
Approximating the Value of Collaborative Team Actions for Efficient Multiagent
Navigation in Uncertain Graphs

Martina Stadler, Jacopo Banfi, Nicholas Roy
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139-4309 USA
{mstadler, jbanfi, nickroy}@mit.edu

Abstract
For a team of collaborative agents navigating through an un-
known environment, collaborative actions such as sensing the
traversability of a route can have a large impact on aggregate
team performance. However, planning over the full space of
joint team actions is generally computationally intractable.
Furthermore, typically only a small number of collaborative
actions is useful for a given team task, but it is not obvious
how to assess the usefulness of a given action. In this work,
we model collaborative team policies on stochastic graphs us-
ing macro-actions, where each macro-action for a given agent
can consist of a sequence of movements, sensing actions, and
actions of waiting to receive information from other agents.
To reduce the number of macro-actions considered during
planning, we generate optimistic approximations of candidate
future team states, then restrict the planning domain to a small
policy class which consists of only macro-actions which are
likely to lead to high-reward future team states. We optimize
team plans over the small policy class, and demonstrate that
the approach enables a team to find policies which actively
balance between reducing task-relevant environmental uncer-
tainty and efficiently navigating to goals in toy graph and is-
land road network domains, finding better plans than policies
that do not act to reduce environmental uncertainty.

Introduction
We would like to enable a multiagent team to navigate
through an unknown environment, represented as a roadmap
or motion graph, where some edges may be untraversable.
For a single agent, this problem is known as the Cana-
dian Traveller’s Problem (CTP), and can be formulated as
a Partially Observable Markov Decision Process (POMDP),
where the optimal policy trades off between exploiting paths
that are traversable with high probability, but with poten-
tially higher cost, against exploration actions that determine
the traversability of potentially lower-cost paths. A collabo-
rative multiagent team considers the same problem, but has
additional flexibility to explore the environment with differ-
ent team members. This flexibility is especially interesting
for teams of agents with heterogeneous capabilities (e.g., an
air vehicle/ground vehicle), or for tasks where agents are not
co-located in the environment (and can provide non-local in-
formation to their teammates). For example, consider a team

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

b)

SG SG SG

SG SG

SG

GG
GG

GGGGGG

GA

GA GA

GA GA GA

SA SA SA

SA SA SA

d)

a)

e)

c)

f)

GG

Figure 1: Motivating Example. Consider an air vehicle/-
ground vehicle team navigating in a city environment
(a) subject to a climate disaster which has impacted the
traversability of city infrastructure, like pedestrian bridges
(purple). A ground vehicle starting at SG and navigating to
GG with no additional information has to select between an
unknown trajectory which could lead to either a short path
(b, green) or a long detour (c, green) and a medium-length,
known trajectory (d, blue), either of which can be subopti-
mal given the unknown state of the pedestrian bridge. By
taking a small diversion to the gold star, the air vehicle (with
start SA and goal GA) can sense and share the state of the
bridge with the ground vehicle, allowing it to select the best
available path to GG for every environmental state (e, green
and f, blue), reducing expected total team navigation cost.

of air and ground vehicles entering an urban environment
after a climate disaster, as in Fig. 1. The weather may have
rendered some of the routes through the city untraversable
for some of the agents, and some of the agents may be able
to sense the true state of some paths more quickly than oth-
ers. A collaborative plan which tasks some of the agents with
determining which roadways are impassable due to weather
will lead to better overall team performance.

While the flexibility of multiagent teams can improve
navigation outcomes in unknown environments, generating
team plans in this domain requires answering three ques-

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

677

tions: what is useful to explore given the team objective(s),
by when does the team need the explored information to im-
prove planning performance, and who should explore. An-
swering these questions can require a multiagent team to
reason over a POMDP with large action and observation
spaces, long time horizons, and delayed rewards, each of
which are individually studied as difficult problems in the
POMDP literature (e.g., Silver and Veness 2010; Sunberg
and Kochenderfer 2018; Somani et al. 2013; Theocharous
and Kaelbling 2003; He, Brunskill, and Roy 2011; Lim, Sun,
and Hsu 2011; Lee, Cai, and Hsu 2021; Arjona-Medina et al.
2019; see Kurniawati (2022) for a comprehensive review).
We choose to simplify our multiagent planning model by re-
lying on improved terrain scoring algorithms, such as cost-
to-go prediction from satellite imagery (Everett, Miller, and
How 2019) and traversability prediction from onboard sen-
sors (Guan et al. 2022), to compactly represent perceptual
uncertainty using a sparse graph, enabling us to focus on the
challenge of finding good collaborative team plans at long
time horizons with delayed rewards.

In this work, we model collaborative team policies on
stochastic graphs using macro-actions, where each macro-
action can consist of multi-step movement actions, sensing
actions, and actions to wait for sensor data from other team-
mates. To reduce the number of macro-actions considered
during planning, we generate optimistic approximations of
candidate future team states, then generate a small policy
class for planning which only includes macro-actions which
are likely to lead to high-reward future team states. We op-
timize team plans over the small policy class. Our approach
enables a team to find policies which balance between reduc-
ing task-relevant environmental uncertainty and efficiently
navigating to goals in toy graph and island road network
domains. We compare our approach to two planners which
do not use collaborative macro-actions for planning, and
demonstrate improved plan quality. We also compare our
approach to a planner which does not use approximations
to generate a small policy class for collaborative team plan-
ning, and demonstrate improved planning efficiency.

