
An End-to-End Reinforcement Learning Approach for
Job-Shop Scheduling Problems Based on Constraint Programming

Pierre Tassel1, Martin Gebser1,2, Konstantin Schekotihin 1

1University of Klagenfurt,
2Graz University of Technology

{pierre.tassel, martin.gebser, konstantin.schekotihin}@aau.at

Abstract
Constraint Programming (CP) is a declarative programming
paradigm that allows for modeling and solving combinato-
rial optimization problems, such as the Job-Shop Scheduling
Problem (JSSP). While CP solvers manage to find optimal or
near-optimal solutions for small instances, they do not scale
well to large ones, i.e., they require long computation times or
yield low-quality solutions. Therefore, real-world scheduling
applications often resort to fast, handcrafted, priority-based
dispatching heuristics to find a good initial solution and then
refine it using optimization methods.
This paper proposes a novel end-to-end approach to solv-
ing scheduling problems by means of CP and Reinforcement
Learning (RL). In contrast to previous RL methods, tailored
for a given problem by including procedural simulation algo-
rithms, complex feature engineering, or handcrafted reward
functions, our neural-network architecture and training algo-
rithm merely require a generic CP encoding of some schedul-
ing problem along with a set of small instances. Our ap-
proach leverages existing CP solvers to train an agent learn-
ing a Priority Dispatching Rule (PDR) that generalizes well
to large instances, even from separate datasets. We evaluate
our method on seven JSSP datasets from the literature, show-
ing its ability to find higher-quality solutions for very large
instances than obtained by static PDRs and by a CP solver
within the same time limit.

Introduction
Scheduling problems are a class of combinatorial optimiza-
tion problems widely used in many domains, such as man-
ufacturing, logistics, or healthcare. They are characterized
by a set of jobs associated with a list of operations that
must be executed on some of the available machines. The
goal is to find a schedule that minimizes an objective func-
tion, such as the makespan (i.e., the total completion time),
flow-time (i.e., average job processing time), or total tar-
diness. Scheduling problems can be modeled using Con-
straint Programming (CP), which is a declarative program-
ming paradigm allowing for efficient modeling of combina-
torial optimization problems. Having this layer of abstrac-
tion has several advantages. Namely, it enables (i) a com-
pact representation of the problem, which is easier to im-
plement and maintain than a procedural approach, and (ii)

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

application of domain-independent high-performance solv-
ing algorithms (Rossi, van Beek, and Walsh 2006). However,
CP approaches scale poorly to large instances. While small
instances can be solved in a matter of seconds, the computa-
tion time increases significantly with the instance size since
most scheduling problems are known to be NP-complete
or NP-hard (Rinnooy Kan 1976; Garey, Johnson, and Sethi
1976; Sotskov and Shakhlevich 1995). This is particularly
problematic for applications where scheduling must be per-
formed in (near) real-time or where instances evolve dynam-
ically, e.g., in the re-scheduling context.

As a consequence, real-world scheduling applications of-
ten rely on fast, but handcrafted heuristics, like Priority Dis-
patching Rules (PDRs), to find some good initial solution
that can further be improved by more time-consuming meta-
heuristics or exact methods such as CP or Mixed Integer
Programming (MIP). While PDRs can find initial solutions
quickly, their design requires much domain-specific knowl-
edge and, still, they often yield limited or inconsistent per-
formance depending on the instance at hand. Due to the
widespread adoption of PDRs, a large body of literature has
been devoted to developing such heuristics for scheduling
problems (Panwalkar and Iskander 1977). As a recent trend,
a variety of automatic approaches to learning PDR heuristics
using Reinforcement Learning (RL) have been proposed.

During training, an RL agent interacts with the environ-
ment and learns from the reward it receives. However, when
applied to scheduling problems, the learning is complicated
by the fact that a reward is only received at the end of an
episode when the schedule is complete. Thus, the environ-
ment provides only a poor feedback signal to the agent, re-
quiring manual shaping of rewards for a particular prob-
lem definition (Wiewiora 2010; Oren et al. 2021). Hence,
while RL approaches have shown promising results, e.g.,
(Ingimundardottir and Runarsson 2018; Lin et al. 2019;
Zhang et al. 2020; Tassel, Gebser, and Schekotihin 2021),
they rely on custom, procedural simulation algorithms tai-
lored for a given problem, sophisticated feature engineering,
large disjunctive graph representations, and handcrafted re-
ward functions. Since these approaches select one operation
to dispatch at a time, they also often suffer from performance
issues as the environment triggers a forward pass in the neu-
ral network for each operation. This is particularly problem-
atic for instances with a large number of operations to dis-

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

614

patch, in which case the performance advantage of a learned
PDR heuristic can be dramatically reduced.

Contributions. In this paper, we propose a novel RL ap-
proach that interacts with a CP solver directly to find a solu-
tion for a scheduling problem without requiring any custom
observation features or handcrafted reward functions. Our
contributions can be summarized as follows:1
Constraint Programming Environment. We propose a
novel RL environment comprising a CP model represent-
ing the scheduling problem, similar to the one used by CP
solvers to find solutions. The raw CP model variables rep-
resent the environment’s state. The agent interacts with the
environment by selecting a variable to fix, and the envi-
ronment propagates the constraints to the other variables.
Our environment uses lazy instantiation and allocates a
variable-size set of operations per iteration, allowing us to
model large scheduling problems and improve solving per-
formance by reducing the number of forward passes.

