*dr, with LTMOA* demonstrating superior perfor-
mance compared to EMOA*. However, a direct comparison
between LTMOA* and TMDA is currently unavailable.

MOSP with negative weights and negative cycles:
Many real-world applications of MOSP need to be mod-
elled with graphs containing negative edge weights. Energy
requirement, for example, can be observed in both posi-
tive (consumption) and negative (generation) forms. Unfor-
tunately, none of the aforementioned point-to-point MOSP
solutions is capable of handling such graphs. While there
are a few existing solutions to MOSP with negative weights,
it has remained a relatively underexplored topic. The one-
to-all MDA algorithm of de las Casas, Sedeño-Noda, and
Borndörfer (2021), built on the basis of Martin’s princi-
ple of optimality (Martins 1984), can solve MOSP with
negative weights. MDA can only solve bounded MOSP in-
stances. Thus, the graph must be negative-cycle free (Sas-
try, Janakiraman, and Mohideen 2003). Note that one-to-
all MOSP exhibits a larger search space than the point-to-
point variant, demanding far larger computation time. The
path-ranking method of Sastry, Janakiraman, and Mohideen
(2005) and the label setting approach of Kurbanov, Cuchý,
and Vokrı́nek (2022) are two other MOSP approaches that

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

11

can deal with negative weights. These solutions are not ex-
act, as they do not compute all Pareto-optimal solutions.

This paper introduces NWMOA*, a point-to-point multi-
objective A* search framework that can deal with both nega-
tive weights and negative cycles. NWMOA* adapts the best-
first search strategy of A* to problems with negative at-
tributes and introduces novel speed-up techniques to further
enhance search performance, including time-efficient dom-
inance test and queueing strategies. The results of our ex-
tensive experiments on a new set of large realistic instances
show the success of NWMOA* in solving large MOSP in-
stances faster than all recent methods.

Notation and Problem Formulation
Consider a MOSP problem provided as a directed graph
G = (S,E) with a finite set of states S and a set of edges
E ⊆ S ×S. In our notation, every boldface function returns
a vector. Every edge e ∈ E of the graph has k ∈ N attributes
that can be accessed via the cost function cost : E → Rk

and we have cost = (cost1, cost2 , . . . , costk) as a form
of vector. A path is a sequence of states ui ∈ S with
i ∈ {1, . . . , n} and (ui, ui+1) ∈ E for i ∈ {1, . . . , n − 1}.
The cost vector of path π = {u1, u2, u3, . . . , un} is then the
sum of corresponding attributes on all the edges constitut-
ing the path, namely cost(π) =

∑n−1
i=1 cost(ui, ui+1). Since

costs can be negative values, we say path π forms an elemen-
tary negative cycle on costk if i) cost i(π) < 0; ii) ui ̸= uj

for any i, j ∈ {1, . . . , n − 1|i ̸= j}; iii) u1 = un. Point-to-
point MOSP aims to find a set of cost-unique Pareto-optimal
paths between a given pair of start ∈ S and goal ∈ S, a set
in which every individual solution offers a path that min-
imises the multi-criteria problem in all dimensions.

Following the conventional notation in the heuristic
search literature, we define our search objects to be nodes
(equivalent to partial paths). A node x is a tuple that con-
tains the main information on the partial path to s(x), where
s(x) is a function that returns the state associated with x.
Node x traditionally stores a cost vector g(x), which mea-
sures the cost of a concrete path from the start state to
state s(x). In addition, node x is associated with the cost
vector f(x), which estimates the cost of a complete path
from start to goal via s(x); and also a reference parent(x)
that indicates the parent node of x. Further, the operator
Tr(v) truncates the cost1 of the cost vector v. For exam-
ple, (g2(x), . . . , gk(x)) is the truncated vector of g(x).

We consider all operations of the cost vectors to be per-
formed element-wise. For example, we define g(x) + g(y)
as (g1(x) + g1(y), . . . , gk(x) + gk(y)). We use ⪯ or ≤lex

symbols in direct comparisons of cost vectors, e.g. g(x) ⪯
g(y) denotes gi(x) ≤ gi(y) for all i ∈ {1, . . . , k} and
g(x) ≰lex g(y) means the cost vector g(x) is not lexico-
graphically smaller than or equal to g(y).
Definition Node y is weakly dominated by node x if we
have g(x) ⪯ g(y); y is dominated by x if f(x) ⪯ f(y) and
f(x) ̸= f(y); y is non-dominated by x if g(x) ⪯̸ g(y).

The main search in A*-based solution methods is guided
by start-goal cost estimates or f-values, which are tradi-
tionally established based on a consistent and admissible

heuristic function h : S → Rk (Hart, Nilsson, and Raphael
1968). In other words, for every search node x, we have
f(x) = g(x) + h(s(x)) where h(s(x)) estimates lower
bounds on the cost of paths from state s(x) to goal . One
common method of computing a well-informed hi function
for MOSP is solving a one-to-all single-objective shortest
path problem on cost i from goal on the graph G with all
links reversed, building a perfect heuristic function.
Definition hi : S → R is admissible iff hi(u) ≤ cost i(π

∗)
for every u ∈ S where π∗ is the optimal path on cost i
from state u to the goal state. It is also consistent if we have
hi(u) ≤ costi(u, v) + hi(v) for every edge (u, v) ∈ E.

Multi-objective Search with A*
The multi-objective search with A* generally involves two
types of strategies: expand and prune. It performs a system-
atic search by expanding nodes in best-first order. That is,
the search is led by a partial path that shows the lowest cost
estimate or f -value. Each iteration involves three main steps:
i) Extraction: remove one (lexicographically) least-cost
node from a priority queue, known as Open list.
ii) Dominance check: ensure the extracted node is not dom-
inated by some previous expansions or solutions;
iii) Expansion: generate new (non-dominated) descendant
nodes and store them in Open for further expansion.

