
Specifying Goals to Deep Neural Networks with Answer Set Programming

Forest Agostinelli1,2, Rojina Panta1,2, Vedant Khandelwal1,2

1 AI Institute, University of South Carolina, USA
2Department of Computer Science and Engineering, University of South Carolina, USA

foresta@cse.sc.edu, rpanta@email.sc.edu, vedant@mailbox.sc.edu

Abstract

Recently, methods such as DeepCubeA have used deep re-
inforcement learning to learn domain-specific heuristic func-
tions in a largely domain-independent fashion. However, such
methods either assume a predetermined goal or assume that
goals will be given as fully-specified states. Therefore, spec-
ifying a set of goal states to these learned heuristic func-
tions is often impractical. To address this issue, we introduce
a method of training a heuristic function that estimates the
distance between a given state and a set of goal states rep-
resented as a set of ground atoms in first-order logic. Fur-
thermore, to allow for more expressive goal specification, we
introduce techniques for specifying goals as answer set pro-
grams and using answer set solvers to discover sets of ground
atoms that meet the specified goals. In our experiments with
the Rubik’s cube, sliding tile puzzles, and Sokoban, we show
that we can specify and reach different goals without any need
to re-train the heuristic function. Our code is publicly avail-
able at https://github.com/forestagostinelli/SpecGoal.

Introduction
Deep reinforcement learning algorithms (Sutton and Barto
2018), such as DeepCubeA (McAleer et al. 2019;
Agostinelli et al. 2019) and Retro* (Chen et al. 2020), have
successfully trained deep neural networks (DNNs) (Schmid-
huber 2015) to be informative heuristic functions. Combined
with heuristic search methods such as A* search (Hart, Nils-
son, and Raphael 1968), Q* search (Agostinelli et al. 2021),
or Monte Carlo Tree Search (Kocsis and Szepesvári 2006),
these learned heuristic functions can solve puzzles, per-
form retrosynthesis, as well as compile quantum algorithms
(Zhang et al. 2020). However, these DNNs do not generalize
across goals where, in this context, a goal is a set of states in
the state space that are considered goal states. Instead, these
DNNs are either trained for a predetermined goal or use
methods such as hindsight experience replay (Andrychow-
icz et al. 2017) to generalize across pairs of start and goal
states. As a result, specifying a goal to a DNN requires ei-
ther training a DNN for that specific goal or obtaining the
heuristic values for some representative set of goal states and
taking the minimum heuristic value. This computationally
burdensome process significantly reduces the practicality of

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

DNNs for solving planning problems without predetermined
goals. Furthermore, if one can only describe properties that
a goal state should or should not have, but does not know
what states meet this criteria, obtaining a representative set
of goal states is not possible.

To train DNNs to estimate the distance between a state
and a set of goal states, we introduce DeepCubeAg , a deep
reinforcement learning and search method that builds on
DeepCubeA (McAleer et al. 2019; Agostinelli et al. 2019)
and hindsight experience replay (Andrychowicz et al. 2017)
to learn heuristic functions that generalize across states and
goals. Training data in the form of pairs of states and goals
is obtained by starting from a given start state and taking a
random walk to obtain a goal state. Given a process to con-
vert a state to a set of ground atoms that represents what
holds true in that state, we convert the obtained goal state to
a set of ground atoms and then obtain a set of goal states
by taking a subset of this set of ground atoms. We then
train a heuristic function with deep approximate value it-
eration (DAVI) (Bertsekas and Tsitsiklis 1996; Agostinelli
et al. 2019) to map states and goals to an estimated cost-
to-go. When solving problem instances, we use the trained
heuristic function with a batched version of A* search. We
evaluate this approach on the Rubik’s cube, 15-puzzle, 24-
puzzle, and Sokoban (Dor and Zwick 1999) and results show
that DeepCubeAg is able to find solutions for the vast ma-
jority of test instances and does so better than the domain-
independent fast downward planner (Helmert 2006).

To allow for expressive goal specification, we build on
the fact that goals are represented as sets of ground atoms.
Therefore, to specify a goal, any specification language that
can be translated to a set of ground atoms can be used. We
choose answer set programming (ASP) (Brewka, Eiter, and
Truszczyński 2011), a form of first-order logic program-
ming, as the specification language because one can obtain
stable models (Gelfond and Lifschitz 1988), also known as
answer sets, for a given specification, where specifications
are answer set programs and each stable model is a set of
ground atoms. Results show that diverse goals can be speci-
fied with simple answer set programs and reached using the
learned heuristic function and search. An overview of our
approach is described in Figure 1.

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

2



Preliminaries
Our method builds on the DeepCubeA algorithm
(Agostinelli et al. 2019) that was used to train a DNN
as a heuristic function using deep approximate value
iteration (Puterman and Shin 1978; Bertsekas and Tsitsiklis
1996). This heuristic function was then used in a batched
version of weighted A* search (Pohl 1970) to solve puzzles
such as the Rubik’s cube and Sokoban. For specifying
goals, we use ASP. In this section, we will describe the
background of deep approximate value iteration as well as
the background of ASP. We also describe the basics of the
Rubik’s cube.