Learning Algorithm. We present an algorithm that does not
require any custom feature engineering or handcrafted re-
ward function to train the agent. Our approach leverages a
CP solver to provide feedback and search trajectories guid-
ing the learning process. As a result, the training on small
instances generalizes well to larger ones, even from sepa-
rate datasets.

Neural Network Architecture. We introduce a neural net-
work architecture able to extract information from the CP
model and efficiently select a variable to instantiate. Our
architecture is composed of encoder transformer layers ap-
plied at several levels to extract a representation of the cur-
rent state of the problem, followed by a point-wise multi-
layer perceptron to obtain the priority of each operation.

Solving Method. To generate solutions to a scheduling
problem, we use a simulated-annealing-like meta-heuristic
to select the operation to allocate in the environment based
on multiple actors in parallel. In particular, when an agent
has a high associated temperature, it is likely to explore al-
ternative operations, while prioritized operations are more
greedily preferred otherwise. Hence, using our agent for
dispatching leads to high-quality solutions quickly, even
for large instances. Empirically, our method establishes an
unmatched state of the art for learned PDR heuristics to
solve the Job-Shop Scheduling Problem (JSSP).

Preliminaries
Job-Shop Scheduling Problem. JSSP is a classic opti-
mization problem (Thompson 1963). Each JSSP instance
comprises sets of jobs J and machinesM. Each job j ∈ J
has an associated set of operation Oj , and each operation
o ∈ Oj has a unique associated machine m ∈ M and pro-
cessing time po ∈ N+. The goal is to find an assignment of
starting times to all operations that minimizes a given objec-
tive function, usually the makespan. In addition, this assign-
ment must satisfy the following constraints: jobs cannot be

1Live demo: https://pierretassel-jobshopcprl.hf.space
Command to install the environment: pip install job-shop-cp-env
Source code available at: https://github.com/ingambe/End2End-
Job-Shop-Scheduling-CP

preempted, a machine can only process one operation at a
time, and an operation cannot start before its predecessor is
completed. JSSP is NP-complete (Garey, Johnson, and Sethi
1976), and no tractable algorithms for solving it are known.

Constraint Programming CP has been widely adopted in
the industry to solve scheduling problems of various sizes
(Da Col and Teppan 2019). Each CP model comprises a set
of variables with their respective domains and constraints
that define the relationships between them. Every time a
variable is assigned, the CP solver uses constraint propa-
gation to filter domains of other variables, eliminating val-
ues from their domains that can never be part of a solution
(as they violate the constraints). This process maintains con-
sistency of the model and allows for efficiently pruning the
search space. A solution to a CP model is an assignment
of values to variables such that all constraints are satisfied.
While early CP solvers were based on simple backtracking
search that did not scale well, modern solvers rely on nogood
learning, meta-heuristics, and relaxation techniques that it-
eratively improve an initial solution (Laborie and Godard
2007; Laborie and Rogerie 2016; Vilı́m, Laborie, and Shaw
2015). Also in the scheduling context, starting with a good
initial solution helps the solving process to converge to a
high-quality solution faster (Kovács et al. 2021).

Reinforcement learning. RL is a machine learning ap-
proach, which trains an agent to solve a task by interacting
with its environment (Sutton and Barto 1998). The environ-
ment, described by a Markov Decision Process (MDP), pro-
vides the agent with an observation that describes the current
state of the environment, based on which the agent selects
an action to apply to the environment. This process is re-
peated until the agent reaches a terminal state. Periodically,
the agent receives a reward from the environment, indicating
how expedient the performed action was, where the reward
is called continuous if the agent receives a reward after each
action, and episodic otherwise. The goal of the agent is to
learn a policy π mapping each observation to an action that
maximizes the cumulative reward.

Related Work
Recently, the idea of applying RL to solve combinatorial op-
timization problems has gained a lot of attention (Bengio,
Lodi, and Prouvost 2021). Successful applications of RL
to problems like Traveling Salesperson (Bello et al. 2017),
Vehicle Routing (Kool, van Hoof, and Welling 2019), and
Boolean Satisfiability (Yolcu and Póczos 2019) fueled the
interest of the operations research community, especially for
large-scale, industrial instances.

Similarly, various approaches to train RL agents on
scheduling problems have been proposed. One of them (Lin
et al. 2019) involves selecting a PDR per machine from a
pool of predefined candidates. Lin et al. (2019) employ a
Deep Q-Network (DQN), trained on a collection of manu-
ally designed features for customer orders and system states.
Their method assumes a fixed number of jobs and machines,
and an underlying neural network is fine-tuned to each in-
stance, resulting in a longer overall runtime than taken by CP

615

solvers. However, benchmark results show that the proposed
approach can outperform handcrafted PDRs. Likewise, Tep-
pan and Da Col (2018) came to comparable conclusions with
a complementary method using Genetic Algorithms.

The idea to exploit imitation learning from a MIP solver
has been explored by Ingimundardottir and Runarsson
(2018). They aim to learn a composition of pre-defined PDR
candidates by learning from a dataset of optimal solutions
generated by a MIP solver. However, because of the JPPS
complexity, only small instances of 10 jobs × 10 machines
are considered. Their approach also requires defining hand-
crafted features for the observation space provided by a pro-
cedural environment. Moreover, policies learned by pure im-
itation learning tend to generalize poorly outside the training
set observed by the agent.