Related Work
Our problem and approach are based on the Canadian Trav-
eller’s Problem (CTP) and Deterministic POMDP (Det-
POMDP) formulations. We model multiagent team naviga-
tion as a Canadian Traveller’s Problem (CTP), or naviga-
tion on graphs with stochastic edges, which is commonly
used as the model for planning in environments with averse
weathers or stale map information (Papadimitriou and Yan-
nakakis 1991; Eyerich, Keller, and Helmert 2010). While de-
termining exact solutions to the CTP for non-trivial graphs
is PSPACE-Complete (Papadimitriou and Yannakakis 1991;
Fried et al. 2013), a number of high-quality approximate
policies have been developed to solve the single-agent
navigation problem on CTP graphs (Eyerich, Keller, and
Helmert 2010). A number of extensions have also been con-
sidered for the CTP, including CTP graphs with uncertain
edge traversal costs instead of stochastic edges (Nikolova
and Karger 2008) and disjoint-path CTPs (Bnaya, Felner,
and Shimony 2009; Bnaya et al. 2011). Most similar to our

approach are Bnaya et al. (2011) and Bnaya, Felner, and
Shimony (2009), which consider multiagent planning and
remote sensing on CTPs, respectively, yet both approaches
have limited scope; Bnaya et al. (2011) considered the spe-
cial multiagent planning case when there is no cost for an
agent to remain at its current vertex, reducing the approach
to a series of sequential CTP problems, and Bnaya, Felner,
and Shimony (2009) developed solutions for a sensing agent
with limited dynamics and no independent planning task.
In our approach, we explicitly consider the cost of waiting
to receive environmental information from a teammate, and
consider sensing agents which are required to execute indi-
vidual goal-directed navigation tasks.

POMDP planning with deterministic actions and obser-
vations has also been studied as the Deterministic POMDP
(Det-POMDP, Bonet 2009); we combine the Det-POMDP
formulation with the stochastic graph structure given by the
Canadian Traveller’s Problem (CTP) to generate a model
of the planning environment in which it is feasible to con-
sider long-horizon, multiagent collaborative actions with de-
layed rewards. The multiagent planning problem in large
POMDPs has also been studied in the decentralized set-
ting (Bernstein et al. 2002; Amato, Konidaris, and Kaelbling
2014; Amato et al. 2016). In our approach, we assume per-
fect, centralized communication between agents to enable
online policy adaptation based on team sensing actions in
the environment, rather than requiring multiagent collabo-
ration to occur during offline planning. Despite abstracting
away the complexities of perception and communication in
unknown environments, the computation required to identify
high-quality collaborative sensing actions in large, outdoor
environments can result in problem intractability.

Approach
Multiagent Planning on Unknown Graphs
We would like to model a team Λ of l (possibly hetero-
geneous) robots λ, Λ = {λ1, ..., λl}, tasked with goal-
directed navigation in a static environment using an imper-
fect roadmap. For example, consider a team navigating in
an outdoor environment guided by a graph derived from a
stale or incomplete overhead image (Eyerich, Keller, and
Helmert 2010), or a team navigating on a graph of a pre-
viously known environment subject to a significant event,
like a climate disaster. This scenario is well captured by
the probabilistic graph formulation proposed in the Cana-
dian Traveller’s Problem (CTP). We formalize the naviga-
tion environment as follows: let G be an undirected graph
with vertices V and m edges E, G = ⟨V,E⟩, where the cost
of traversing edge e by agent λ is given by a known scalar
cost function1, cλ : E → R+; we assume cλ is agent fin-
ishing time. Additionally, we assume that the traversability
(weather) of each edge we is initially unknown but takes a
binary value, we ∈ {0, 1}, and an environment weather w =
{w1, w2, ..., wm} is defined as a joint assignment of graph
edges to weathers we. At the beginning of each planning in-
stance, w is drawn from m independent Bernoulli distribu-

1For notational convenience, we overload the cost function to
take the endpoints of an edge as input: cλ : V × V → R+.

678

tions with parameters 1− ρe, where ρe ∈ [0, 1) is the prob-
ability that an edge is blocked, or untraversable, such that
p(w) =

∏
e∈E Bern(1 − ρe). We assume that the weather

changes slowly relative to the timescale of team navigation
(e.g., in the aftermath of a single event which changed the
environment, like a climate disaster, or due to long timescale
infrastructure wear or environmental change), so we assume
w is constant during planning and policy execution. We
also assume that each agent has a local, noiseless sensor
which can acquire ground truth observations ze = we of the
traversability of edges incident to the agent’s current ver-
tex. These two assumptions mean that the only nondeter-
minism in the problem is caused by the initially unknown
weather, and once the traversability of an edge is (noise-
lessly) observed, it does not change, allowing agents to act
deterministically on the observed subgraph. We also assume
that team communication is perfect and centralized, and that
each agent is equipped with a low-level controller capable of
avoiding collisions, enabling two or more agents to occupy
a graph vertex or travel along the same edge simultaneously.

The goal of the multiagent planning problem on the CTP
is to find a valid team policy π which takes each robot from
its initial vertex vsi to its goal vertex vgi , where vsi , v

g
i ∈

V ∀i ∈ {1, ..., l}, and which maximizes a scalar team reward
function R (e.g., makespan) in expectation over weathers.
The problem can be formulated as a Multi-Agent Determin-
istic Mixed Observability Markov Decision Process (MAD-
MOMDP):
• Team: The team Λ of l agents, {λ1, ..., λl}.
• Fully observable state S: The set of graph vertices for

each agent V l.
• Partially observable state: The set of weathers W .
• Actions: The set of incident, traversable graph edges for

each agent from each vertex, including self-loops.
• Observations: The traversability we of an edge, ze =
we ∈ {0, 1}.

• Observable state transition function: Deterministic tran-
sitions along observed, incident, traversable graph edges
to adjacent vertices.

• Partially observable state transition function: No transi-
tion, as weather w is assumed constant during a trial.

• Observation function: Deterministic observations of the
traversability we of sensed, incident graph edges.

• Reward R: The negative team makespan, or the nega-
tive maximum completion time of any agent in the team,
R = −maxλ∈Λ

∑∞
t=0 cλ(vλ,t, vλ,t+1), where, by as-

suming the reward of an agent remaining in its goal state
is zero, we ensure the stationary policy has zero reward
and the infinite sum is well defined.