To start the search, Open is initialised with a node as-
sociated with start . Open always contains generated (but
not expanded) nodes. For the purpose of further expan-
sion, Open reorders its nodes according to their f -value
such that the lexicographically least-cost node is always
at the front of the list. More accurately, given the cost vec-
tor (f1, f2, . . . , fk), Open first orders nodes based on their
f1-value, and then the truncated vector (f2, . . . , fk) lexico-
graphically if it finds two (or more) of the nodes showing the
same f1-value. The latter operation is called tie-breaking.
Once the least-cost node is extracted from Open , it under-
goes a rigorous dominance check to ensure that its expansion
does not lead to a dominated solution. This check usually
involves comparing the cost of the extracted node with that
of the previously expanded nodes of the state, as well as the
nodes expanded with the goal state (established solutions).
The same strategy can be applied once a new descendant
node is generated (during expansion). It is always safe to
prune dominated nodes, as their expansion will never lead
to an optimal solution. Nodes associated with the goal state
represent the solution paths and are stored separately. Fi-
nally, the search terminates when there is no node in Open to
explore. With this introduction, we now describe NWMOA*.

Multi-objective Search with Negative Weights
Many real-world MOSP problems deal with attributes that
are negative in nature or attributes that may exhibit nega-
tive values under specific circumstances, such as energy re-
cuperation in electric vehicles. There might also be cases
where the graph contains negative cycles (on any of the
costs). Solving MOSP with A* and negative weights is not
a straightforward task, essentially because A* requires the
primary cost of the explored paths be monotonically non-
decreasing, so the dimensionality reduction technique can be

12

applied. While recent MOSP solutions focus on MOSP in-
stances with non-negative weights, our NWMOA* presents
a novel A*-based solution that can deal with both negative
weights and negative cycles. We start with the latter case.

Negative cycles: Although it is widely accepted in the
MOSP literature that the existence of negative cycles makes
MOSP inevitably unbounded, we now elaborate this is not
always the case in the point-to-point variant. Consider the
sample graph of Figure 1 with three attributes shown on the
edges. The graph contains negative weights, as well as a neg-
ative cycle (through the third cost component of the paths
u4 ⇝ u5 ⇝ u6 ⇝ u4 shown in red). We aim to find opti-
mal paths from us to ug . This MOSP instance is bounded, as
there are three optimal paths, none of them visiting the ver-
tices of the negative cycle. This observation implies that neg-
ative cycles are not problematic for a point-to-point MOSP
instance as long as they do not appear on any start-goal
path. Thus, we distinguish two cases:

1. There is a negative cycle on any arbitrary path from start
to goal : The problem becomes unbounded as there will
be at least one dimension on which we can reduce the
cost of the path indefinitely.

2. No path can be found from start to goal via a negative
cycle: The problem is bounded, as this essentially implies
that there is no negative cycle present, or if there is one,
it cannot be reached from start or cannot reach goal .

As described above, to determine whether the problem is
bounded or not, we need to perform a simple (polynomial-
time) reachability test: Let S′ be the set of states that can
reach goal and can be reached from start . The problem is
unbounded if we can find a negative cycle on G′ = (S′, E′)
with E′ ⊆ S′×S′. In the sample graph in Figure 1, the three
states that comprise the only negative cycle of the graph can
reach ug (the goal state), but are not reachable from us (the
start state). Hence, we can ensure that no negative cycle
can appear on any optimal path, and thus the multi-objective
search can be conducted safely. To accommodate this crucial
preliminary test, we describe our NWMOA* in two levels.

NWMOA*’s High-Level Description
Algorithm 1 provides a high-level overview of NWMOA*,
presenting it as a merged procedure for establishing heuris-
tic functions, detecting negative cycles and executing the
search. It first initialises h-value of all states with a vec-
tor of k large values, followed by eliminating all states not
reachable from start (e.g., using breath-first search) to form
a reduced graph. The algorithm then performs for each i ∈
{1, . . . , k} a backward one-to-all single-objective search to
compute cost i-optimal paths from goal . This can be as sim-
ple as k runs of the Bellman-Ford algorithm (Bellman 1958;
Ford Jr 1956), or the Dijkstra’s algorithm with re-expansions
allowed (Johnson 1973). There will be a negative cycle on a
start- goal path if the length (number of edges) of the cost i-
optimal path to any state of the reduced graph grows to be
larger than |S| − 1. The condition hi(u) = −∞ at line 5
of Algorithm 1 denotes the situation where we can identify
unbounded MOSP instances through the growing length of
optimal paths. Otherwise, the problem is bounded, and we

Algorithm 1: NWMOA* High Level
Input: A MOSP Problem (G , start , goal , k)
Output: A cost-unique Pareto-optimal solution set

1 h(u)←∞k ∀u ∈ S
2 S ← Remove from S states not reachable form start
3 for i ∈ {1, . . . , k} do
4 hi ← Single-objective Backward Search on cost i
5 if (∃u ∈ S)[hi(u) = −∞] then
6 return ∅

7 Sols ←Multi-objective Search on (G , h, start , goal)
8 return Sols

can safely proceed with the multi-objective search (line 7).
It should be noted that Algorithm 1 can be utilised by recent
A*-based methods, such as LTMOA*, to initialise the multi-
objective A* search for instances with negative weights.

Multi-objective Search of NWMOA*
Our new search framework differs from existing methods in
three key aspects:
i) Nodes in NWMOA* are processed in order of their f1-
value, rather than any lexicographical ordering. This will en-
able the use of more efficient queueing data structures.
ii) The search is equipped with a novel constant-time domi-
nance check. This will help reduce the total number of domi-
nance check attempts and nodes generated during the search.
iii) Unlike LTMOA*, where truncated vectors are stored in
no specific order, NWMOA* stores truncated vectors in lex-
icographical order, reducing dominance checks per iteration.

Algorithm 2 shows the pseudo-code of the multi-objective
search of NWMOA*, with the asterisk (*) next to certain
line numbers indicating the new features. The algorithm
starts with initialising the priority queue Open , and the so-
lution set Sols . It then sets up for every state u ∈ S a list
GTr

cl (u), responsible for storing the (non-dominated) trun-
cated cost vector of previous (closed) expansions with state
u. NWMOA* also keeps track of the most recent expansion
of u via a cost vector called gTr

last(u). This cost vector is ini-
tialised with large cost values (line 3) to allow for capturing
the first expansion. NWMOA* then initialises a node with
the start state and inserts it into the priority queue.

Each iteration of the algorithm starts at line 7. Let Open
be a non-empty queue. Similarly to our queueing method in
Ahmadi et al. (2024), NWMOA* extracts in each iteration of
the algorithm a node x with the smallest f1-value (line 8).