Given that a JSSP instance can be represented as a dis-
junctive graph, Zhang et al. (2020) train a Graph Neural
Network to allocate operations using a custom procedural
environment and a specifically designed continuous reward
function. Evaluations show that their approach can learn a
better PDR than the handcrafted ones from the literature.
However, solving large instances with thousands of opera-
tions is problematic, since the induced graph representations
contain a large number of nodes and edges corresponding to
all possible orders of the operations in an instance.

Finally, Tassel, Gebser, and Schekotihin (2021) suggest an
optimized RL environment for JSSP. They designed hand-
crafted observation features for the jobs and formulated a
continuous reward function mimicking the makespan ob-
jective. The environment contains several optimizations,
such as prioritizing jobs that are not at their final opera-
tion over those that are and enforcing a compressed solu-
tion by preventing operations that would certainly lead to
a sub-optimal state. Although promising results were ob-
tained by ten-minute training of an agent with a simple fully-
connected neural network using the Proximal Policy Opti-
mization (PPO) algorithm, their approach could not outper-
form a state-of-the-art CP solver. Moreover, the neural net-
work is instance-size specific and requires re-training from
scratch for each new instance with a different number of
jobs.

Method
In this paper, we propose a method that, in contrast to previ-
ous work, relies on a CP model for JSSP, which provides the
training environment of an RL agent and its neural network.

Constraint Programming Model
Our environment is based on a classic CP model for JSSP as
described in Algorithm 1. While compact, this model is very
expressive and powerful. The global NoOverlap constraint is
a key component of the model ensuring that no two opera-
tions are executed simultaneously on the same machine. In
addition, the precedence constraint ensures that the opera-
tions of each job are executed in their predefined order.

Environment
At each decision point, the current time t is defined by the
minimum lower bound klbo .end among all interval variables,

Algorithm 1: CP Model for JSSP
Input:
po ∈ N+ ∀o ∈ Oj (processing time of operation o)
so1,o2 ∈ {0, 1} ∀o1, o2 ∈ Oj (successor operations)
wm

o ∈ {0, 1} ∀o ∈ Oj ,m ∈M (machine m operations)

Variables:
IntervalVariable(ko) ∀o ∈ Oj

with ko.length, ko.start, ko.end ∈ N+

Constraints:
ko.length = po ∀o ∈ Oj

so1,o2 = 1⇒ ko1 .end ⩽ ko2 .start ∀o1, o2 ∈ Oj

NoOverlap({o | wm
o = 1}) ∀m ∈M

Objective:
minimize max(ko.end) ∀o ∈

⋃
j∈J Oj

i.e., ∀o ∈
⋃

j∈J Oj klbo .end ≤ ko.end. To interact with the
CP model, our environment fixes the start time of the current
operation of a selected job to its lower bound. This is done
by adding a constraint to the model and asking for propaga-
tion. While usually all operations are passed to the model
at once, we lazy load the intervals using an n-operations
horizon per job to improve performance. For instance, given
n = 10, only the first 10 operations of each job are passed
to the model at the beginning of the schedule. Each time an
operation is allocated, we add the next operation of the job
and its associated constraints to the model. This allows us
to keep the model small and avoids propagating the whole
schedule at each step, thus improving the propagation time.

State Space S . For each job, the environment provides
the previous interval variable, the interval variable of the
current operation, and the next 3 interval variables to allo-
cate. Considering more upcoming operations helps the agent
to achieve slightly better performance, but it also increases
the state space size and the computational cost of the en-
vironment. As the upper bound on the number of interval
variables per job is fixed, the state representation’s space
complexity is O(|J |) and thus linear with respect to the
number of jobs. This makes our method more scalable to
large instances than other approaches relying on the disjunc-
tive graph representation of JSSP, which encodes the whole
schedule as a graph and yields the higher space complexity
O(|J | × |M|).

Action Space A. The action space is represented by a
Boolean vector comprising (i) all jobs that can be allocated
at the current time t, and (ii) a No-Op action enabling the
agent to skip the current time step without allocating any
operation. That is, the action space is a vector of size (up to)
|J | + 1. Whenever No-Op is selected, the environment sets
t = k′o.end such that klbo .end < k′o.end and there is no k′′o
for which klbo .end < k′′o .end < k′o.end.

In addition, the agent can reduce the number of allocation
steps by providing an ordered vector of actions to the envi-

616

ronment. The environment applies actions in the given order
until no more allocations can be done at time t. In this way,
a vector of actions decreases the number of state transitions
and network inferences for improving the performance in
terms of wall-clock time. For training purposes, the vector
of actions allocated by the environment is also returned to
the agent. A similar technique has been successfully applied
in a gradient-free RL context for the Resource-Constrained
Scheduling Problem (Tassel et al. 2022).

Reward Function rt. Only the terminal state returns the
objective function value of the CP model (i.e., the makespan)
as a reward. This means that the reward function is episodic.

CP Solution Space
While a CP solver can generate all solutions found by
the environment, the inverse is not the case. The envi-
ronment fixes the starting time of each operation greed-
ily to its lower bound, whereas CP has more degrees
of freedom and can assign starting times in the interval
[lower bound, upper bound]. Therefore, obtained solutions
might be uncompressed, i.e., the starting time of some oper-
ation may not be assigned to its lower bound. For example,
the solution shown in Figure 1 has an uncompressed alloca-
tion of the operations o1 and o2 of the job j2, as o2 does not
start at the completion time of o1. The goal of compression
is to enforce the starting time of each operation to be as-
signed to its lower bound, which streamlines the solution’s
structure without affecting its objective value.