• Belief b: The probability distribution over the partially
observed state, the weather, b = p(w), where b ∈ B.

• Initial belief b0: The prior belief over the weather, b0 =
{Bern(1− ρ1), ...,Bern(1− ρm)}.

We can write the multiagent planning objective as the
maximization of the MADMOMDP value function V π(v, b)
over multiagent policies π ∈ Π,

π∗(v, b) = argmax
π∈Π

V π(v, b), (1)

where Π is the space of multiagent policies, π : S×B → A,

V π(va, ba) = E
w∼ba

[
−max

λ∈Λ

∞∑
t=a

cλ(v
π
λ,t, v

π
λ,t+1)

]
, (2)

and vπλ,t is the vertex reached by agent λ at time t when
executing policy π from time a until time t.

Macro-actions for Information-gathering Teams
In practice, optimizing Eq. 1 over the space of all collabo-
rative team policies Π is intractable due to the size of the
team action space and the length of team plans (Bnaya et al.
2011). One approach to increasing planning tractability is
using macro-actions a ∈ A, or multi-step actions, which are
often selected using domain knowledge. For the single-agent
CTP, optimal plans can be generated by optimizing over
single-agent macro-action policies π ∈ Πsa which consist of
only two different types of macro-actions: 1) optimal navi-
gation in the observed subgraph to vertices adjacent to an
unknown edge and 2) navigation to the goal (Eyerich, Keller,
and Helmert 2010), where Πsa is the set of policies which
can be represented using the two single agent macro-action
types. Intuitively, the single-agent macro-action based po-
lices are optimal because single-agent MADMOMDP poli-
cies depend only on the agent’s belief b about the unknown
weather w. By construction, an agent’s belief is constant dur-
ing the execution of a single-agent macro-action a, so the
highest reward agent policy π does not change. Planning us-
ing macro-actions reduces policy search depth and breadth,
as they reduce the number of timesteps to the goal, and they
eliminate policies with suboptimal known-graph traversals
from the policy space.

We would like to apply macro-actions to multiagent CTPs
to increase the tractability of solving Eq. 1. The collabora-
tive nature of multiagent systems means we need to consider
additional macro-actions, specifically 1) sensing an edge and
2) waiting for the edge to be sensed and the result transmit-
ted. However, remote team sensing invalidates the optimality
of the single-agent macro-action set, as teammates can up-
date the team belief during one agent’s macro-action execu-
tion. Additionally, waiting actions can increase the branch-
ing factor of macro-action based search, as optimal wait du-
rations are not known before planning, so wait actions with
multiple durations must be considered. For example, con-
sider the GV in Fig. 1; the GV should combine waiting and
moving so it is positioned at the fork in the road where the
green and blue paths diverge when the AV senses the bridge.

Fortunately, while good team policies can be spatially and
temporally complex, in many problems of interest, only a
small number of collaborative macro-action policies are use-
ful for a specific team planning task. For example, in Fig. 1,
the only useful collaborative macro-action for the AV is to
sense the traversability of the purple bridge on the poten-
tially low cost (green) GV path to the goal; all other sensing
actions will not improve team planning performance. Our
key realization is that we can use the structure of the Det-
POMDP belief space to approximate the value of a hypothet-
ical team belief without explicitly planning the collaborative
actions that lead to the belief. This approximation allows us

679

to focus computation on the (often small) set of collabora-
tive team policies Π̂ that are likely to lead to high-reward
team beliefs, while pruning collaborative team policies that
are likely to lead to low-reward team beliefs and are there-
fore unlikely to improve team planning performance.

Policy Class Augmentation for Planning
In this work, we assume we are given a small base class of
single-agent macro-action policies Πsa that involve moving
agents to graph vertices and a much larger class of complex
multiagent macro-action policies Πma that include sensing
and waiting actions. We would like to generate a small, high
quality policy class Π̂ for planning by augmenting the base
policy class Πsa with a small number of candidate policy
classes Πc ⊂ Πma which are likely to improve team plan-
ning performance. While Πc can in principle be any subset
of Πma, it can be useful when each candidate policy class
has a meaningful interpretation in policy space (e.g., Πc is
the set of team policies where an AV senses edge e). In this
work, we define candidate policy classes as the set of macro-
action policies which include a specific macro-action a. The
value of a candidate policy class Πc for planning is the ex-
pected increase in planning performance when planning us-
ing Π̂ as compared to planning using the single-agent macro-
action policy class Πsa:

∆(Πsa,Πc, v, b) = max
π∈Πsa∪Πc

V π(v, b)− max
π∈Πsa

V π(v, b). (3)

We include a candidate policy class Πc in Π̂ if planning us-
ing the augmented class results in an improvement in plan-
ning performance ∆(Πsa,Πc, v, b):

Π̂(v, b) = Πsa ∪ {Πc|Πc ∈ Πma;∆(Πsa,Πc, v, b) > γ}, (4)

where γ ≥ 0 is a tunable parameter. When γ is low, collab-
orative actions are added to the policy class if they can lead
to any improvement in total team cost; when γ is high, col-
laborative actions are only added to the policy class if they
can lead to a significant improvement in total team cost. In
our experiments, we use a low γ which reduces the impact
of floating point errors on policy class selection, but does not
otherwise impact action selection.

While the defined policy class Π̂ is likely to contain a
small number of high-reward collaborative team policies and
result in efficient, high-reward planning, unfortunately, com-
puting ∆(Πsa,Πc, v, b) for all Πc ∈ Πma can be expen-
sive, as evaluating each ∆(Πsa,Πc, v, b) may require calcu-
lating value functions based on complex multiagent macro-
action policies. Next, we 1) discuss the structure of the Det-
POMDP belief space, which results from deterministic ac-
tions and observations, and 2) discuss team compositions for
which we can efficiently generate good approximations of
∆(Πsa,Πc, v, b), and therefore efficiently generate good Π̂.