Quick dominance check: Recent expansions of states are
generally more informed than older ones and can be seen
as strong candidates for quick dominance check. NWMOA*
checks node x against the last expanded node of two states:
goal and the state associated with x, i.e., s(x) (line 9). As
we show in the next section, NWMOA* processes nodes in
non-decreasing order of their f1-value. Because the first di-
mension is expanded in sorted f1 order, later expansions are
already dominated by previous f1-values. So, the dominance
test can be done simply by comparing the truncated cost vec-
tor of x, i.e., Tr(f(x)), with that of the two candidates.

Dominance check with IsDominated: If the ex-

13

Algorithm 2: Multi-objective Search of NWMOA*
Input: A MOSP Problem (G , h, start , goal)
Output: A cost-unique Pareto-optimal solution set

1 Open ← ∅ , Sols ← ∅
2 GTr

cl (u)← ∅ ∀u ∈ S

3* gTr
last(u)←∞k−1 ∀u ∈ S

4 x← new node with s(x) = start
5 g(x)← 0 , f(x)← h(start) , parent(x)← null
6 Add x to Open
7 while Open ̸= ∅ do
8* Extract from Open node x with the smallest f1-value
9* if gTr

last(s(x)) ⪯ Tr(g(x)) or gTr
last(goal) ⪯ Tr(f(x))

then continue
10 if IsDominated(Tr(g(x)),GTr

cl (s(x))) or
IsDominated(Tr(f(x)),GTr

cl (goal)) then
11 continue

12 Consolidate(Tr(g(x)),GTr
cl)

13* gTr
last(s(x))← Tr(g(x))

14 if s(x) = goal then
15* i← |Sols|
16* while i >= 1 do
17* z ← Node at index i of Sols
18* if f1(x) ̸= f1(z) then break
19* if g(x) ⪯ g(z) then remove z from Sols
20* i← (i− 1)

21 Add x to the end of Sols
22 continue
23 foreach t ∈ Succ(s(x)) do
24 y ← new node with s(y) = t
25 g(y)← g(x) + cost(s(x), t)
26 f(y)← g(y) + h(t)
27 parent(y)← x

28* if gTr
last(t) ⪯ Tr(g(y)) or gTr

last(goal) ⪯ Tr(f(y))
then continue

29 Add y to Open

30 return Sols

tracted node cannot be quickly dominated, NWMOA* takes
Tr(g(x)) and Tr(f(x)) to conduct a rigorous dominance
check by comparing x against (potentially all) truncated vec-
tors of previous expansions with both s(x) and goal . Algo-
rithm 3 shows the details of this procedure. GTr

cl (s(x)) stores
in a lexicographical order all non-dominated truncated cost
vectors derived from previous expansions with s(x). Thus,
the dominance test of Algorithm 3 does not need to traverse
the entire GTr

cl (s(x)) list, and can terminate early when it
discovers a candidate with a truncated cost vector not lexi-
cographically smaller than that of x (line 3 of Algorithm 3).

Lexicographical ordering with Consolidate: Let x be
a non-dominated node. Thus, its truncated cost vector, i.e.,
Tr(g(x)), must be stored in GTr

cl (s(x)) for the purpose of
future dominance checks with s(x). However, it is possi-
ble that Tr(g(x)) dominates some vectors of GTr

cl (s(x)).
Truncated vectors lexicographically smaller than Tr(g(x))
cannot be dominated. Thus, Consolidate, described in Al-
gorithm 4, iterates backward through GTr

cl (s(x)) to remove
dominated vectors (line 7), and stops as soon as it finds

Algorithm 3: IsDominated
Input: A cost vector v and a set of cost vectors V
Output: true if v is weakly dominated, false otherwise

1 for i ∈ {1 . . . |V|} do
2 v′ ← Cost vector at index i of V
3 if v′ ≰lex v then
4 return false

5 if v′ ⪯ v then
6 return true

7 return false

Algorithm 4: Consolidate
Input: A cost vector v and a set of cost vectors V
Output: V updated with dominated cost vectors removed

1 i ← |V|
2 while i ≥ 1 do
3 v′ ← Cost vector at index i of V
4 if v ≰lex v′ then
5 break
6 if v ⪯ v′ then
7 Remove v′ from V

8 i ← (i − 1)

9 Insert v to index (i + 1) of V
10 return

Tr(g(x)) no longer lexicographically smaller than the can-
didate vector in Tr(g(x)). It then inserts Tr(g(x)) after the
last attempted candidate (line 9), ensuring GTr

cl (s(x)) main-
tains its lexicographical order. A similar strategy was used in
TMDA (Maristany de las Casas et al. 2023). Once Tr(g(x))
is captured, NWMOA* stores a copy of it into gTr

last(s(x)) as
the most recent expansion (line 13 of Algorithm 2).

Capturing solution paths: Let x represent a tentative so-
lution path with s(x) = goal (line 14 of Algorithm 2). If
Sols is empty, we simply capture x as a tentative solution
and add it to the solution set (line 21). Otherwise, since
NWMOA* does not explore nodes lexicographically, it is
possible for x to dominate some previous solution nodes in
Sols . The algorithm takes care of such situation via lines 15-
20. To remove any dominated paths from the solution list,
NWMOA* (linearly) iterates backward through Sols and
checks the new solution x against those tied with x, that is,
those showing the same f1-value. Solution nodes with f1-
value smaller than f1(x) cannot be dominated by x. Thus, a
full traversal of Sols may not be necessary (line 18).

Expansion: Let x be a non-dominated node other than a
solution node. Expansion of x involves generating new de-
scendant nodes through s(x)’s successors. Consistent with
lazy dominance checks in the literature, NWMOA* delays
the (full) dominance check of descendant nodes until they
are extracted from Open . Nonetheless, the quick dominance
check against the last expansion of each successor state can
still be applied (line 28). Such quick pruning during expan-
sion reduces the number of generated nodes, thereby im-
proving both search performance and memory requirement.

14

us

(-2,0,2)
u1

(2,2,2)
u5

(3,3,–)

u2

(1,1,1)
u4

(1,1,–)

u3

(2,1,1)
ug

(0,0,0)
u6

(2,2,–)

(-4,1,3)

(1,-1,1)

(1,
1,1

)

(1,1,1)

(2,1,1)

(1,1,1)

(1,
1,1

)

(1,1,1)

(1,1,-3)

(1,
1,1

)(1,1,1)

(1,
1,1

)

Figure 1: An example graph with three edge attributes and
negative cycle. Triples inside the states denote h-value.