Compression can be done in polynomial time by setting
the starting time of each operation to the lower bound of the
interval variable after the initial propagation. Algorithm 2
describes the CP model used to compress a solution. On top
of the original constraints of the JSSP model, it adds con-
straints enforcing the starting time of each operation to be
lower or equal to the starting time of the uncompressed so-
lution. Another constraint preserves the order of operations
on each machine.

Figure 1: Example of solution compression. The resulting
compressed solution has the same objective value as the
original solution. However, the starting time of each oper-
ation is assigned to its lower bound.

Algorithm 2: CP Model to Compress JSSP Solution
Given an initial solution D for a JSSP instance
Input:
po ∈ N+ ∀o ∈ Oj (processing time of operation o)
so1,o2 ∈ {0, 1} ∀o1, o2 ∈ Oj (successor operations)
wm

o ∈ {0, 1} ∀o ∈ Oj ,m ∈M (machine m operations)
uo ∈ N+ ∀o ∈ Oj (starting time in D)

Variables:
IntervalVariable(ko) ∀o ∈ Oj

with ko.length, ko.start, ko.end ∈ N+

Constraints:
ko.start ≤ uo ∀o ∈ Oj

ko.length = po ∀o ∈ Oj

so1,o2 = 1⇒ ko1 .end ⩽ ko2 .start ∀o1, o2 ∈ Oj

NoOverlap({o | wm
o = 1}) ∀m ∈M

wm
o1 + wm

o2 = 2 ∧ uo1 < uo2 ⇒ ko1 .end ⩽ ko2 .start
∀o1, o2 ∈

⋃
j∈J Oj ,m ∈M

Objective:
minimize sum(ko.start) ∀o ∈

⋃
j∈J Oj

As our environment relies on a CP model, it can, at any
time, take advantage of state-of-the-art CP solvers to gener-
ate a solution. The solution can then be compressed using
the additional constraints described in Algorithm 2 to gener-
ate a solution compatible with the environment. Therefore,
partial solutions that complete the initial solution generated
by the actor can be produced. We exploit this property of our
environment during the training phase to generate example
solutions and compare the actor’s decisions with solutions
generated by the CP solver.

Neural Network Architecture
The agent policy is a function πθ(A | st) that maps the
current state of the environment to a probability distribution
over the set of actionsA. The policy is parameterized by pa-
rameters θ of a neural network, whose structure is illustrated
in Figure 2. As discussed in the state space definition above,
for each job, the environment provides interval variables rep-
resenting the previous, current, and 3 next operations of each
job. The neural network is composed of two stages: the first
stage generates a per-job representation of the state, while
the second stage determines the action distribution using the
previously generated job representations.

In the first stage, the neural network self-learns a repre-
sentation for the source and sink interval variables repre-
senting the start and end operations of a job. This approach
is common for neural networks, encoding a sequence by its
start and end elements with specific tokens, and all elements
in-between using their relative position with respect to these
tokens. Each interval variable is encoded as a quadruple
(f, lb, l, ct), where f = 1 if the environment has already
assigned a value to the interval variable and f = 0 oth-

617

Stage 2Stage 1

IntervalVarIntervalVarIntervalVarIntervalVarIntervalVar

IntervalVarIntervalVarIntervalVarIntervalVarIntervalVar

Job 1

Job n

IntervalVarIntervalVarIntervalVarIntervalVarIntervalVar

IntervalVarIntervalVarIntervalVarIntervalVarIntervalVar

Job 1

Job n

+ Positional
Embedding

IntervalVarIntervalVarIntervalVarIntervalVarIntervalVar

Job 1

IntervalVarIntervalVarIntervalVarIntervalVarIntervalVar

Job n

Attention

Norm

Norm

MLP

+

+
Attention

Norm

Norm

MLP

+

+

Mean Mean

Attention

Norm

Norm

MLP

+

+

MLP MLP

Mean

Jobs Logits No-Op Logit

Linear
Projection

Figure 2: Policy network architecture. The network is composed of 2 stages. The first stage extracts a job’s representation out
of the interval variables of the job. The jobs’ representations are then fed to the second stage, which outputs a priority score for
each job and the No-Op action.

erwise; lb, l ∈ N+ correspond to the lower bound on the
starting time and the processing time of an operation, re-
spectively; and ct = 1 if lb = t, and ct = 0 otherwise.
This 4-dimensional space is projected to an 8-dimensional
space using a fully connected layer in order to improve the
performance of the transformer architecture. Then, the net-
work adds the resulting vector with 8 components to an ab-
solute and fixed positional encoding, which represents in-
terval variable positions by their relative distance to the lat-
est predecessor operation already allocated by the environ-
ment. For example, if the environment has allocated the sub-
sequence (o1, o2) of operations Oj = (o1, o2, . . . , on) for a
job j, positions of the interval variables ko3 , . . . , kon will
be encoded relative to the variable ko2 . This positional en-
coding enforces the precedence constraint between interval
variables with respect to the currently allocated operations
of a job. All extended interval variable representations are
then passed to a Transformer Encoder Layer (Vaswani et al.
2017) to generate a representation for each job.

In the second stage, each job’s representation is passed
to another Transformer Encoder Layer, and then to a Multi-
Layer Perceptron (MLP) with one hidden layer of dimension
32 and hyperbolic tangent activation in-between to generate
the logits of the job allocation action. The logits vector is

concatenated to the average of the output of another MLP
of a similar dimension that generates the logits vector of
the No-Op action. The resulting logits vector, of dimension
|J |+1, is finally passed to a softmax layer to determine the
probability distribution over the set of actions.