Approximations for Policy Selection with One
Stochastic Agent
Preliminaries: Belief-based Value Functions First, we
discuss the structure of the Det-POMDP belief space. Con-
sider the beliefs b and bz , where bz is the updated team belief
after receiving observation z, i.e., bz = h(b, z) given belief

update function h. Note that the observation z is indepen-
dent of the sensing agent. Because the team operates in a
Det-POMDP where the hidden environment weather is con-
stant during planning, the (deterministic) agent observations
never increase team environmental uncertainty, i.e., the size
of the support of the team belief decreases monotonically
over the planning trial (Bonet 2009). Under the assumption
of rational planning (Russell and Norvig 2021), or that each
agent maximizes its reward given its knowledge of the en-
vironment, additional environmental information does not
decrease planning performance, and the value of a policy
generated using bz will be at least as good as the value of a
policy generated using b:

V π(v, bz) ≥ V π(v, b). (5)

We use this insight to compare the relative values of belief
states for different team compositions to generate a good
policy class for planning. Specifically, we generate plans for
teams with one agent which acts on the CTP graph with un-
known edge traversabilities, like a ground vehicle (GV) nav-
igating on a damaged road network, and one or more agents
which act on a fully traversable graph of the environment2,
like an air vehicle (AV) flying over damaged terrain. In the
remainder of the exposition, we will use the terms stochastic
agent/GV and deterministic agent/AV interchangeably.

We focus on the team composition of one GV and mul-
tiple AVs because, for a given team plan, the time at which
the team belief will change is known – it is the earliest time
at which any AV reaches an edge to sense, or when the GV
navigates to a vertex with an unknown incident edge. In fu-
ture work, we are interested in developing approximations
for team compositions with multiple GVs.

Value Function Approximations for a 1-GV/n-AV Team
Consider a 1-GV/n-AV team navigating on a CTP graph. We
assume that AVs do not observe the traversability of edges
while navigating unless specifically tasked to sense, and that
the GV immediately observes the traversability of all inci-
dent edges of its current vertex.

We would like to generate an augmented policy class Π̂
which is likely to contain high-quality solutions to the op-
timization in Eq. 1. We begin by identifying the types of
macro-action classes Πc ∈ Πma to consider for planning,
assuming a base class Πsa of single-agent, non-collaborative
macro-action policies. The first is collaborative sensing
macro-action policies Πcs , in which one or more AV(s)
travel to a vertex and sense an incident edge’s traversabil-
ity and transmit the information to the GV. The second is
collaborative waiting macro-actions Πcw , in which one or
more AV(s) travel to a vertex to sense the environment, and
the GV combines movement and waiting macro-actions to
optimally take advantage of the sensed information. For ex-
ample, the GV may select movement and waiting actions to
arrive at a fork between two paths just as additional infor-
mation about the paths is sensed and communicated.

In the following sections, we develop approximations for
∆(Πsa,Πc, v, b) for sensing and waiting macro-actions.

2The fully traversable graph may include vertices and edges
which are never reachable or traversable for the stochastic agent,
respectively, and are therefore not included in the CTP graph.

680

Approximating ∆(Πsa,Πcs , v, b) for Sensing Actions
First, we discuss approximations for sensing policies Πcs .
Each sensing action can be thought of as two separate single-
agent actions: an AV sensing the desired edge e with a cor-
responding cost of traveling to sense the edge, and the GV
planning using the sensed information with a potential re-
duction in overall plan cost resulting from knowing edge
traversabilities, both of which can impact team makespan.
Because all graph edges are traversable for the AV, the cost
cs of detouring from the optimal AV path (with cost c(v,G))
to sense edge e before continuing to the goal can be com-
puted exactly using a shortest paths algorithm,

cs = argmin
v′∈{ve0 ,ve1}

c(v, v′) + c(v′, G), (6)

where we assume an edge can be sensed at either of its end-
points ve0 and ve1 , and that if either ve0 or ve1 is on the AV’s
shortest path to the goal, the expected loss due to sensing is
zero. We also recover the deterministic edge sensing time,

ts = c(v, v′), (7)

where v′ is the minimizing vertex in Equation 6.
We can now consider how the sensing action reduces the

GV cost. To directly calculate the benefit of the sensing
action to the GV, we would need to find an optimal joint
GV/AV policy, which may contain a combination of move-
ment, sensing, and waiting actions, and may be computa-
tionally intractable to generate. However, we can use Eq. 5
to generate bounds for the joint policy that are inexpensive
to compute, based on the value functions of an agent which
does not receive sensed information and an agent which re-
ceives sensed information. First, we consider an agent at ver-
tex v with traversability belief b which does not receive addi-
tional sensing information and acts using a single-agent pol-
icy πsa, with value function V πsa(v, b). This value function
can be well-approximated using a high-quality single-agent
CTP policy.

Second, we consider an agent at vertex v with traversabil-
ity belief b which receives an observation of edge e at time
ts and acts using policy πma, a multiagent sensing policy,
with value function V πma(v, b, e, ts). Calculating this value
function exactly requires reasoning over multiagent sensing
policies. To avoid solving this complex planning problem,
we instead find an upper bound for the expression by ob-
serving that Eq. 5 implies that

V πma(v, b, e, ts) ≤ V πma(v, b, e, 0), (8)

or that the value of plan generated by immediately sensing
the unknown edge will be at least as good as the value of
a plan where the edge is sensed later during planning. Next,
we realize that the value of a multiagent policy with immedi-
ate sensing is equivalent to the value of a single-agent policy
calculated using the updated belief after sensing, bz ,

V πma(v, b, e, 0) =
∑

z∈Z
p(z)V πsa(v, bz|z = z), (9)

where bz is the agent’s traversability belief after receiving an
observation of edge e. Combining Eqs. 8 and 9, we recover
the following upper bound,