Finally, the algorithm returns Sols, as a cost-unique
Pareto-optimal solution set for a bounded MOSP instance.

Example: We further elaborate on the key steps of
NWMOA* by solving a sample MOSP instance with three
cost components, depicted in Figure 1. us and ug denote
start and goal , respectively. Although the graph contains a
negative cycle, the problem is bounded because the cycle is
not on any start-goal path. For the states reachable from
start , the triple inside the state denotes h-value, calculated
in the higher level of NWMOA*. We briefly explain all itera-
tions (It.) of NWMOA* for the given instance, with the trace
of generated nodes and sets illustrated in Table 1. Since none
of the nodes in this simple instance is quickly dominated, we
do not display the changes on gTr

last of states.
It.1-4: The first four iterations of the algorithm explore all
states on the cost1-optimal path, namely us, u1, u2 and ug .
At the end of the fourth iteration, we have one truncated cost
vector stored in the GTr

cl list of the above states, as shown in
the third column of Table 1. x5 is the first solution.
It.5: x2, the second descendant node of x0, is extracted. x2’s
truncated cost Tr(g(x2)) = (1,1) dominates the only vector
available in GTr

cl (u2). Thus, (1,1) replaces (2,4) in GTr
cl (u2).

x2 is non-dominated and should be expanded. The new node
x6 is added to Open upon expansion of x2.
It.6: x6 is extracted from Open . This node appears non-
dominated, and is a tentative solution. GTr

cl (ug) is then up-
dated with the new truncated cost (2,2). The existing vector
(3,5) is dominated and removed. x6 is added to Sols .
It.7: The search undergoes the first expansion with state u3

via x3. Two new nodes, x7 and x8, are added to the queue.
It.8: Both x7 and x8 exhibit the same f1-value. In the ab-
sence of tie-breaking, we may first extract x7. x7 appears
non-dominated. Thus, we can add its truncated cost (0,2) to
GTr

cl (u2). Its expansion generates the new node x9 with ug .
It.9: Both x8 and x9 exhibit the same f1-value. Assume x9

is extracted first. x9 is a non-dominated solution node, so we
can update both GTr

cl (ug) and Sols with the new node.
It.10: x8 is the only node in the queue. x8 is a non-dominated
solution node, and its truncated cost (0,2) dominates all vec-
tors in GTr

cl (ug). x8 should be added to Sols . However, the
new solution x8 dominates the previous solution x9 (both
showing the same f1-value). Thus, x9 is removed from Sols .
It.11: Open is empty, and all optimal solutions are in Sols .

It. Open : [f(x),g(x), s(x)] GTr
cl Sols

1 ↑x0=[(-2,0,2), (0,0,0), us] GTr
cl (us)=[(0,0)] ∅

2 ↑x1=[(-2,3,5), (-4,1,3), u1] GTr
cl (u1)=[(1,3)] ∅

x2=[(2,2,2), (1,1,1), u2]
x3=[(3,0,2), (1,-1,1), u3]

3 ↑x4=[(-2,3,5), (-3,2,4), u2] GTr
cl (u2)=[(2,4)] ∅

x2=[(2,2,2), (1,1,1), u2]
x3=[(3,0,2), (1,-1,1), u3]

4 ↑x5=[(-2,3,5), (-2,3,5), ug] GTr
cl (ug)=[(3,5)] x5

x2=[(2,2,2), (1,1,1), u2]
x3=[(3,0,2), (1,-1,1), u3]

5 ↑x2=[(2,2,2), (1,1,1), u2] GTr
cl (u2)=[(1,1)] x5

x3=[(3,0,2), (1,-1,1), u3]

6 ↑x6=[(2,2,2), (2,2,2), ug] GTr
cl (ug)=[(2,2)] x5,6

x3=[(3,0,2), (1,-1,1), u3]

7 ↑x3=[(3,0,2), (1,-1,1), u3] GTr
cl (u3)=[(-1,-1)] x5,6

8 ↑x7=[(3,1,3), (2,0,2), u2] GTr
cl (u2)=[(0,2),(1,1)] x5,6

x8=[(3,0,2), (3,0,2), ug]

9 ↑x9=[(3,1,3), (3,1,3), ug] GTr
cl (ug)=[(1,3),(2,2)] x5,6,9

x8=[(3,0,2), (3,0,2), ug]

10 ↑x8=[(3,0,2), (3,0,2), ug] GTr
cl (ug)=[(0,2)] x5,6,8

11 ∅ (empty) x5,6,8

Table 1: Trace of Open and Sols in each iteration (It.) of
NWMOA*. We mark extracted node of each iteration with
the symbol ↑. The third column shows changes on GTr

cl lists.

Always Logarithmic Dominance Check with k = 3
In case of three objectives, truncated cost vectors consist of
two cost components only, and thus some dominance rules
can be simplified, as in Ren et al. (2022). Since GTr

cl lists
store non-dominated truncated vectors in lexicographical or-
der, we can achieve logarithmic-time dominance check via
binary search. Let v = (g2, g3) be the truncated cost vector
of x, and v′ = (g′2, g

′
3) be the predecessor of v in GTr

cl (s(x)),
obtained by binary search. Since v′ ≤lex v, we should have:
1. g′2 = g2 and g′3 = g3: thus v′ weakly dominates v
2. or g′2 = g2 and g′3 < g3: thus v′ dominates v
3. or g′2 < g2: there are two cases, either g′3 ≤ g3 or g′3 >

g3. The former denotes that v′ dominates v. The latter,
however, confirms v is non-dominated, because all other
lexicographically smaller candidates in GTr

cl (s(x)), i.e.,
vectors before the predecessor v′, do not exhibit smaller
cost3 than g′3 and thus cannot dominate v.

Theoretical Results
This section provides a formal proof for the correctness of
multi-objective search of NWMOA*, providing theoretical
results on why NWMOA* can solve bounded MOSP in-
stances with negative weights. That is, we assume negative
cycles have already been handled via Algorithm 1.
Lemma 1 For every u ∈ S, let hi(u) represent the costi -
optimal path from u to goal . hi is consistent and admissible.