Deep Approximate Value Iteration
In the context of deterministic, finite-horizon, shortest path
problems, approximate value iteration is a reinforcement
learning (Sutton and Barto 2018) algorithm to learn a func-
tion, h, that maps a state s to its estimated cost-to-go. The
optimal heuristic function, h∗, returns the cost of a short-
est path. The value iteration algorithm (Puterman and Shin
1978) takes a given h and updates it to h′ according to Equa-
tion 1

h′(s) = min
a

(ga(s, s′) + h(s′)) (1)

where ga(s, s′) is the cost to transition from s to state s′
using action a and s′ is the state resulting from taking action
a in state s.

In the tabular setting, value iteration has been shown
to converge to h∗. However, for domains with large state
spaces, such as the Rubik’s cube, we do not have enough
memory, or time, to do tabular value iteration. Therefore,
we represent h with a parameterized function, hφ, with pa-
rameters, φ. The parameters of the function are trained to
minimize the loss function in Equation 2

L(φ) = (min
a
ga(s, s′) + hφ−(s′)− hφ(s))2 (2)

where φ− are parameters of a target function that remains
fixed for a certain number of training iterations and is period-
ically updated to φ. This has been shown to make the train-
ing process more stable because the target remains station-
ary for extended periods of time (Mnih et al. 2015). When
hφ is a deep neural network, this approach is referred to as
deep approximate value iteration (DAVI).

Answer Set Programming
Answer set programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) is a form of logic programming that is
built on the stable model semantics (Gelfond and Lifschitz
1988) which describes when a set of ground atoms, M , is
a stable model, also known as an answer set, of a program,
Π. Program Π is restricted to be a set of rules in first-order
logic of the form:

A← B1, ..., Bm,¬C1, ...,¬Cn (3)

whereA,Bi, andCi are atoms in first-order logic.A is in the
“head”, or the consequent, and Bi and Ci are in the “body”,

or the antecedent. In this notation, ¬ represents negation, a
comma represents conjunction, and ← represents implica-
tion. Since all literals in the body are connected with con-
junction, the body is true if and only if all literals in the
body are true. Since the head has just one atom, the head
is true if and only if A is true. Since the head and the body
are connected by implication, the entire logical sentence is
true if and only if one of the two following conditions are
met: 1) the body is false; 2) the body is true and the head
is true. If there are no literals in the body, then semantics
dictate that the body is always true; therefore, the head must
also always be true. If there are no atoms in the head (also
known as “headless” rules), then semantics dictate that the
head is always false; therefore, the body must also always be
false. In practice, headless rules are used as constraints and
are implicitly represented with a literal, A, in the head and
a literal, ¬A, in the body that is in conjunction with the rest
of the body literals. Therefore, headless rules are rules with
negation in the body.

To determine if M is a stable model of Π, we first must
consider the grounded program of Π, which we will de-
note Πg . To obtain Πg , for all rules, R, in Π, every possi-
ble grounded version of R, Rg , is obtained and added to Πg .
A ground rule, Rg , is obtained from a rule, R, by substi-
tuting all variables in R for a ground term appearing in Π.
If there are no rules in Πg with negation, then there is one
unique minimal stable model of Πg (Van Emden and Kowal-
ski 1976; Gelfond and Lifschitz 1988) which corresponds to
all atoms that are derivable from Πg . An atom is derivable if
it is in the head of a rule with a body that is true. If there are
rules with negation in Πg , then we can check if a given set of
ground atoms, M , is a stable model of Πg by first comput-
ing the reduct (Marek and Truszczyński 1999) of Πg with
respect to M , which we will denote ΠM

g . ΠM
g is obtained by

starting with Πg and deleting all rules that have a negative
literal, ¬Ci, in the body if Ci is in M and then deleting all
negative literals in the body of the remaining rules. ΠM

g is
now a negation free program, which means that it has one
unique minimal stable model. If this stable model of ΠM

g is
equivalent to M , then M is a stable model of Π. Π can have
multiple stable models if it contains negation.

Some ASP solvers, such as clingo (Gebser et al. 2014,
2022), allow for choice rules. Choice rules have a conjunc-
tion of literals in the body and a set of ground atoms in the
head. If the body is true, then zero or more ground atoms
in the head may be added to the stable model. Furthermore,
clingo also allows for the use of disjunction, which can re-
sult in more than one stable model, even if negation is not
present.

The Rubik’s Cube
The Rubik’s cube is a three dimensional cube where each
face of the cube consists of a 3 x 3 grid of stickers, with
54 stickers in total. Each sticker can be one of six colors:
white, yellow, orange, red, blue, or green. These stickers
combine where the faces intersect to form cubelets, where
center cubelets, edge cubelets, and corner cubelets have 1,
2, and 3 stickers, respectively. While the canonical goal state
for the Rubik’s cube is one where all stickers on each face

3



have the same color, there are many other patterns that inter-
est the Rubik’s cube community (Ferenc 2013).