V πma(v, b, e, ts) ≤
∑

z∈Z
p(z)V πsa(v, bz|z = z), (10)

which can be well-approximated using a rollout-based
single-agent CTP policy. Using Eqs. 6 and 10, we recover an

upper bound for ∆, the expected change in team makespan
caused by using sensing actions, that is efficient to compute,

∆(Πsa,Πcs , v, b) ≤ max
{∑

z∈Z
p(z)V πsa(v, bz|z = z),

cs
}
−max

{
V πsa(v, b), c(v,G)

}
. (11)

Approximating ∆(Πsa,Πcw , v, b) for Waiting Actions
Next, we consider waiting policies Πcw . Each waiting ac-
tion can be thought of as two separate single-agent actions
taken by the GV: 1) waiting to begin moving, and 2) fol-
lowing a policy to the goal. First, we consider the wait-to-
move action. Because determining the optimal waiting time
requires solving the multiagent problem, we can compute a
lower bound of the cost of the wait-to-move action by as-
suming that the agent does not wait to move, and the wait
cost is zero. Second, we approximate the value of planning
to the goal after waiting. We can again use Eq. 5 to de-
velop efficiently computable bounds for the joint policy. To
generate the bound, we consider the value functions of two
agents: one which waits, and one which does not wait. First,
we consider the value function of an agent which receives a
new edge observation at ts and which cannot select wait-to-
move actions at any time during planning, V πma(v, b, e, ts).
The value of this policy is equivalent to the value of a two-
step single-agent policy which first navigates until the sens-
ing horizon with no information about e or the AV’s sensing
action, then replans using the updated belief and navigates
from the sensing horizon to the goal:

V πma(v, b, e, ts) = V πsa
ts (v, b) + V πsa(vts , b

z
ts), (12)

where Vts indicates the value function for navigating until
time ts with belief b, and vts and bzts are the vertex and belief
of the agent at ts, assuming πsa was followed until ts and
observation z was received. Second, we consider the value
function of an agent which receives a new edge observation
from the AV executing as at macro-action sensing time ts
and which can select wait-to-move actions until some wait-
ing time tw before or during sensing, V πma(v, b, e, ts, tw),
where tw ≤ ts. Determining this value function can require
considering waiting team actions; we again avoid this com-
putation by generating an upper bound. First, we note that
Eq. 5 implies that waiting for additional sensing information
can only improve the value of future actions in the waiting
policy (assuming no wait cost):

V πma(v, b, e, ts, tw) ≤ V πma(v, b, e, ts, ts). (13)

Next, we realize that the value of a policy which waits until
the sensing time to take an action is equivalent to the value
of a policy which senses the edge immediately and does not
wait, again assuming no wait cost.

V πma(v, b, e, ts, ts) = V πma(v, b, e, 0). (14)

Using Eqs. 9, 13, and 14, we recover a bound for
V πma(v, b, e, ts, tw),

V πma(v, b, e, ts, tw) ≤
∑

z∈Z
p(z)V πsa(v, bz|z = z), (15)

which can be well-approximated using a rollout-based
single-agent CTP policy. We recover the tractable ∆ bound:

∆(Πsa,Πcw , v, b) ≤ max
{∑

z∈Z
p(z)V πsa(v, bz|z = z),

cs
}
−max

{
V πsa
ts (v, b) + V πsa(vts , b

z
ts), cs

}
. (16)

681

Using Problem Structure to Reduce the Number of
Candidate Policy Classes
Unfortunately, even calculating approximations of policy
quality ∆ for all candidate policy classes Πc to generate Π̂
can be computationally expensive. However, in many struc-
tured environments, there exists a macro-action ordering
property which can be used to select an order in which to
try to add Πc to Π̂, and to prune some candidate policies
Πc without approximation. For example, a policy class with
a waiting action can only improve planning performance if
it also includes a sensing action that was useful for plan-
ning; otherwise, the agent will consider waiting for infor-
mation that will never come or is not useful. For the single
AV case, we first calculate ∆(Πsa,Πcs , v, b) for a sensing
policy class Πcs . If the sensing action does not improve per-
formance, the action is not included in Π̂, and we do not ap-
proximate the value of the corresponding waiting candidate
policy class Πcw . Otherwise, we calculate ∆(Πsa,Πcw , v, b)
for waiting macro-action policy class Πcw to determine if
it is beneficial to sense and wait. If waiting improves per-
formance, the waiting macro-action is added to Π̂; other-
wise, only the sensing macro-action is added to Π̂. For the
n-AV case, we calculate ∆(Πsa,Πcs , v, b) for every edge,
then greedily assign an edge to each agent (note that the
improvement due to sensing is sensing-agent independent,
while the cost of the sensing action is sensing-agent depen-
dent). Given the assignment, we calculate the value of sens-
ing and the value of waiting for the multi-agent action, as in
the single-agent case, and generate Π̂. While we consider a
single greedy edge assignment per timestep, more complex
assignment and approximation strategies could be used.

Planning using ∆ and Multiagent Macro-Actions
on CTPs
Finally, we discuss a planner which uses a macro-action pol-
icy class Π̂ to optimize Eq. 1 in an online, centralized mul-
tiagent CTP solver with perfect communication. As input,
we take a MADMOMDP, a baseline policy class to use in
all planning instances, like single-agent macro-action poli-
cies Πsa, and a set of multiagent macro-action policies to
consider, Πma. In some cases, we are also given an ordering
property. We assume that edges incident to GVs at the start
of an instance are observed.