Training and Evaluation Algorithms
The training algorithm can be described as a hybrid between
Imitation Learning and Policy Gradient methods. While
pure imitation learning methods learn from expert demon-
strations, policy gradient methods learn from the agent’s
own experiences. Pure imitation learning approaches tend
to generalize poorly, while policy gradient methods require
a continuous reward function to learn from. The hybrid
method we propose combines the best of both worlds by
learning from both expert demonstrations and the actor’s ex-
periences with feedback received from the expert. Due to the
architecture of the environment, having access to an expert is
straightforward since a CP solver can directly interact with
the learner and provide sample solutions.

Partial Expert Demonstrations and Feedback
Algorithm 3 describes the process used to generate partial
expert demonstrations and feedback from an initial actor’s

618

Algorithm 3: Partial Expert Demonstration Generation Us-
ing Actors and CP Solver Trajectories
Parameter: t: maximum admitted CP solver runtime.
Output: For actor a ∈ A:
Ba: An initial solution of length j generated by the actor.
Ca: Partial solution generated by the actor starting from
the initial solution Ba.
Da: Partial solution generated by the CP solver in t sec-
onds starting from the initial solution Ba.

for actor a ∈ A do
Complete one episode.

end for
Sample j uniformly from [0,min episode length]
for actor a ∈ A do
Ba ← trajectory of actor w up to the j-th step.
Ca ← partial solution by the actor completing Ba.
Da ← partial solution by the CP solver completing Ba,
warm-starting from Ca as initial assignment.

end for

trajectory. At each iteration, each actor a ∈ A collects (in
parallel) one episode of experiences by interacting with the
environment. Afterward, the algorithm randomly selects a
number j between 0 and the smallest actors’ episode length
and keeps the first j steps of each actor’s episode as a par-
tial solution. Next, the complete solution of an actor is for-
warded to a CP solver, which tries to improve it. The ob-
tained solution is then compressed using the CP model pre-
sented in Algorithm 2 to generate a solution compatible with
the environment. Because the search for (partial) solutions
is intractable, we limit the CP solver’s runtime to t sec-
onds. This timeout criterion, initially set to 60 seconds, is
increased by 1 second after each iteration, allowing the CP
solver to find better solutions as the training progresses.

Training Using Feedback and Examples From CP

The generated trajectories are provided to Algorithm 4,
which first evaluates the quality of the actor’s trajectories.
The quality of such solutions is measured as a ratio of the
solution makespan generated by the CP solver over the solu-
tion makespan generated by the actor. The smaller the ratio,
the worse the quality of the actor’s solution. Algorithm 4
uses the ratio to penalize actions made by the actor and re-
ward actions made by the CP solver. Since the actor’s solu-
tion is passed to the CP solver as a search starting point, the
CP solver’s solution is always at least as good as the actor’s.
That is, if a CP solver could not improve the solution, the
training algorithm penalizes no actions.

Technically, the actor’s improvements are Min-Max
Scaled to be in the [0, 1] range, and the training is done
using a loss function with a clipped surrogate objective to
prevent the policy from changing too abruptly between itera-
tions (Schulman et al. 2017). The advantage function used to
estimate the policy gradient is the negative Min-Max Scaled
improvement.

Algorithm 4: Training Algorithm Using CP Solver’s Feed-
back and Examples
Input: θ: neural network parameters.
For actor a ∈ A:
Ca: Partial solution generated by the actor.
Da: Partial solution generated by the CP solver.
i ∈ Ia: Improvement ratio of the solution generated by
the CP solver over the solution generated by the actor.
Ra: −i improvement for trajectory generated by the ac-
tor, i otherwise.

Parameter: K: Maximum number of training iterations.
β: Maximum KL divergence allowed between SGD up-
dates.

Min-Max scaled advantage ofR: N .R ← R−min(R)
max(R)−min(R) .

for iteration i = 1, . . . ,K do
Sample batch b of experiences:

obs: Observation of the environment.
action: Action either taken by the actor or CP
solver.
N .Rb: Normalized improvement.

L = max (r(θ), clip (r(θ), 1− ϵ, 1 + ϵ))

where r(θ) = −N .Rb ∗ πθ(action|obs)
πθold (action|obs) .

Back-propagate loss L.
if KL[πθ | πθold] > β then

break
end if

end for

Improving Initial Solutions
While Algorithm 4 is capable of improving the agent’s de-
cisions taken to complete the initial solution using partial
expert demonstrations, it cannot improve the initial solution
relative to which the expert demonstrations are collected.
To address this issue, we propose penalizing/rewarding the
agent’s initial solution collected by the actor based on the
quality of the solution generated by the CP solver. Intu-
itively, if the initial solution is of low quality, the solution
found by the CP solver will be worse than with an initial
solution of better quality. Algorithm 5 is used to improve
the initial solutions passed to the CP solver. The normalized
CP solver’s objective function value (i.e., the makespan) is
used as the advantage function to estimate the policy gradi-
ent. Therefore, the initial solutions leading to the best result
of the CP solver in an iteration will be reinforced, whereas
the worst ones will be penalized.

Solution Generation
The algorithm used to generate solutions from the previously
trained neural network is described in Algorithm 6. This al-
gorithm uses different temperatures on each parallel actor to
generate solutions in the neighborhood of the trained policy.
Actors having a high temperature will be more likely to se-
lect a different action than the top action predicted by the
neural network. In contrast, low-temperate actors will sam-
ple more greedily from the top actions predicted by the neu-

619

Algorithm 5: Training Algorithm Improving Initial Solu-
tions
Input: θ: neural network parameters.
For actor a ∈ A:
Ca: Partial solution generated by the actor.
Ra: Makespan of the solution generated by the CP solver
starting from Ca.