Methods
Learning Heuristic Functions for Goals
To learn a function that estimates the distance between a
state, s, and a goal, G, we must explicitly add the speci-
fied goal as an input to the heuristic function. Therefore, the
heuristic function now becomes h(s,G), that represents the
cost to go from s to a closest state in G. We assume a func-
tion, G(s), that maps states to a set of ground atoms that
represents what holds true in a given state and a process to
convert G to a representation suitable for the DNN. To train
the DNN, we must first have the ability to sample state and
goal pairs. From these pairs, we can then train the DNN us-
ing DAVI.

To sample state and goal pairs, the agent starts at a ran-
domly generated state, s0. The agent then takes t actions,
where t is drawn from a random uniform distribution be-
tween 0 and a given number T . Each action is sampled ac-
cording to a random uniform distribution1. The last observed
state, st, is then selected to create a goal, G, by first obtain-
ing G(st). Since any G(st) that is a superset of a goal, G,
also represents a goal, we can randomly remove atoms from
G(st) to create G such that G ⊆ G(st) and; therefore, st is a
member of the set of goal states represented by G. The loss
for the DNN is computed according to Equation 4. The pa-
rameters of the target network, φ−, are periodically updated
to φ. This training procedure is outline in Figure 1.

L(φ) = (min
a
ga(s, s′) + hφ−(s′,G)− hφ(s,G))2 (4)

Specifying Goals with Answer Set Programming
A logic program, Π, used to specify a goal contains back-
ground knowledge, B, which is a set of rules that describes
relevant domain knowledge, a goal specification, H , which
is a set of rules with the atom goal in the head, a headless
rule, :- not goal, that ensures goal must be true in all
stable models, and a choice rule with an empty body that
contains the set of all possible ground atoms, K, that can be
used to represent a set of states. Given a stable model, M ,
of Π, the subset of M in K, MK , represents a set of states.
When obtaining a stable model, we would like to find a min-
imalMK to ensure the stable model is as general as possible
(De Raedt 2008). MK is minimal if and only if removing
ground atoms from MK will result in goal no longer be-
ing true. To accomplish this, for an MK obtained from an
answer set solver, we pick a ground atom, a, in MK and re-
move it. We check if goal can still be true for MK \{a}. If
so, we set MK to MK \ {a} and repeat this process. If not,
we choose another atom to remove. If we cannot remove any
atoms and ensure goal is also true, then we terminate.

We will now formally define what a goal state and goal
model is and how this relates to negation as failure.

1Future work could use intrinsic motivation (Barto et al. 2004)
to encourage the exploration of diverse states.

Definition 1 (Goal state). Given a program, Π, a state, s, is
a goal state if and only if G(s) is a subset of some stable
model of Π.

Definition 2 (Goal model). Given a program, Π, a set of
ground atoms, M , is a goal model if and only if M is a
stable model of Π and for every state, s, such that G(s) is a
superset of MK , s is a goal state.

If M is indeed a goal model, then MK represents a set of
goal states. However, it is not the case that all stable mod-
els of Π are goal models since, in general, logic programs in
ASP can exhibit non-monotonic behavior due to the closed
world assumption. A logic program is non-monotonic if
some atoms that were previously derived can be retracted by
adding new knowledge. To handle this, we will iteratively
look for larger models in an attempt to reduce the number
of stable models that are not goal models. We will use the
clingo (Gebser et al. 2014, 2022) ASP software package to
specify goals.

Reaching Goals
Given a DNN trained to estimate the distance between a state
and a goal, where a goal is represented as a set of ground
atoms, as well as a specification in the form of a logic pro-
gram, Π, we can now describe how goals are reached. We
first start by finding a stable model, M , of Π. Since MK

is not guaranteed to be a goal model, it is possible that the
terminal state along some path to MK is not a goal state.
Therefore, we will use the DNN with A* search to find a
path to MK . If we find a terminal state that is a goal state,
then we can return the path to that state. If we do not find a
terminal state, then MK may represent a set of unreachable
states (see the Future Work Section) and we banMK , where
banning prevents the ASP solver from returning stable mod-
els that contain MK , and sample a new stable model. Other-
wise, if the terminal state is not a goal state, we refine M by
searching for a stable model that contains a strict superset of
MK . This corresponds to finding a new stable model, M ′,
where M ′K represents a subset of the states represented by
MK . To accomplish this, a new stable model, M ′, is found
with the constraint M ′K must contain all atoms in MK and
that the size of M ′K must be bigger than MK . This process
is outlined in Algorithm 1. Note, in this algorithm, a stable
model is deemed to be “None” if the answer set solver does
not find any stable model.

Similar to previous work (Agostinelli et al. 2019, 2021),
to take advantage of the parallelism of graphics processing
units (GPUs), we do a batched version of A* search that
removes multiple nodes from the priority queue at each iter-
ation.