Planning begins by approximating
∆(Πsa,Πc, vGV , bGV) for every Πc for the GV (un-
less previous computations combined with policy orderings
guarantee that ∆(Πsa,Πc, vGV , bGV) < γ) and generating
a Π̂ according to Eq. 4. Then, we optimize Eq. 1 over
Π̂ to generate a team macro-action policy π, which may
include collaborative macro-actions. Team policies are
executed as follows: first, each agent begins to execute its
current macro-action. When any subset of agents finishes
their current macro-actions, they update their belief and
communicate their belief with each other and the central
planner. The central planner replans, and the finished agents
begin their next macro-actions. Additionally, non-finishing
agents truncate their macro-actions as soon as possible (i.e.,

Metric
↓ better

Ora-
cle

Indep-
endent

Passive
Comms

Comms
+ Ap-
prox

Comms
+No
Approx

Avg % Regret 0 81.82 81.07 4.00 4.00
Avg Makespan 80.27 104.10 103.30 82.27 82.27
SEM Cost 3.86 3.08 3.02 3.86 3.86
Avg GV Cost 80.27 104.10 103.30 82.27 82.27
SEM GV Cost 3.86 3.08 3.02 3.86 3.86
Avg AV Cost 1.0 1.0 1.0 7.0 7.0
SEM AV Cost 0.0 0.0 0.0 0.0 0.0
Avg Time (s) - 1.18 1.18 24.29 42.62
SEM Time (s) - 0.01 0.01 0.06 0.15

Table 1: Toy Graph Results. We report the average (Avg)
normalized percent regret from optimal, average team
makespans, AV costs, and GV costs in simulation units (u),
algorithm execution times, and standard errors of the mean
(SEM). Our approach, Comms+Approx, generated lower
makespan plans than the single agent planning approaches,
Independent and Passive Comms, and was more time effi-
cient than Comms+No Approx, which did not use approxi-
mations to generate a small policy class Π̂.

at the end of their current primitive action, or graph edge),
communicate with the central planner to get the updated
team belief, and replan. This process repeats until all agents
reach their respective goals.

Experiments
Experimental Setup
We benchmarked our informed, policy-class aware mul-
tiagent planner, Comms+Approx, against three multiagent
planners, Independent, Passive Comms, and Comms+No
Approx. In Comms+Approx planning, the multiagent team
planned using the described approach, and the GV sensed
all incident edges during plan execution, while the AV(s)
sensed only requested edges. In Independent planning, each
agent planned independently, and did not share information
with the team; for this case, we assumed that the GV sensed
all incident edges during plan execution, and the AV(s) did
not sense. In Passive Comms planning, each agent planned
independently, but the agents shared, updated, and planned
using a joint belief space; for this case, we assumed that the
GV sensed all incident edges during plan execution, and the
AV(s) sensed all traversed edges during plan execution. In
Comms+No Approx, the team planned using a modified ver-
sion of Comms+Approx which did not generate approxima-
tions and planned over the full multiagent macro-action pol-
icy class, Π̂ = Πsa ∪Πma. We also compared our approach
to an oracle, Oracle, which planned using Dijkstra’s algo-
rithm (Dijkstra et al. 1959) on a fully observed graph.

We used Monte Carlo simulation to generate value func-
tion approximations for planning. As in Eyerich, Keller, and
Helmert (2010), we use the same names to refer to algo-
rithms and policies for planning, where executing an algo-
rithm corresponds to optimizing the corresponding policy at
each timestep, and a policy is generated online by selecting
the macro-action which maximizes the value function of the

682

1,.7 1

(a)

SG

1

3 c=1, ρ=.1

20
100 400

1

Pr
ob

le
m

 S
et

up
Medium length,
traversable GV
path (blue)

Optimal
GV plan

Suboptimal
GV plan

In
de

pe
nd

en
t

(b)
(e)

(f)C
om

m
s+

A
pp

ro
x

(O
ur

s)

(c) (d)

GV selects
lowest expected

makespan action,
with variable

results for
individual
weathers

GA
SA

GG

Long, likely
traversable GV
path (pink)

Short,
unlikely
traversable
GV path
(orange)

Figure 2: Visual Plan Comparison in the Toy Graph. Plans
executed by the AV (blue) and GV (green) navigating from
their respective starts (SA/SG) to goals (GA/GG) in the toy
graph (a, b), where edge costs and blocking probabilities are
labeled in red and blue, respectively. Solid lines represent
traversable edges and dotted lines represent edges with un-
certain traversability. In the Independent plan, the AV nav-
igated directly to the goal, and the GV selected the plan
which minimized the expected makespan over all weathers,
resulting in highly variable planning performance in some
weathers (e, f). In the Comms+Approx plan, the AV diverted
to sense the unknown edge (purple) on the short path to the
goal, while the GV combined waiting and moving and ar-
rived at the fork between paths when the AV sensed the
edge on the short path (c). Then, the GV took the shortest
traversable path to the goal (d).

macro-action successor, or the terminal state of the macro-
action. Independent macro-actions were evaluated using the
optimistic rollout policy (ORO, Eyerich, Keller, and Helmert
2010), which calculated successor value functions by simu-
lating optimistic planning (assuming unknown edges were
traversable) from each successor for r different weathers,
where r is the number of rollouts used. We also modified
ORO to approximate the sensing value functions by reveal-
ing information sensed by other agents during optimistic
planning, and by triggering replanning when the team belief
was updated. Waiting value functions were evaluated using
a combined policy, Greedy Rollout - Greedy policy (GR-
G), where value functions were calculated for all navigation-
based successors and the current state, which is the result of
taking the single timestep wait action. The GR-G policy ap-
proximated successor costs by averaging the costs of Greedy
policy (G) executions for r rollout weathers; the Greedy pol-
icy (G) calculated macro-action values by simulating exe-
cution of the optimistic policy in a given rollout weather
for each successor and the current state. We planned using
r = 100 rollouts for all policies, as this provided a good
trade-off between computation time and solution quality in
preliminary experiments, and γ = 1×10−10. When evaluat-
ing value functions to calculate ∆, we used the same rollout
weathers to evaluate each term in the approximation, as this