Parameter: K: Maximum number of training iterations.
β: Maximum KL divergence allowed between SGD updates.
ϵ: Surrogate clipping coefficient.

Normalize advantage ofR: N .R ← R−mean(R)
std(R) .

for iteration i = 1, . . . ,K do
Sample batch b of experiences:

obs: Observation of the environment.
action: Action taken by the actor.
N .Rb: Normalized improvement.

L = max (r(θ), clip (r(θ), 1− ϵ, 1 + ϵ))

where r(θ) = N .Rb ∗ πθ(action|obs)
πθold (action|obs) .

Back-propagate loss L.
if KL[πθ | πθold] > β then

break
end if

end for

ral network. As the actors are run in parallel, the algorithm
can efficiently explore separate parts of the solution space,
generating better solutions than greedy sampling.

Experiments
We evaluate our method on seven JSSP benchmark sets, in-
cluding 284 instances in total. These datasets cover a wide
range of difficulty and size, from small instances with 36
operations to large instances with 100, 000 operations.

Experimental Setup
The literature proposes hundreds of handcrafted, static
PDRs for JSSP with various features and performances so
that we cannot compare them exhaustively. Hence, we se-
lected the three most performant and dominating PDRs
based on the survey by Sels, Gheysen, and Vanhoucke
(2012). These three PDRs are the First In First Out (FIFO),
Shortest Processing Time (SPT), and Most Total Work
Remaining (MTWR) heuristics. Additionally, we compare
the open-source Choco CP solver (Prud’homme and Fages
2022), running for the same time as our approach. Since our
approach involves randomness for sampling the actor’s ac-
tions, we report average metrics over 10 runs with different
random seeds.

Training Settings and Hyperparameters
We ran the training algorithm on 4 instances simultaneously
by applying 24 actors to each instance, resulting in a parallel
training of 96 actors in total. This multi-instance training is
crucial to the algorithm’s success. It targets the agent to learn
a generic PDR heuristic that generalizes rather than a policy

Algorithm 6: Data Collection
Input: θ: neural network parameters.

for each actor a ∈ A do
Temperature parameter Ta ← (1.5× a

|A|) + 0.5.
Initialize environment Ea.
Empty solution Sa.

end for
while not all actors have terminated do

for actor a ∈ A in parallel do
if actor a has not terminated then
obs← observation of the environment Ea.
logits← neural network θ applied to obs.
probabilities← softmax(logitsTa

).
action← sample from probabilities.
obs, done← step(Ea, action).
if done then
Sa ← solution generated by the actor.

end if
end if

end for
end while
return mina∈A makespan(Sa).

that is tailored to some specific instance. While theoretically
any combination of 4 instances could be used, for the train-
ing algorithm to perform stable, these instances need to have
approximately the same number of operations to allocate.
Otherwise, some instances would contribute more observa-
tions during the training, and thus the training process would
be biased toward this instance.

We carefully selected the 4 training instances to achieve
a balance between acquiring high-quality CP traces within
a reasonable timeframe and investigating diverse schedul-
ing scenarios. Our experimentation led us to choose Tail-
lard’s instances with 30 jobs×15 machines as the ideal com-
promise between training difficulty and efficiency. We note
that Taillard’s instances with 30 jobs × 20 machines pro-
vided similar outcomes, yet took longer to solve and gen-
erate acceptable expert demonstrations using CP. We trained
our agent for 100 epochs, each comprising 20 training iter-
ations of 20 mini-batches. Finally, our experiments yielded
n = 10 and 3 as empirically advantageous parameters for
lazy instantiation or the number of next operations per job
to include in the state representation, respectively.

Results
In our evaluation, the agent trained on 30 jobs×15 machines
Taillard’s instances was applied to instances from seven pop-
ular JSSP benchmark sets. The results of these experiments
are summarized in Table 1. For each dataset, we aggregate
the instances and report the average makespan as well as
the runtime in seconds. The PDR heuristic learned by our
method outperforms the compared static PDRs on every
dataset. In particular, on the Taillard dataset, we improve
over MTWR, which is the best performing static PDR, by
about 13% in terms of the absolute makespan of solutions.
On the very large instances of the Da Col and Teppan

620

Dataset Ours Choco FIFO SPT MTWR
Taillard Makespan 2670.26± 78.84 3 045.95± 131.62 3 165.69± 162.98 3 128.77± 131.94 3 086.18± 127.61

Runtime (s) 17.98± 0.18 17.98± 0.18 1.32± 0.01 1.35± 0.07 1.36± 0.10

Demirkol, Mehta, and Uzsoy Makespan 5701.53± 909.13 6 292.19± 820.93 6 397.31± 623.03 6 481.71± 868.65 6 275.99± 748.11
Runtime (s) 15.12± 0.53 15.12± 0.53 0.79± 0.07 0.78± 0.04 0.77± 0.00

Lawrence Makespan 1197.77± 66.61 1 253.02± 67.49 1 432.97± 91.68 1 411.15± 98.60 1 331.50± 109.81
Runtime (s) 5.71± 0.04 5.71± 0.04 0.10± 0.00 0.10± 0.00 0.10± 0.00