Experiments
Representation and Training
To specify a set of states for the Rubik’s cube, we use a pred-
icate, at_idx, of arity 2, that holds when a given color is at
a given index. For example, at_idx(red,12) holds if a
red sticker is at index 12 on the Rubik’s cube. To represent a
set of these ground atoms to the DNN, we first use a vector of

4



Algorithm 1: Reaching a Specified Goal

Input: Program Π, DNN hφ, start state s0, max itrs I
Sample stable model M of Π
i = 0
while (M is not None) and (i < I) do
sg = A*(s0, MK , hφ)
if sg is None then

Ban M
else if G(sg) ⊆ some stable model of Π then

return path to sg
else

Sample stable model M ′ of Π s.t. MK ⊂M ′K
M = M ′

end if
if M is None or sg is None then

Sample stable model M of Π
end if
i+ +

end while
return failure

DNN

𝑠! 𝑠"𝑎! 𝑎" … 𝑠#

State to ground atoms
To DNN representation

𝒢ℎ$(𝑠!, 𝒢)

Specification 
Language

Human Input

Specification to 
ground atoms

Reinforcement 
Learning Update

𝐺(𝑠#)

Subsample

Training steps

Both

Specification steps

Figure 1: Outline of training and goal specification.

length 54 to represent each sticker. We then set colors values
of 0 through 5 based on the at_idx predicate. Unspecified
indices in the vector are set to 6. We then use a one-hot rep-
resentation of this vector as the input to the DNN. To specify
a set of states for the sliding tile puzzles, we use a predicate
at_idx, of arity 3, that holds when a given tile is at a given
x and y coordinate. The representation given to the DNN is
a one-hot vector of tiles where there is a special tile for those
whose position is unspecified. To specify a set of states for
Sokoban, we use the predicates agent, box, and wall of
arity 2, which holds true if a given agent, box, or wall is at
a given x and y coordinate. The representation given to the
DNN is three binary matrices that represent the locations of
the specified agent, boxes, and walls.

The architecture of the DNN is similar to the one de-
scribed in Agostinelli et al. (2019), with the only difference
being the addition of a goal input. Furthermore, when opti-
mizing the DNN, the target network is updated based on a
test set instead of a training loss, as was done in Agostinelli
et al. (2019). Specifically, we generate a test set on which

we periodically test the greedy policy and an update is done
when the number of states solved by the greedy policy in-
creases. To randomly generate start states for the Rubik’s
cube, for each state, we start from the canonical goal state
and randomly take between 100 and 200 actions. To gener-
ate start states for the sliding tile puzzle, we create random
permutations and check for validity with parity. To generate
start states for Sokoban, we start from a provided 900,000
training states (DeepMind 2018) and take a random walk
with a length between 0 and 30. We set the maximum num-
ber of actions to take from the start state to generate goal
states, T , to 30, for the Rubik’s cube and 1,000 for the 15-
puzzle, 24-puzzle, and Sokoban. We train and test using two
NVIDIA Tesla V100 GPUs and 48 2.4 GHz Intel Xeon Plat-
inum CPUs. Training is done with a batch size of 10,000 for
2 million iterations for the Rubik’s cube and 15-puzzle, four
million iterations for the 24-puzzle, and one million itera-
tions for Sokoban.

Specifying Goals with Sets of Ground Atoms
Since we will use ASP to find stable models to specify to
the trained heuristic function, where stable models are sets
of ground atoms, we first test the ability of DeepCubeAg
to reach goals specified as sets of ground atoms. Test states
are obtained from Agostinelli et al. (2019), which contains
1,000 randomly generated states for the Rubik’s cube, 500
randomly generated states for the 15-puzzle and 24-puzzle,
and 1,000 randomly generated states for Sokoban. We use
pattern databases (Culberson and Schaeffer 1998) to vali-
date the cost of a shortest path. For the Rubik’s cube, we use
a pattern database that takes advantage of domain-specific
mathematical group properties of the Rubik’s cube (Ro-
kicki 2010, 2016). We use the 12 atomic actions for the Ru-
bik’s cube, so the maximum cost-to-go is 26. For the sliding
tile puzzles, we use additive pattern database heuristics de-
scribed in Felner, Korf, and Hanan (2004).

The goal for the aforementioned test states for the Ru-
bik’s cube and sliding tile puzzles is only the single canoni-
cal goal state. To test the ability of DeepCubeAg to general-
ize across any given goal, we randomly generate 500 pairs of
start and goal states. We do this by starting from a randomly
generated start state, s0, taking a random walk with k steps
where k is uniformly distributed between 1,000 to 10,000
steps, and sampling a random subset of G(sk) to represent
the goal, where sk is the final state in the random walk. This
random subset of G(sk) can be as large as G(sk), itself, or
as small as the empty set. Therefore, the size of the set of
goal states that is represented by these sampled goals could
be between one and every state in the state space. We com-
pare DeepCubeAg to DeepCubeA, and the fast downward
planning system (Helmert 2006). For all test examples, we
give each solver 200 seconds to solve them. DeepCubeAg is
implemented in Python and uses two NVIDIA Tesla V100
GPUs for computing the heuristic function and a single
2.4 GHz Intel Xeon Platinum CPU, otherwise. Batch A*
search is performed with a batch size of 10,000 for the Ru-
bik’s cube, 1,000 for the sliding tile puzzles, and 100 for
Sokoban. For the fast downward planner, we perform A*
search with the goal count heuristic, fast forward heuristic,

5



and the causal graph heuristic. We note that we could not run
DeepCubeA on the test set with randomly generated goals
since, for DeepCubeA, goals must be predetermined before
training and training would take over a day for each of the
500 test examples.