Metric
↓ better

Oracle Indep-
endent

Passive
Comms

Comms+
Approx

Avg % Regret 0 35.02 29.33 12.81
Avg Makespan 1151.34 1595.42 1519.35 1306.94
SEM Makespan 12.39 26.62 23.55 17.04
Avg GV Cost 1151.34 1595.42 1519.35 1306.29
SEM GV Cost 12.39 26.62 23.55 17.06
Avg AV Cost 181.89 181.89 181.89 1011.05
SEM AV Cost 1.04 1.04 1.04 15.7
Avg Time (s) - 31.13 27.26 5203.42
SEM Time (s) - 0.75 0.55 199.09

Table 2: Islands Domain Results. We report the average
(Avg) normalized percent regret, average team makespans,
AV costs, and GV costs in simulation units (u), algorithm
execution times (s), and standard errors of the mean (SEM).
Our approach, Comms+Approx, resulted in lower makespan
plans than Independent and Passive Comms, often by divert-
ing the AV to sense, resulting in larger AV costs but smaller
GV costs, reducing team makespan.

reduced errors in ∆ caused by rollout weather stochastic-
ity. Note that because the value functions used to generate
the bounds in the Approach section are approximated, we
cannot guarantee that our implementation does not prune
macro-actions which could lead to high-reward plans due to
poor value function approximation. While the OPT, ORO,
and GR-G rollout policies were selected due to their good
performance for low r, a rollout policy with a regret bound,
such as UCT (Kocsis and Szepesvári 2006), could be used
to bound the regret of pruning macro-actions using the pro-
posed value function bounds.

Toy Environment
We demonstrated our approach by planning for a 1-GV/1-
AV team for 100 trials in the toy scenario in Fig. 2-a-b with
GV start SG and goal GG and AV start SA and goal GA for
all trials. A weather was drawn randomly from the distri-
bution over weathers p(w) at the start of each trial, and the
GV and AV navigated at the same speed. The GV had three
possible paths to the goal: one long, likely traversable path,
one medium-length, traversable path, and one short-length,
likely untraversable path. The non-collaborative planners se-
lected a GV plan without knowledge of the state of the un-
known edge on the short path to the goal, which resulted in
highly variable GV planning performance given the weather.
The performance in (e) matched what the planner expected,
but in (f) the unknown edge on the short path was in fact
not traversable and the GV had to backtrack in a way the
planner did not anticipate, leading to higher overall cost.
In contrast, the collaborative planners predicted the poten-
tial cost of the unknown edge and used the AV to sense
it, while the GV combined waiting and movement macro-
actions to arrive at the decision point between paths when
the AV sensed and shared the traversability of the edge (c).
This enabled the GV to select the shortest path to the goal
for every weather (d). While the sensing and waiting actions
incurred small constant GV and AV costs in all trials, they
resulted in more consistent, ultimately lower makespan team

683

GG
(a

) I
nd

ep
en

de
nt Example

candidate plan

Executed
plan

SG

GA

SAGA

SA
(b

) C
om

m
s +

 A
pp

ro
x

GA

SA

SG

GG
SA

GA

Candidate plan

Executed
plan

Backtracking

Figure 3: Visual Plan Comparison in the Islands Domain.
Example plans executed by the GV (green) and AVs (blue/o-
range) navigating from their respective starts (SG/SA) to
goals (GG/GA) in the islands domain. Dotted, solid, and
dashed lines represent untraversable, traversable, and un-
known edges at trial termination. (a) The Independent plan-
ner selected an untraversable GV path (highlighted green),
and the GV backtracked after reaching the dead end. (b) In
the Comms+Approx plan, the AVs navigated to and sensed
uncertain edges, and determined the candidate path in (a)
was untraversable. The GV waited for information about the
candidate path, then navigated to the goal. Note that the AVs
did considerable additional sensing work, traversing a large
part of the graph to sense edge traversability for the GV,
which drove down the team makespan (e.g., by 26.8% here).

plans across weathers. Additionally, the AV did not sense the
uncertain edge on the long GV path to the goal, indicating
that our approach distinguished between task-relevant and
task-irrelevant team sensing macro-actions.

Quantitatively, we showed that our approach found plans
with 21.0% and 20.4% lower average makespans as com-
pared to the single agent baselines, Independent and Passive
Comms, respectively, indicating that collaborative planning
improved navigation outcomes in the environment. We also
showed that our approach found similar makespan plans to
Comms+No Approx while planning for 43.0% less time on
average, demonstrating that the proposed approximations in-
creased planning efficiency without reducing plan quality.

Islands Environment
Next, we demonstrated our approach for a 1-GV/2-AV team
navigating in a simulated island environment, modeled as
a CTP graph with 90 vertices and 166 edges with euclidean
distance edge costs, shown in Fig. 3. We generated 100 envi-
ronments by sampling edge blocking probabilities uniformly
from an allowable range based on edge type. We modeled
four different types of edges: highway and on-ramp edges

with ρ ∈ [0.0, 0.001), and local road and bridge edges with
ρ = 0.5. We generated 10 trials per environment by ran-
domly sampling a start and goal in every graph, then sam-
pling 10 individual trial weathers per graph and start/goal
pair, discarding and re-sampling if the start and goal were
not connected in the weather. We also discarded and re-
sampled start/goal pairs if the GV trajectory generated by
the first weather was not at least 8 edges long to remove
short, high traversal probability trajectories from our dataset
which were unlikely to benefit from collaborative planning.
We also assumed that the AVs moved 8x faster than the GVs.

We quantitatively assessed the Independent, Passive
Comms, and Comms+Approx planners in Table 2; results
for the Comms+No Approx approach were omitted due to
computational limitations. We also compared to an oracle
planner which ran a shortest path algorithm on the fully ob-
served graph for each agent. Our approach found 18.1% and
14.0% lower makespan plans than the Independent and Pas-
sive Comms planners on average. Our approach frequently
resulted in shorter GV plans and longer AV plans, indicat-
ing that it used AV sensing actions to reduce GV planning
uncertainty, which resulted in shorter GV plans and shorter
team makespans overall. However, as our approach solved
a multiagent POMDP, rather than three independent single
agent POMDPs, it was less time efficient: 167x and 191x
slower than Independent and Passive Comms, respectively.