Applegate and Cook Makespan 1 056.81± 224.64 1027.10± 226.60 1 173.40± 254.00 1 183.60± 267.97 1 138.30± 227.66
Runtime (s) 4.80± 0.04 4.80± 0.04 0.04± 0.00 0.04± 0.00 0.11± 0.22

Storer, Wu, and Vaccari Makespan 2398.38± 203.03 2 610.27± 201.70 2 581.77± 155.83 2 728.37± 227.39 2 532.73± 153.12
Runtime (s) 9.72± 0.11 9.72± 0.11 0.38± 0.00 0.38± 0.00 0.38± 0.00

Yamada and Nakano Makespan 1068.80± 59.76 1 116.75± 53.09 1 234.25± 116.56 1 220.25± 74.50 1 233.00± 82.60
Runtime (s) 9.62± 0.02 9.62± 0.02 0.29± 0.00 0.29± 0.00 0.29± 0.00

Da Col and Teppan Makespan 147178.82± 1 823.08 ∞±∞ 152 894.44± 2 633.71 150 044.50± 2 203.50 149 463.80± 2 447.76
Runtime (s) 316.14± 0.96 316.14± 0.96 70.48± 0.52 74.23± 0.78 74.71± 0.82

Average Makespan 28675.83± 480.73 ∞±∞ 30 070.92± 576.83 29 591.46± 553.22 29 391.23± 556.67

Table 1: For each dataset, the average makespan and runtime in seconds are reported (lower is better) along with their respective
standard deviations. In total, our approach outperforms static PDRs and the CP solver Choco running for the same time as our
approach. For the Da Col and Teppan dataset, Choco could not find a solution for any of the instances within the given time
limit.

dataset, our approach outperforms MTWR by just 1.5%, but
the makespan is an absolute metric whose (unknown) opti-
mum is greater than zero, so that the relative improvement
with respect to optimal solutions is significantly higher.

In terms of runtime, due to neural network communica-
tion and forward pass computation, our method is slower
than static PDRs, especially on small instances. On large
instances (Da Col and Teppan), the gap narrows because
the static PDRs always select a single action, while our
agent provides an ordered vector of actions per time step.
The latter approach reduces the number of allocation steps,
which apparently compensates the neural network overhead
to some extent on large instances.

When comparing our approach to the CP solver Choco,
running for the same time as our agent, we outperform the
solver on all datasets except the one by Applegate and
Cook, which comprises very small instances with 10 jobs×
10 machines only. As a consequence, finding solutions, even
optimal ones, is relatively easy for the state-of-the-art CP
solver Choco. However, our approach consistently outper-
forms Choco on the other datasets. In case of large instances,
a scenario in which the use of PDRs is common practice,
Choco fails to find any solution within the given time limit.

We refrain from elaborating results per size of the in-
stances in each dataset, but invite the reader to inspect the
supplementary material for respective details. The supple-
ment also compares the literature solutions (where available)
of the disjunctive graph-based RL approach by Zhang et al.
(2020). Note that Zhang et al.’s method involves re-training
the agent for each instance size, while our agent is only
trained once on a small set of reasonably sized instances.

Conclusions and Future Work
This paper presents an end-to-end Deep RL approach for
solving the Job-Shop Scheduling Problem. We provide a
novel way to set up the RL environment based on a generic

CP model of JSSP for state updates. Our environment lazy
loads the variables of the CP model, enabling a fast prop-
agation of constraints, even for large instances. We devel-
oped a size-agnostic, efficient neural network architecture
capable of extracting features from the raw variables of the
CP model, thus eliminating the need for custom observation
designs. We also present a novel training algorithm, leverag-
ing the CP nature of the environment by using a CP solver
to generate expert feedback and trajectories. Our training
method does not require any custom, continuous reward
function, and it is capable of learning a PDR heuristic from
one dataset that generalizes well to other, unseen datasets.
Extensive experiments on seven benchmark sets from the
literature show that our approach outperforms static PDRs
and the CP solver Choco within the same time limit, thus
establishing an unmatched state of the art for learned PDR
heuristics to solve JSSP.

In future work, we plan to harness our approach for solv-
ing instances extracted from real-world applications. Since
real-world instances are continuous, with repetitive patterns,
RL approaches are expected to learn PDR heuristics adapt-
ing to the scheduling problem’s underlying distribution. This
is not the case with datasets from the literature, where the
distribution of instances is uniform. Also, we aim to improve
the efficiency of our method and to adopt it to other prob-
lems, like the Resource-Constrained Scheduling Problem.

Acknowledgments
This work was funded by KWF project 28472, cms electron-
ics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH,
incubed IT GmbH, Infineon Technologies Austria AG, Iso-
volta AG, Kostwein Holding GmbH, and Privatstiftung
Kärntner Sparkasse.