Results Results are shown in Table 1. The results show
that DeepCubeAg consistently outperforms the fast down-
ward planning system in terms of the percentage of states
that are solved. DeepCubeAg solves either 100% of states
or close to 100% of states. In the single domain where the
fast downward planner solved 100% of test cases, Sokoban,
DeepCubeAg also solved 100% of test cases while also find-
ing shorter paths. In cases such as the Rubik’s cube and 24-
puzzle, for the canonical goal states, DeepCubeAg solves
100% of test states, while the fast downward planner solves
between 0% and 1.1%.

Specifying Goals with Answer Set Programming

Rubik’s Cube The background knowledge for the Rubik’s
cube defines colors, cubelets, and what color stickers the
cubelets have. We also define directions (clockwise, coun-
terclockwise, and opposite), faces, face colors (the same as
the center cubelet), and their relation to one another (for ex-
ample, the blue face is a clockwise turn away from the or-
ange face with respect to the white face). We also describe
what it means for a cubelet to have a sticker on a face as
well as for a cubelet to be “in place” (all colors matching the
center cubelet). We add constraints to the program to prune
stable models that represent impossible states. These con-
straints include saying that different stickers from the same
cubelet cannot be on the same face or opposite faces as well
as saying that a cubelet cannot have a sticker on more than
one face.

To specify goals, we draw from Ferenc (2013) to come
up with goals that combine different Rubik’s cube patterns
shown in Figure 2. We also test our method with the canon-
ical solved state for the Rubik’s cube where all faces have
a uniform color. Note that the training procedure is not told
of these patterns and is not aware that these patterns will
be used for testing. Given the background knowledge, many
patterns only require a few lines of code. A few are shown
here:

cross(F, CrossCol) :- face(F),
color(CrossCol), #count{Cbl:
edge_cbl(Cbl), onface(Cbl, CrossCol,
F)} = 4.

spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon :- #count{F : face_same(F)}=6.

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns used to create goals.

(a) Example 1 (b) Example 2

Figure 3: Reached goal of having a cross on all 6 faces where
the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Reached goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Reached goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Reached goal of having two checkerboards on op-
posite faces.

In addition to the canonical goal, we specify four other
goals: (1) all faces have a cross where the cross is the same
color as the center piece; (2) the red, green, blue, and orange
faces have a cup on them (3) there is a spot adjacent to a
cup with the opening of the cup facing the spot; (4) there are
two checkerboard patterns (a cross combined with an X) on
opposite faces.

Sokoban The background knowledge for Sokoban defines
the dimensions of the grid, the relations of coordinates in
terms of up, down, left, and right, what it means for a box

6



Puzzle Solver Path Cost % Solved % Opt Nodes Secs Nodes/Sec

RC (Canon)

PDBs+ 20.67 100.00% 100.0% 2.05E+06 2.20 1.79E+06
DeepCubeA 21.50 100.00% 60.3% 6.62E+06 24.22 2.90E+05
DeepCubeAg 22.03 100.00% 35.00% 2.44E+06 41.99 5.67E+04
FastDown (GC) - 0.00% 0.0% - - -
FastDown (FF) - 0.00% 0.0% - - -
FastDown (CG) - 0.00% 0.0% - - -

RC (Rand)

DeepCubeAg 15.22 99.40% - 1.91E+06 32.24 5.19E+04
FastDown (GC) 7.18 32.80% - 2.67E+06 13.79 1.41E+05
FastDown (FF) 6.49 31.20% - 4.87E+05 13.83 2.93E+04
FastDown (CG) 7.85 33.80% - 1.12E+06 11.62 5.81E+04

15-P (Canon)

PDBs 52.02 100.00% 100.0% 3.22E+04 0.002 1.45E+07
DeepCubeA 52.03 100.00% 99.4% 3.85E+06 10.28 3.93E+05
DeepCubeAg 52.02 100.00% 100.0% 1.81E+05 2.61 6.94E+04
FastDown (GC) 36.75 0.80% 0.80% 9.05E+07 102.11 8.66E+05
FastDown (FF) 52.75 80.80% 24.80% 2.92E+06 42.11 6.93E+04
FastDown (CG) 41.95 4.40% 1.20% 2.00E+07 80.58 2.47E+05

15-P (Rand)