Example plans generated by the Independent and
Comms+Approx approaches are shown in Fig. 3. In Inde-
pendent planning, the GV attempted to reach the goal using
an untraversable candidate plan and had to backtrack, while
the AVs navigated directly to the goals. In Comms+Approx
planning, the GV waited while the AVs sensed various can-
didate paths in the environment, then took a high-quality
path to the goal, resulting in a 26.8% lower team makespan.

Conclusion

We presented a novel method for improving collaborative
team navigation in stochastic, unknown environments by
quickly identifying high-quality collaborative team macro-
action policies and approximating their value for planning.
Our approach reduced team navigation cost as compared
to agents which planed independently, and increased plan-
ning efficiency as compared to teams which optimized team
policies over an uninformed set of collaborative multiagent
policies. In future work, we would like to explore efficient
approximations for other team compositions while remov-
ing the burden on the user to hand define both the space
of candidate collaborative macro-actions and the functions
for approximating their values. We are interested in using
learned models (e.g., graph neural networks) to generate
candidate macro-actions and approximations for more com-
plex teams. We would also like to extend our approach to
teams and environments with limited communication (e.g.,
due to communication delays, dropouts, or dead zones) by
incorporating more complex communication models into the
MADMOMDP observation function and modifying the be-
lief communication and policy truncation functions.

684

Acknowledgements
This paper is based upon work supported under the DCIST
CRA by the Army Research Laboratory under Cooperative
Agreement Number W911NF-17-2-0181 and by the Sin-
gapore Defence Science and Technology Agency (DSTA)-
MIT Master Research Agreement. The MIT SuperCloud and
Lincoln Laboratory Supercomputing Center provided HPC
resources that contributed to the results reported within this
paper. Their support is gratefully acknowledged.

References
Amato, C.; Konidaris, G.; Anders, A.; Cruz, G.; How, J. P.;
and Kaelbling, L. P. 2016. Policy search for multi-robot co-
ordination under uncertainty. The International Journal of
Robotics Research, 35(14): 1760–1778.
Amato, C.; Konidaris, G. D.; and Kaelbling, L. P. 2014.
Planning with macro-actions in decentralized POMDPs. In
Proceedings of the Thirteenth International Conference on
Autonomous Agents and Multiagent Systems, 1273–1280.
Association for Computing Machinery (ACM).
Arjona-Medina, J. A.; Gillhofer, M.; Widrich, M.; Un-
terthiner, T.; Brandstetter, J.; and Hochreiter, S. 2019. Rud-
der: Return decomposition for delayed rewards. Advances
in Neural Information Processing Systems, 32.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research,
27(4): 819–840.
Bnaya, Z.; Felner, A.; Fried, D.; Maksin, O.; and Shimony,
S. 2011. Repeated-task Canadian traveler problem. In Pro-
ceedings of the Fourth International Symposium on Combi-
natorial Search, 24–30.
Bnaya, Z.; Felner, A.; and Shimony, S. E. 2009. Canadian
traveler problem with remote sensing. In Proceedings of
the Twenty-First International Joint Conference on Artificial
Intelligence, 437–442.
Bonet, B. 2009. Deterministic POMDPs revisited. In Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, 59–66.
Dijkstra, E. W.; et al. 1959. A note on two problems in con-
nexion with graphs. Numerische Mathematik, 1(1): 269–
271.
Everett, M.; Miller, J.; and How, J. P. 2019. Planning beyond
the sensing horizon using a learned context. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 1064–1071.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-quality
policies for the Canadian traveler’s problem. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence.
Fried, D.; Shimony, S. E.; Benbassat, A.; and Wenner, C.
2013. Complexity of Canadian traveler problem variants.
Theoretical Computer Science, 487: 1–16.
Guan, T.; He, Z.; Song, R.; Manocha, D.; and Zhang, L.
2022. TNS: Terrain traversability mapping and naviga-
tion system for autonomous excavators. In Proceedings of
Robotics: Science and Systems XVIII.

He, R.; Brunskill, E.; and Roy, N. 2011. Efficient planning
under uncertainty with macro-actions. Journal of Artificial
Intelligence Research, 40: 523–570.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the Seventeenth European
Conference on Machine Learning, 282–293.
Kurniawati, H. 2022. Partially observable Markov decision
processes and robotics. Annual Review of Control, Robotics,
and Autonomous Systems, 5(1): 253–277.
Lee, Y.; Cai, P.; and Hsu, D. 2021. MAGIC: Learning
macro-actions for online POMDP planning. In Proceedings
of Robotics: Science and Systems XVII.
Lim, Z.; Sun, L.; and Hsu, D. 2011. Monte Carlo value iter-
ation with macro-actions. Advances in Neural Information
Processing Systems, 24.
Nikolova, E.; and Karger, D. R. 2008. Route planning under
uncertainty: the Canadian traveller problem. In Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelli-
gence, 969–974.
Papadimitriou, C. H.; and Yannakakis, M. 1991. Shortest
paths without a map. Theoretical Computer Science, 84(1):
127–150.
Russell, S. J.; and Norvig, P. 2021. Artificial Intelligence: A
Modern Approach. Pearson, 4 edition.
Silver, D.; and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. Advances in Neural Information Processing
Systems, 23.
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DESPOT:
Online POMDP planning with regularization. Advances in
Neural Information Processing Systems, 26.
Sunberg, Z. N.; and Kochenderfer, M. J. 2018. Online algo-
rithms for POMDPs with continuous state, action, and ob-
servation spaces. In Proceedings of the Twenty-Eighth Inter-
national Conference on Automated Planning and Schedul-
ing.
Theocharous, G.; and Kaelbling, L. 2003. Approximate
planning in POMDPs with macro-actions. Advances in Neu-
ral Information Processing Systems, 16.

685