15

Proof Sketch Assume the contrary that hi is not consistent,
then there exists (u, v) ∈ E for which we have hi(u) >
costi(u, v) + hi(v). However, the existence of such an edge
contradicts our assumption that hi represents optimal dis-
tances, because the edge (u, v) can be used to further reduce
hi(u) through hi(v). It is also admissible since we always
have hi(goal) = 0 in the absence of negative cycles. □
Lemma 2 Suppose NWMOA*’s search is led by small-
est (possibly negative) f1-values. Let xi and xi+1 be the
nodes extracted from Open in two consecutive iterations of
NWMOA*. We have f1(xi) ≤ f1(xi+1) if h1 is consistent.
Proof Sketch We distinguish two cases: i) if xi+1 was avail-
able in Open at the time xi was extracted, the lemma is
trivially true. ii) otherwise, xi+1 is the descendant node of
xi. For the edge linking state s(xi) to its successor s(xi+1),
the consistency requirement of h1 ensures h1(s(xi)) ≤
h1(s(xi+1))+cost1(s(xi), s(xi+1)). Adding the cost g1(xi)
to both sides of the inequality yields f1(xi) ≤ f1(xi+1). □
Corollary 1 Let (x1, x2, ..., xt) be the sequence of nodes
extracted from Open . The (perfect) heuristic function h
is consistent and admissible. Then, under the premises of
Lemma 2, i ≤ j implies f1(xi) ≤ f1(xj), meaning f1-value
of extracted nodes are monotonically non-decreasing.
Lemma 3 Suppose xj is extracted after xi and s(xi) =
s(xj). xi (weakly) dominates xj if Tr(g(xi)) ⪯ Tr(g(xj)).
Proof Sketch xj is extracted after xi, so we have
f1(xi) ≤ f1(xj) according to Corollary 1. Given
h1(s(xi)) = h1(s(xj)), we obtain g1(xi) ≤ g1(xj). The
other condition Tr(g(xi)) ⪯ Tr(g(xj)) means g2(xi) ≤
g2(xj), . . . , gk(xi) ≤ gk(xj). Thus, g(xj) is not less than
g(xi) in all dimensions. □
Lemma 4 Suppose xj is extracted after xi with s(xi) =
goal . Extending xj towards the goal state will not lead to
non-dominated nodes if Tr(g(xi)) ⪯ Tr(f(xj)).
Proof Sketch Node xj is extracted after xi, so we have
f1(xi) ≤ f1(xj), or equivalently g1(xi) ≤ f1(xj). Ex-
panding the condition Tr(g(xi)) ⪯ Tr(f(xj)), we have
g2(xi) ≤ f2(xj), . . . , gk(xi) ≤ fk(xj). Thus, f(xj) is no
smaller than g(xi) in all dimensions. Since h is admissible,
we can guarantee that all subsequent expansions of xj to-
wards goal will exhibit the same condition. Thus, xj and all
its descendant nodes will be (weakly) dominated by xi. □
Lemma 5 Dominated nodes cannot lead to any cost-optimal
start-goal solution path.
Proof Sketch Assume the contrary that dominated nodes
can lead to a cost-optimal start-goal solution path. Let x
and y be two nodes associated with the same state where y
is dominated by x. Suppose that π∗ is a cost-optimal start-
goal solution path via the dominated node y. Since x dom-
inates y, one can replace the subpath represented by y with
that of x on π∗ to further reduce the cost of the start-goal
optimum path for at least one attribute. However, being able
to reduce the cost of the established optimal solution path
would contradict our assumption on the optimality of the so-
lution path π∗. Therefore, we conclude that dominated nodes
cannot form any cost-optimal start-goal solution path. □
Lemma 6 Let y be a node weakly dominated by node x and
s(x) = s(y). If y’s expansion leads to a cost-optimal solu-
tion path, x’s expansion also leads to an optimal solution.

Proof Sketch We prove this lemma by assuming the con-
trary, namely that x cannot lead to any cost-optimal so-
lution path. Since y is weakly dominated by x, we have
g1(x) ≤ g1(y), . . . , gk(x) ≤ gk(y), meaning that x offers
a better cost at least in one dimension, or equal cost to y.
Under such conditions, one can replace the partial path rep-
resented by y with that of x, and nominate a lexicograph-
ically smaller or equal path to the optimal path via y. The
existence of a better path in the former case contradicts our
assumption on the optimality of the solution path obtained
via node y’s expansion. The latter case means that both paths
are non-optimal (with equal cost), contradicting our assump-
tion. Therefore, x’s expansion leads to a cost-optimal solu-
tion path if y’s expansion results in an optimal solution. □
Theorem 1 NWMOA* computes a cost-unique Pareto-
optimal solution set for any bounded MOSP instance.
Proof Sketch NWMOA* enumerates all partial paths from
the start state towards the goal state in best-first order, in
search of all optimal solutions. The dominance rules utilised
by NWMOA* (Lemmas 3 and 4) ensure that removal of
(weakly) dominated nodes is safe as they will not lead to
cost-unique optimal solution paths (Lemmas 5 and 6). Thus,
we just need to show that Sols does not contain a (weakly)
dominated solution when NWMOA* terminates. NWMOA*
captures all nodes that reach the goal state. However, since
it does not process nodes lexicographically, some tenta-
tive solutions may later appear dominated. Let x be a new
non-dominated solution extracted after solution z. We have
f1(z) ≤ f1(x). There are two cases: i) if f1(z) < f1(x),
the tentative solution x confirms the optimality of z because
the older solution z cannot be dominated by x and all future
solutions. ii) if f1(z) = f1(x), a dominance check is per-
formed to ensure the optimality of z, or remove z from Sols
if it is deemed to be (weakly) dominated by x, as scripted
in lines 15-20 of Algorithm 2. Therefore, we conclude that
NWMOA* returns a set of cost-unique Pareto-optimal solu-
tion paths, even with negative weights. □

Experimental Results
This section compares the performance of NWMOA*
against the recent MOSP algorithms: LTMOA* (Hernández
et al. 2023), TMDA (Maristany de las Casas et al. 2023),
EMOA* (Ren et al. 2022) and also the lazy variant of
NAMOA*dr (Pulido, Mandow, and Pérez-de-la-Cruz 2015b)
studied in Maristany de las Casas et al. (2023).