DeepCubeAg 33.98 100.00% - 1.11E+05 1.60 6.16E+04
FastDown (GC) 14.92 38.00% - 1.61E+07 18.77 5.46E+05
FastDown (FF) 32.66 89.20% - 1.24E+06 17.39 5.65E+04
FastDown (CG) 20.45 51.20% - 3.90E+06 21.41 1.20E+05

24-P (Canon)

PDBs 89.41 100.00% 100.00% 8.19E+10 4239.54 1.91E+07
DeepCubeA 89.49 100.00% 96.98% 6.44E+06 19.33 3.34E+05
DeepCubeAg 90.47 100.00% 55.24% 3.38E+05 5.22 6.48E+04
FastDown (GC) - 0.00% 0.00% - - -
FastDown (FF) 81.00 1.01% 0.40% 2.68E+06 89.84 2.91E+04
FastDown (CG) - 0.00% 0.00% - - -

24-P (Rand)

DeepCubeAg 66.28 99.60% - 3.10E+05 4.91 6.16E+04
FastDown (GC) 9.86 10.00% - 9.54E+06 11.88 4.27E+05
FastDown (FF) 26.35 26.00% - 5.99E+05 19.57 2.41E+04
FastDown (CG) 13.75 12.60% - 1.42E+06 14.42 6.85E+04

Sokoban

DeepCubeA 32.88 100.00% - 5.01E+03 2.71 1.84E+03
DeepCubeAg 32.02 100.00% - 1.80E+04 0.95 1.79E+04
FastDown (GC) 31.94 99.80% - 3.17E+06 5.93 5.85E+05
FastDown (FF) 33.15 100.00% - 2.92E+04 0.32 7.49E+04
FastDown (CG) 33.12 100.00% - 4.43E+04 0.51 7.25E+04

Table 1: Comparison of DeepCubeAg with optimal solvers based on pattern databases (PDBs) that exploit domain-specific
information and the domain-independent fast downward planning system with the goal count (GC), fast forward (FF), and
causal graph (CG) heuristics. Comparisons are along the dimensions of solution length, percentage of instances solved, per-
centage of optimal solutions, number of nodes generated, time taken to solve the problem (in seconds), and number of nodes
generated per second. For the Rubik’s cube and sliding tile puzzles, experiments are done on canonical goal states (Canon)
and randomly generated goals (Rand). For testing DeepCubeA on Sokoban, we report numbers obtained from the DeepCubeA
GitHub repository2.

to be at the edge of the grid, what it means for a box to be
immovable, as well as basic constraints that state that two
objects cannot share the same location. In this domain, the
start state determines the ground atoms that will be present
in a goal state. In particular, the walls cannot be modified;
therefore, the specification of a goal must also take this into
account. To address this, we add the location of the walls to
the specification. We investigate the following goals: (1) all
boxes are immovable; (2) all boxes form a larger box; (3) the
four boxes occupy the four corners next to the agent.

Results Our experiments use 100 start states from the test
states used in Table 1 and follow Algorithm 1 (without set-

ting a maximum iteration) to find a path from these start
states to the goal. Given a specified goal, which is an an-
swer set program, we use clingo to find stable models and
use batch weighted A* search with a batch size of 1,000, a
weight of 0.6 on the path cost, and a search budget of 50
iterations to find a path to a sampled stable model. Visu-
alizations of reached goals for the four non-canonical Ru-
bik’s cube goals are shown in Figures 3, 4, 5, and 6, and
for Sokoban goals are shown in Figures 7, 8, and 9. A table
summarizing the path cost of solutions, number of models
sampled, time it takes to find stable models, and time it takes
to do search is shown in Table 2.

7



Goal Path Cost % Solved # Models Model Time Search Time
Rubik’s Cube (Canon) 24.41 100% 1 0.37 4.39
Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14
Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) 23.85 100% 1 0.49 4.2
Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

Table 2: Performance of DeepCubeAg when reaching goals specified with ASP.

(a) Example 1 (b) Example 2

Figure 7: Reached goal where all boxes are immoveable.

(a) Example 1 (b) Example 2

Figure 8: Reached goal where all boxes form a larger box.

(a) Example 1 (b) Example 2

Figure 9: Reached goal where four boxes are at the four cor-
ners of the agent.

Discussion
In Table 2 we see that the path cost for finding the Cross6
goal is almost half that of finding the canonical goal, even
though the canonical goal is a subset of the Cross6 goal.
This indicates that the trained heuristic function is capable
of estimating the cost-to-go to a closest state in a set of
goal states without needing to be explicitly told of a clos-
est state. This ability to discover paths to goal states which,

(a) Example 1 (b) Example 2

Figure 10: Start states that failed to reach both BoxBox and
AgentInBox.

themselves, are not known until a path is found, could be
extended to domains such as chemical synthesis. For ex-
ample, this would allow practitioners to specify properties
a molecule should or should not have, discover synthesis
routes to such molecules and, as a result, discover molecules
that meet these specifications.