621

References
Applegate, D. L.; and Cook, W. J. 1991. A Computational
Study of the Job-Shop Scheduling Problem. INFORMS J.
Comput., 3(2): 149–156.
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio, S.
2017. Neural Combinatorial Optimization with Reinforce-
ment Learning. In ICLR Workshop Proceedings. OpenRe-
view.net.
Bengio, Y.; Lodi, A.; and Prouvost, A. 2021. Machine
Learning for Combinatorial Optimization: A Methodolog-
ical Tour d’Horizon. Eur. J. Oper. Res., 290(2): 405–421.
Da Col, G.; and Teppan, E. C. 2019. Industrial Size Job
Shop Scheduling Tackled by Present Day CP Solvers. In CP
Proceedings, 144–160. Springer.
Demirkol, E.; Mehta, S.; and Uzsoy, R. 1998. Benchmarks
for Shop Scheduling Problems. Eur. J. Oper. Res., 109(1):
137–141.
Garey, M.; Johnson, D.; and Sethi, R. 1976. The Complexity
of Flowshop and Jobshop Scheduling. Math. Oper. Res.,
1(2): 117–129.
Ingimundardottir, H.; and Runarsson, T. P. 2018. Discover-
ing Dispatching Rules from Data Using Imitation Learning:
A Case Study for the Job-Shop Problem. J. Sched., 21(4):
413–428.
Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention,
Learn to Solve Routing Problems! In ICLR Poster Proceed-
ings. OpenReview.net.
Kovács, B.; Tassel, P.; Kohlenbrein, W.; Schrott-Kostwein,
P.; and Gebser, M. 2021. Utilizing Constraint Optimization
for Industrial Machine Workload Balancing. In CP Proceed-
ings, 36:1–36:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.
Laborie, P.; and Godard, D. 2007. Self-Adapting
Large Neighborhood Search: Application to Single-Mode
Scheduling Problems. Technical report, IBM ILOG.
Laborie, P.; and Rogerie, J. 2016. Temporal Linear Relax-
ation in IBM ILOG CP Optimizer. J. Sched., 19(4): 391–
400.
Lawrence, S. 1984. Resource Constrained Project Schedul-
ing: An Experimental Investigation of Heuristic Scheduling
Techniques (Supplement). In Graduate School of Industrial
Administration. Carnegie-Mellon University.
Lin, C.; Deng, D.; Chih, Y.; and Chiu, H. 2019. Smart Man-
ufacturing Scheduling With Edge Computing Using Multi-
class Deep Q Network. IEEE Trans. Ind. Informatics, 15(7):
4276–4284.
Oren, J.; Ross, C.; Lefarov, M.; Richter, F.; Taitler, A.; Feld-
man, Z.; Castro, D. D.; and Daniel, C. 2021. SOLO: Search
Online, Learn Offline for Combinatorial Optimization Prob-
lems. In SOCS Proceedings, 97–105. AAAI Press.
Panwalkar, S. S.; and Iskander, W. 1977. A Survey of
Scheduling Rules. Oper. Res., 25(1): 45–61.
Prud’homme, C.; and Fages, J.-G. 2022. Choco-Solver: A
Java Library for Constraint Programming. J. Open Source
Softw., 7(78): Article 4708.

Rinnooy Kan, A. H. G. 1976. General Flow-Shop and Job-
Shop Problems. In Machine Scheduling Problems: Classifi-
cation, Complexity and Computations, 106–130. Springer.
Rossi, F.; van Beek, P.; and Walsh, T., eds. 2006. Handbook
of Constraint Programming. Elsevier.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.
Sels, V.; Gheysen, N.; and Vanhoucke, M. 2012. A Compar-
ison of Priority Rules for the Job Shop Scheduling Problem
under Different Flow Time- and Tardiness-Related Objec-
tive Functions. Int. J. Prod. Res., 50(15): 4255–4270.
Sotskov, Y.; and Shakhlevich, N. 1995. NP-Hardness of
Shop-Scheduling Problems with Three Jobs. Discret. Appl.
Math., 59(3): 237–266.
Storer, R. H.; Wu, S. D.; and Vaccari, R. 1992. New Search
Spaces for Sequencing Problems with Application to Job
Shop Scheduling. Manag. Sci., 38(10): 1495–1509.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Taillard, É. D. 1993. Benchmarks for Basic Scheduling
Problems. Eur. J. Oper. Res., 64(2): 278–285.
Tassel, P.; Gebser, M.; and Schekotihin, K. 2021. A Rein-
forcement Learning Environment for Job-Shop Scheduling.
In PRL Workshop Proceedings.
Tassel, P.; Kovács, B.; Gebser, M.; Schekotihin, K.; Kohlen-
brein, W.; and Schrott-Kostwein, P. 2022. Reinforcement
Learning of Dispatching Strategies for Large-Scale Indus-
trial Scheduling. In ICAPS Proceedings, 638–646. AAAI
Press.
Teppan, E. C.; and Da Col, G. 2018. Automatic Generation
of Dispatching Rules for Large Job Shops by Means of Ge-
netic Algorithms. In CIMA@ICTAI Workshop Proceedings,
43–57. CEUR-WS.org.
Thompson, G. L., ed. 1963. Industrial Scheduling. Prentice-
Hall.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All You Need. In NIPS Proceedings, 5998–6008.
Curran Associates, Inc.
Vilı́m, P.; Laborie, P.; and Shaw, P. 2015. Failure-Directed
Search for Constraint-Based Scheduling. In CPAIOR Pro-
ceedings, 437–453. Springer.
Wiewiora, E. 2010. Reward Shaping. In Encyclopedia of
Machine Learning, 863–865. Springer.
Yamada, T.; and Nakano, R. 1992. A Genetic Algorithm Ap-
plicable to Large-Scale Job-Shop Problems. In PPSN Pro-
ceedings, 283–292. Elsevier.
Yolcu, E.; and Póczos, B. 2019. Learning Local Search
Heuristics for Boolean Satisfiability. In NIPS Proceedings,
7990–8001. Curran Associates, Inc.
Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P. S.; and Xu,
C. 2020. Learning to Dispatch for Job Shop Scheduling via
Deep Reinforcement Learning. In NIPS Proceedings, 1621–
1632. Curran Associates, Inc.

622