Implementation: We implemented our NWMOA* algo-
rithm in C++ and used the publicly available version of the
other algorithms, all implemented in C++. The implementa-
tion of TMDA and Lazy-NAMOA*dr utilises linked lists to
store truncated vectors. However, we discovered that both al-
gorithms perform faster (nearly 30%) when vectors are han-
dled via dynamic arrays. Therefore, we used the faster array-
based implementation. For the LTMOA* algorithm, we were
unable to obtain the original implementation and instances.
We therefore implemented the fast-performing variant of the
algorithm (Lazy-LTMOA*-A) in C++ based on the descrip-
tions provided in the original paper. All algorithms use dy-
namic arrays to store truncated vectors. We ran all experi-
ments on a single core of an Intel Xeon Gold 5220R proces-

16

sor running at 2.2 GHz and with 32 GB of RAM, under the
CentOS Linux 7 environment, and with a two-hour timeout.
All C++ code was compiled using the GCC7.5 compiler.

The Open list: Since NWMOA* processes nodes based
on their f1-value only, we can use simpler data structures to
implement the priority queue, such as bucket-based queues
(Denardo and Fox 1979; Cherkassky, Goldberg, and Radzik
1996). It can be shown that the difference between the
largest and smallest f1-values available in Open during the
NWMOA*’s search is bounded by max{h1(v) − h1(u) +
cost1(u, v)|(u, v) ∈ E} for finite h1-values. Thus, we im-
plemented Open using a cyclic fixed-size bucket queue, with
the bucket width of one. Linked lists were used to handle
nodes in buckets via the Last-In, First-Out (LIFO) strategy.

Benchmark instances: We used the New York map
from the 9th DIMACS Implementation Challenge: Short-
est Paths1 to generate MOSP instances. The map contains
only two cost components: distance and time. To extend
the dimensions, following Storandt (2012), we enriched the
map with Shuttle Radar Topography Mission2 height in-
formation and set the third dimension to be the positive
height difference of the endpoints of each link, i.e., we set
cost3(u, v) = |height(v)−height(u)| for each (u, v) ∈ E.
For the fourth edge attribute, following Ren et al. (2022),
we calculate the average (out)degree of the link, that is,
the number of adjacent vertices of each end point, namely
cost4 = ⌊(deg(u) + deg(v))/2⌋ for each (u, v) ∈ E. Fi-
nally, as in Maristany de las Casas et al. (2023), we set the
fifth cost of each edge to 1, with cost5 of paths denoting the
number of edges traversed. We then generated 100 random
(start , goal) pairs, and evaluated all algorithms on the same
set of instances but with 3-5 cost components. Our code and
benchmark instances are publicly available3.

Since all algorithms use the same approach to compute
heuristic functions, we report the runtime of the main search
only. Table 2 presents the runtime statistics for all of the
studied algorithms with 3-5 cost components, as well as for
the variant of NWMOA* with logarithmic-time dominance
check for k = 3, denoted by NWMOA*log. We report both
arithmetic and geometric mean, and the runtime of unsolved
cases is considered to be the timeout. ϕ in the last column
represents the average slowdown factor (of runtime) on mu-
tually solved instances compared to the virtual best oracle.
The virtual oracle is given the best runtime of all algorithms
for every mutually solved instance. ϕ = 1 means the algo-
rithm is as good as the virtual best oracle.

Comparing the performance of the algorithms with k = 3,
we find that NWMOA*log is the best performer, dominat-
ing other algorithms in all individual instances with ϕ = 1.
This variant performs on average 20% faster than the stan-
dard NWMOA*, 4.2 times faster than Lazy-LTMOA*, and
above one order of magnitude faster than others. Our de-
tailed results show that the number of dominance checks
is reduced by 71% on average when binary search is used
for dominance check in NWMOA* with k = 3. Compar-

1http://www.diag.uniroma1.it/ challenge9/download.shtml
2https://www2.jpl.nasa.gov/srtm/
3https://bitbucket.org/s-ahmadi/multiobj

Runtime(s)

Algorithm |S| Min. MeanA MeanG Max. ϕ

NY with 3 cost components (avg(|Sols|) = 5,090)
NWMOA*log 100 0.01 3.2 1.1 15.1 1.0
NWMOA* 100 0.01 4.0 1.4 22.4 1.2
L-LTMOA* 100 0.05 14.1 4.7 75.5 4.2
TMDA 100 0.40 100.6 33.5 737.1 30.4
L-NAMOA*dr 100 0.37 109.7 36.2 845.5 33.0
EMOA* 100 2.59 671.1 225.5 4980.4 202.3

NY with 4 cost components (avg(|Sols|) = 86,134)
NWMOA* 100 0.17 728.0 146.0 5190.7 1.0
L-LTMOA* 97 0.39 1578.7 337.3 7200.0 2.3
TMDA 49 5.21 4779.0 2494.6 7200.0 37.8
L-NAMOA*dr 45 5.12 4860.3 2598.5 7200.0 41.3
EMOA* 27 23.35 5870.2 4276.7 7200.0 172.2

NY with 5 cost components (avg(|Sols|) = 120,011)
NWMOA* 82 0.21 2363.2 502.0 7200.0 1.0
L-LTMOA* 68 0.49 3125.6 891.4 7200.0 2.2
TMDA 33 7.09 5597.8 3631.8 7200.0 34.4
L-NAMOA*dr 31 7.45 5649.8 3738.5 7200.0 37.9
EMOA* 17 31.31 6301.7 5179.3 7200.0 162.3

Table 2: Runtime statistics of the algorithms (in seconds)
with k = 3, 4, 5. We report both Arithmetic (MeanA) and
Geometric (MeanG) Mean. |S| is the number of solved cases
(out of 100), and ϕ shows the average slowdown factor of
mutually solved cases compared to the virtual best oracle.
The runtime of unsolved cases is considered to be two hour.

ing the results for instances with four and five cost com-
ponents, we can find NWMOA* performing better in every
mutually solved instances with ϕ = 1. Extending the di-
mensions of the problem would not only enlarge the search
space, but would also make dominance checks more ex-
pensive. Nonetheless, NWMOA* consistently outperforms
other algorithms for k = 4, 5. It is more than two times
faster than Lazy-LTMOA*, and above one order of magni-
tude faster than others. Note that our comparison with Lazy-
LTMOA* can be considered head-to-head since it is imple-
mented on the same framework as NWMOA*.