In Algorithm 1, we sample a new stable model if we fail
to find a goal state. From Table 2, we see that the number
of models we need to sample for the canonical Rubik’s cube
goal state and Cross6 is only one. However, for Cup4 and
CupSpot, we must sample, on average, 42.5 and 27.68 mod-
els, respectively, to find a goal state. In cases where a goal
state was not found, A* search failed to find a path to the
sampled stable model. This may be because the sampled sta-
ble models represented only unreachable states. We discuss
ways to overcome this in the Future Work Section.

For Sokoban, we see that the BoxBox and AgentInBox
goals did not achieve a 100% success rate. Since we did not
set a maximum iteration for Algorithm 1, all failure cases
involved the algorithm terminating because all models were
banned. Therefore, A* search failed to find a path to all sta-
ble models, which may indicate that the goal was not reach-
able for these start states. Figure 10 shows start states that
failed to reach both the BoxBox and AgentInBox goals. The
figure shows that there was not enough room to reach these
goals.

Related Work
Action Schema Networks (ASNets) (Toyer et al. 2020) are
neural networks that exploit the structure of the Planning
Domain Definition Language (PDDL) to learn a policy that
generalizes across problem instances. However, ASNets are

8



trained using imitation learning, which assumes a solver that
can solve moderately difficult problems. On the other hand,
we use reinforcement learning, which does not require the
existence of any solver to learn. Furthermore, ASNets does
not support arbitrary goal formulae. However, our approach
of obtaining stable models from logic programs could be ex-
tended to the specification of goals in both PDDL and AS-
Nets. Additionally, the learned heuristic function could be
combined with existing planners, such as the fast downward
planner.

Learning from partial interpretations (Fensel et al. 1995;
De Raedt 1997) is a setting in inductive logic programming
(Muggleton 1991; De Raedt 2008; Cropper and Dumančić
2022) where the training examples are not fully specified.
This setting has also been applied to learning answer set
programs from partial stable models (Law, Russo, and Broda
2014). This work has parallels with our work, except, instead
of learning an answer set program as in Law, Russo, and
Broda (2014), the specification is given in the form of an an-
swer set program. Furthermore, instead of being given par-
tial stable models as examples as in Law, Russo, and Broda
(2014), the goal specification produces partial stable models
that are then used by the DNN to reach the goal. In this con-
text, partial means that a stable model does not have to be a
completely specified goal state.

Research on training deep neural networks to generalize
over both states and goals has mainly focused on goals that
are represented by a single state. In reinforcement learn-
ing, Universal Value Function Approximators (Schaul et al.
2015) were proposed to learn a value function with an ad-
ditional input of a goal state. Hindsight experience replay
(Andrychowicz et al. 2017) built on this approach to learn
from failures by using states observed during an episode as
goal states, even if they were not the intended goal state.
This approach has enabled learning for solving pathfinding
problems, such as those involving object manipulation, and
has shown to generalize to goal states not seen during train-
ing. However, this approach becomes impractical when only
high-level qualities of a goal are known, but not enough low-
level details are known to fully specify a goal state.

Future Work
In the Sokoban domain, unlike the Rubik’s cube domain,
not all states in the state space are reachable from all other
states. As a result, not all goals will be reachable from every
possible start state. In these cases, the training process could
be augmented by mining for “negative” goals (Tian et al.
2021) that cannot be reached. The DNN should then give
a very high cost-to-go when a goal is not reachable from a
given start state. We can then sample stable models that are
below some threshold to filter out unreachable goals.

In addition to goals that are unreachable from some states,
one could also specify goals that are unreachable from all
states due to them violating the constraints of the domain.
For example, the set of all Rubik’s cube states that have
more than 9 white stickers is zero. While constraints could
be manually added to the program to ensure no such sta-
ble models are found, preventing all such occurrences may
require sophisticated domain-specific knowledge. Inductive

logic programming (Muggleton 1991; De Raedt 2008; Crop-
per and Dumančić 2022) could be used to discover new con-
straints based on previously failed searches.

Our approach of using ground atoms to represent a goal
comes with the advantage of being agnostic to the specifi-
cation language as long as it can produce a set of ground
atoms. Therefore, in the case of using ASP as the specifica-
tion language, changes can be made to the predicates or even
the ASP software used without having to re-train the DNN.
However, this comes with the computational cost of solving
for a set of ground atoms given a specification. One could
instead train the heuristic function to estimate the distance
between a state and a lifted specification that either implic-
itly or explicitly contains variables. Given the ability to sam-
ple diverse start state and goal pairs, this could be done for
any kind of specification, such as first-order logic or even
natural language. The downside to this approach is that any
change in the vocabulary of the specification may require
re-training of the DNN. Furthermore, this approach may put
more representational burden on the DNN as it may need to
implicitly consider stable models of a given specification.

Conclusion
We have introduced DeepCubeAg , a deep reinforcement
learning and search method that trains DNNs to estimate
the distance between a state and a goal, where a goal is a
set of states represented as a set of ground atoms. Goals can
be communicated to a DNN without the need to re-train the
DNN for that particular goal and without the need for the
DNN to see that particular goal during training. When com-
pared to other domain-independent planners, DeepCubeAg
consistently solved more test states and found shorter paths.