Ablation study: To gain a deeper understanding of how
the key features of NWMOA* impact search performance,
we performed detailed performance analyses on three vari-
ants of NWMOA*, namely: NWMOA* without quick dom-
inance check and/or NWMOA* without lexicographical or-
dering of node in GTr

cl . The latter utilises the ordering pro-
posed for LTMOA*. We also compare how Lazy-LTMOA*
performs against these variants. The detailed results are pre-
sented in Table 3 for mutually solved instances and k = 4,
where ϕ denotes the average percentage increase in runtime
when compared to standard NWMOA*. |per | also denotes
the average number of percolations (total swaps performed)
in the binary heap of Lazy-LTMOA*, and the total number
of buckets traversed in the priority queue of NWMOA*.

When comparing the results, we see that all variants ex-
pand the same number of nodes on average (slightly larger
than Lazy-LTMOA*). Interestingly, the quick dominance
check of NWMOA* effectively prunes two third of domi-

17

Variant ϕ Mem. |generated| |expansions| |prunedl| |prunedq| |check| |per|

NWMOA* - 0.62 147.45×106 59.80×106 82.09×106 46.37×106 230.05×109 163.73×103
NWMOA*w/o qdc 18.81% 0.70 185.33×106 59.80×106 125.45×106 0.00×100 256.28×109 163.73×103
NWMOA*w/o lex 107.81% 0.62 147.45×106 59.80×106 82.09×106 43.37×106 302.81×109 163.73×103
NWMOA*w/o (lex+qdc) 108.83% 0.70 185.33×106 59.80×106 125.45×106 0.00×100 310.85×109 163.73×103
L-LTMOA* 165.63% 0.77 184.92×106 59.68×106 125.16×106 0.00×100 310.47×109 5.04×109

Table 3: NWMOA*’s performance compared against variants without quick dominance check (w/o qdc), and/or without lexi-
cographical ordering (w/o lex), and L-LTMOA*. The results are for 98 mutually solved instances with k = 4. We report the
averages of: percentage increase in runtime w.r.t. NWMOA* (ϕ), memory (in GB), number of generated, expanded, linearly
pruned (prunedl), and quickly pruned (prunedq) nodes, total dominance checks (|check |) and queue percolation (|per|).

Queue Runtime Mem. |exp| |per|

Bucket-LIFO 1068.4 1.16 123.9×106 2.6×103
Bucket-FIFO 1256.7 1.39 135.0×106 2.7×103
Hybrid w/o tie 1071.9 1.18 123.9×106 0.2×109
Hybrid w tie 1449.8 1.11 122.5×106 5.2×109
Heap w/o tie 1611.2 1.29 127.1×106 7.2×109
Heap w tie 1678.8 1.20 122.5×106 6.8×109

Table 4: NWMOA*’s performance with three different types
of priority queues, with/without tie breaking. Results for 71
mutually solved instances of the randomised NY map with
4 cost components. We report the averages of: runtime (in
seconds), memory (Mem. in GB), number of expansions
(|exp|), and number of queue percolation (|per|).

nated nodes, reducing the number of generated nodes and
memory use by 20% and 11% on average, respectively. We
see 18.8% increase in runtime when no quick dominance
check is in place. The impact is more severe when non-
dominated truncated costs are not stored lexicographically,
where we observe a runtime increase of over 100%. In this
situation, the number of dominance checks increases drasti-
cally, requiring a linear traversal of the entire GTr

cl list. The
performance decline is less pronounced if quick dominance
checks are not performed alongside the latter case (the sec-
ond last row). Even with both features removed, this down-
graded variant still preforms better than Lazy-LTMOA* due
to its more efficient node queueing strategy.

Negative weights and priority queues: For the last ex-
periment of this study, we analysed the performance of
NWMOA* using different data structures for Open . Further,
to evaluate our algorithm on large graphs with both nega-
tive and non-correlated edge attributes, we changed the edge
cost vector of the NY map with four new attributes as fol-
lows: cost1 is the energy consumption along the link. We use
the energy model of Ahmadi et al. (2021b) to produce re-
alistic, potentially negative energy estimates for an electric
vehicle with three passengers on board. We did not bound
the battery capacity, thus the plain NWMOA* can be used
to find energy-efficient paths. The second cost is now a pe-
nalised height function. We set cost2 of link (u, v) ∈ E to be
height(v) − height(u) if height(v) ≤ height(u) (down-
hill links), and 2× (height(v)− height(u)) otherwise (up-
hill links). For the third and fourth costs, we choose random

integers in the [1,100] range. The resulting graph is free of
negative cycles, thus all MOSP instances would be bounded.

We report in Table 4 the performance results for three
types of priority queues in two variations: Bucket (with
LIFO or First-In, First-Out strategy), Hybrid and Heap
queues (with or without tie-breaking). Our Hybrid queue is
a two-level bucket-based queue, with a bucket list and heap
used for the higher and lower levels, respectively (Denardo
and Fox 1979). Nodes may be inserted into either of the data
structures (depending on f1-value), but are always extracted
from the lower level. We set the bucket width to one in both
Bucket and Hybrid queues. The Hybrid queue can handle
both integer and noninteger costs. We used the same timeout
and (start , goal) pairs as in the previous experiment, and re-
port the average number of expansions, memory consumed,
and queue percolation for all mutually solved instances.

As we expected, the minimum number of expansions is
achieved when tie-breaking is in place for Heap and Hybrid
queues. Although we see slight improvement in the mem-
ory usage of the Heap and Hybrid queues with tie-breaking,
the effort is not paid off and NWMOA* performs up to
27% faster (in the Hybrid queue) when not breaking ties.
NWMOA* performs best with Bucket queue using the LIFO
strategy. It undergoes minimal queue effort and memory use,
while expanding only 1% extra nodes. The Bucket queue
with the FIFO strategy, however, shows the largest number
of expansions, and is outperformed by Hybrid queue with-
out tie-breaking. This observation highlights the significance
of prioritising most recent (better informed) expansions in
multi-objective search with A*.

Conclusion
We have introduced NWMOA*, an exact MOSP algorithm
that determines within polynomial time whether a point-to-
point MOSP problem instance is bounded. If the instance
is found to be bounded, NWMOA* can then compute a set
of Pareto-optimal solution paths of unique cost, even in the
presence of negative weights. NWMOA* challenges the con-
vention in multi-criteria search by not processing paths in
lexicographical order of their costs, while utilising novel
strategies to expedite the exhaustive search of A*. The re-
sults of our extensive experiments on a large set of realistic
instances show the success of NWMOA* in efficiently solv-
ing difficult MOSPP instances in limited time, outperform-
ing state-of-the-art algorithms by several factors.

18

Acknowledgments
This research was supported by Australian Government
through the International Clean Innovation Researcher Net-
works grant, and Victorian Government through Victorian
Higher Education State Investment Fund scheme. Mahdi
Jalili is supported by Australian Research Council through
projects DP240100963, DP240100830, LP230100439 and
IM240100042.

References
Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P. 2021a.
Bi-Objective Search with Bi-Directional A*. In Mutzel,
P.; Pagh, R.; and Herman, G., eds., 29th Annual European
Symposium on Algorithms, ESA 2021, Lisbon, Portugal (Vir-
tual Conference), volume 204 of LIPIcs, 3:1–3:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P. 2021b.
Vehicle Dynamics in Pickup-And-Delivery Problems Using
Electric Vehicles. In Michel, L. D., ed., 27th International
Conference on Principles and Practice of Constraint Pro-
gramming, CP 2021, Montpellier, France (Virtual Confer-
ence), volume 210 of LIPIcs, 11:1–11:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.
Ahmadi, S.; Tack, G.; Harabor, D.; Kilby, P.; and Jalili, M.
2024. Enhanced methods for the weight constrained shortest
path problem. Networks, 1–28.
Bellman, R. 1958. On a routing problem. Quarterly of ap-
plied mathematics, 16(1): 87–90.
Cherkassky, B. V.; Goldberg, A. V.; and Radzik, T. 1996.
Shortest paths algorithms: Theory and experimental evalua-
tion. Math. Program., 73: 129–174.
de las Casas, P. M.; Sedeño-Noda, A.; and Borndörfer, R.
2021. An Improved Multiobjective Shortest Path Algorithm.
Comput. Oper. Res., 135: 105424.
Denardo, E. V.; and Fox, B. L. 1979. Shortest-Route Meth-
ods: 1. Reaching, Pruning, and Buckets. Oper. Res., 27(1):
161–186.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik, 1: 269–271.
Ford Jr, L. R. 1956. Network flow theory. Technical report,
Rand Corp Santa Monica Ca.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Sci. Cybern., 4(2): 100–107.
Hernández, C.; Yeoh, W.; Baier, J. A.; Felner, A.; Salzman,
O.; Zhang, H.; Chan, S.-H.; and Koenig, S. 2023. Multi-
objective search via lazy and efficient dominance checks. In
Proceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, 7223–7230.
Jeddisaravi, K.; Alitappeh, R. J.; and Guimarães, F. G.
2016. Multi-objective mobile robot path planning based on
a search. In 2016 6th International Conference on Computer
and Knowledge Engineering (ICCKE), 7–12. IEEE.
Johnson, D. B. 1973. A note on Dijkstra’s shortest path al-
gorithm. Journal of the ACM (JACM), 20(3): 385–388.

Kurbanov, T.; Cuchý, M.; and Vokrı́nek, J. 2022. Heuristics
for Fast One-to-Many Multicriteria Shortest Path Search. In
25th IEEE International Conference on Intelligent Trans-
portation Systems, ITSC 2022, Macau, China, 594–599.
IEEE.
Maristany de las Casas, P.; Kraus, L.; Sedeño-Noda, A.; and
Borndörfer, R. 2023. Targeted multiobjective Dijkstra algo-
rithm. Networks, 82(3): 277–298.
Martins, E. Q. V. 1984. On a multicriteria shortest path
problem. European Journal of Operational Research, 16(2):
236–245.
Pulido, F. J.; Mandow, L.; and Pérez-de-la-Cruz, J. 2015a.
Dimensionality reduction in multiobjective shortest path
search. Comput. Oper. Res., 64: 60–70.
Pulido, F. J.; Mandow, L.; and Pérez-de-la-Cruz, J. 2015b.
Dimensionality reduction in multiobjective shortest path
search. Comput. Oper. Res., 64: 60–70.
Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced Multi-Objective A* Using Balanced Bi-
nary Search Trees. In Chrpa, L.; and Saetti, A., eds., Pro-
ceedings of the Fifteenth International Symposium on Com-
binatorial Search, SOCS 2022, Vienna, Austria, 162–170.
AAAI Press.
Salzman, O.; Felner, A.; Hernández, C.; Zhang, H.; Chan,
S.; and Koenig, S. 2023. Heuristic-Search Approaches for
the Multi-Objective Shortest-Path Problem: Progress and
Research Opportunities. In Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelli-
gence, IJCAI 2023, Macao, China, 6759–6768. ijcai.org.
Sastry, V.; Janakiraman, T.; and Mohideen, S. I. 2003.
New algorithms for multi objective shortest path problem.
Opsearch, 40: 278–298.
Sastry, V. N.; Janakiraman, T. N.; and Mohideen, S. I. 2005.
New polynomial time algorithms to compute a set of Pareto
optimal paths for multi-objective shortest path problems.
Int. J. Comput. Math., 82(3): 289–300.
Storandt, S. 2012. Route Planning for Bicycles - Exact Con-
strained Shortest Paths Made Practical via Contraction Hi-
erarchy. In McCluskey, L.; Williams, B. C.; Silva, J. R.; and
Bonet, B., eds., Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2012, Atibaia, São Paulo, Brazil. AAAI.
Ulloa, C. H.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo, L.;
and Koenig, S. 2020. A Simple and Fast Bi-Objective Search
Algorithm. In Beck, J. C.; Buffet, O.; Hoffmann, J.; Karpas,
E.; and Sohrabi, S., eds., Proceedings of the Thirtieth Inter-
national Conference on Automated Planning and Schedul-
ing, Nancy, France, 143–151. AAAI Press.
Wang, H.; Mao, W.; and Eriksson, L. 2019. A Three-
Dimensional Dijkstra’s algorithm for multi-objective ship
voyage optimization. Ocean Engineering, 186: 106131.
Xu, K.; mei Gai, W.; and Salhi, S. 2021. Dynamic emer-
gency route planning for major chemical accidents: Models
and application. Safety Science, 135: 105113.

19