To allow for more expressive goal specification, we have
formalized a method for specifying goals using a specifica-
tion language that is accessible to humans. Furthermore, the
language used to specify goals only needs to be able to be
translated into a set of ground atoms, which makes the DNN
agnostic to the specification language. Using answer set pro-
gramming, one can easily specify properties that a goal state
should or should not have without having to specify any goal
state in particular. As a result, this method has the ability to
discover novel goals and; therefore, facilitate the discovery
of new knowledge.

Acknowledgments
This work was funded in part by an ASPIRE-II grant from
the University of South Carolina.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Agostinelli, F.; Shmakov, A.; McAleer, S.; Fox, R.; and
Baldi, P. 2021. A* search without expansions: Learning
heuristic functions with deep Q-networks. arXiv preprint
arXiv:2102.04518.

9



Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O. P.; and
Zaremba, W. 2017. Hindsight experience replay. In Ad-
vances in Neural Information Processing Systems, 5048–
5058.
Barto, A. G.; Singh, S.; Chentanez, N.; et al. 2004. Intrinsi-
cally motivated learning of hierarchical collections of skills.
In Proceedings of the 3rd International Conference on De-
velopment and Learning, volume 112, 19. Citeseer.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming. Athena Scientific. ISBN 1-886529-10-8.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM,
54(12): 92–103.
Chen, B.; Li, C.; Dai, H.; and Song, L. 2020. Retro*: learn-
ing retrosynthetic planning with neural guided A* search.
In International Conference on Machine Learning, 1608–
1616. PMLR.
Cropper, A.; and Dumančić, S. 2022. Inductive logic pro-
gramming at 30: a new introduction. Journal of Artificial
Intelligence Research, 74: 765–850.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence, 14(3): 318–334.
De Raedt, L. 1997. Logical settings for concept-learning.
Artificial Intelligence, 95(1): 187–201.
De Raedt, L. 2008. Logical and relational learning.
Springer Science & Business Media.
DeepMind. 2018. boxoban-levels. https://github.com/
deepmind/boxoban-levels/tree/master/unfiltered. Accessed:
2024-03-31.
Dor, D.; and Zwick, U. 1999. SOKOBAN and other motion
planning problems. Computational Geometry, 13(4): 215–
228.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research, 22: 279–318.
Fensel, D.; Zickwolff, M.; Wiese, M.; et al. 1995. Are sub-
stitutions the better examples? Learning complete sets of
clauses with Frog. In Proceedings of the 5th International
Workshop on Inductive Logic Programming, 453–474. Cite-
seer.
Ferenc, D. 2013. Pretty Rubik´s Cube patterns with al-
gorithms. https://ruwix.com/the-rubiks-cube/rubiks-cube-
patterns-algorithms/. Accessed: 2023-03-28.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo= ASP+ control: Preliminary report. arXiv
preprint arXiv:1405.3694.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2022. Answer set solving in practice. Springer Nature.
Gelfond, M.; and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070–1080. Cambridge, MA.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Law, M.; Russo, A.; and Broda, K. 2014. Inductive learning
of answer set programs. In Logics in Artificial Intelligence:
14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014. Proceedings 14, 311–325.
Springer.
Marek, V. W.; and Truszczyński, M. 1999. Stable models
and an alternative logic programming paradigm. The Logic
Programming Paradigm: a 25-Year Perspective, 375–398.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s Cube with Approximate Policy
Iteration. In International Conference on Learning Repre-
sentations.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Muggleton, S. 1991. Inductive logic programming. New
generation computing, 8: 295–318.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4): 193–204.
Puterman, M. L.; and Shin, M. C. 1978. Modified policy
iteration algorithms for discounted Markov decision prob-
lems. Management Science, 24(11): 1127–1137.
Rokicki, T. 2010. Twenty-Two Moves Suffice for Rubik’s
Cube®. The Mathematical Intelligencer, 32(1): 33–40.
Rokicki, T. 2016. cube20src. https://github.com/rokicki/
cube20src. Accessed: 2024-03-31.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In International Con-
ference on Machine Learning, 1312–1320.
Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks, 61: 85–117.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tian, S.; Nair, S.; Ebert, F.; Dasari, S.; Eysenbach, B.; Finn,
C.; and Levine, S. 2021. Model-Based Visual Planning with
Self-Supervised Functional Distances. In International Con-
ference on Learning Representations.
Toyer, S.; Thiébaux, S.; Trevizan, F.; and Xie, L. 2020. As-
nets: Deep learning for generalised planning. Journal of Ar-
tificial Intelligence Research, 68: 1–68.
Van Emden, M. H.; and Kowalski, R. A. 1976. The seman-
tics of predicate logic as a programming language. Journal
of the ACM (JACM), 23(4): 733–742.
Zhang, Y.-H.; Zheng, P.-L.; Zhang, Y.; and Deng, D.-L.
2020. Topological Quantum Compiling with Reinforcement
Learning. Physical Review Letters, 125(17): 170501.

10


