
Safe MDP Planning by Learning Temporal Patterns of Undesirable Trajectories
and Averting Negative Side Effects

Siow Meng Low1, Akshat Kumar1, Scott Sanner2

1 Singapore Management University
2 University of Toronto

smlow.2020@phdcs.smu.edu.sg, akshatkumar@smu.edu.sg, ssanner@mie.utoronto.ca

Abstract

In safe MDP planning, a cost function based on the cur-
rent state and action is often used to specify safety aspects.
In real world, often the state representation used may lack
sufficient fidelity to specify such safety constraints. Operat-
ing based on an incomplete model can often produce unin-
tended negative side effects (NSEs). To address these chal-
lenges, first, we associate safety signals with state-action tra-
jectories (rather than just immediate state-action). This makes
our safety model highly general. We also assume categor-
ical safety labels are given for different trajectories, rather
than a numerical cost function, which is harder to specify by
the problem designer. We then employ a supervised learning
model to learn such non-Markovian safety patterns. Second,
we develop a Lagrange multiplier method, which incorpo-
rates the safety model and the underlying MDP model in a
single computation graph to facilitate agent learning of safe
behaviors. Finally, our empirical results on a variety of dis-
crete and continuous domains show that this approach can
satisfy complex non-Markovian safety constraints while op-
timizing agent’s total returns, is highly scalable, and is also
better than previous best approach for Markovian NSEs.

Introduction
In several environments, the agent must avoid both poten-
tial hazards while simultaneously optimizing its total ac-
cumulated reward. The existing literature in safe planning
uses a constrained MDP formulation (Altman 2021) and rep-
resents safety specifications as safety constraints that are
derived from the immediately observable state and/or ac-
tion (Achiam et al. 2017; Tessler, Mankowitz, and Mannor
2018; Stooke, Achiam, and Abbeel 2020; Chow et al. 2019;
Dalal et al. 2018; Simão, Jansen, and Spaan 2021). However,
obtaining a perfect description of the target environment be-
comes practically infeasible as autonomous agents are in-
creasingly deployed in the real world (Dietterich 2017). As
a result, operating on such incomplete models may pro-
duce undesirable side effects, also called negative side ef-
fects (NSEs), which are often discovered after agent deploy-
ment (Amodei et al. 2016; Alizadeh Alamdari et al. 2022;
Krakovna et al. 2019; Saisubramanian, Kamar, and Zilber-
stein 2020, 2022). Therefore, addressing such NSEs has be-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

come a key challenge to increase the safety of deployed AI
agents (Saisubramanian, Kamar, and Zilberstein 2022).

One popular method used to solve MDPs with safety
constraints is the Lagrange multiplier method (Tessler,
Mankowitz, and Mannor 2018; Stooke, Achiam, and Abbeel
2020). In this approach, the Lagrange multiplier (which acts
as a penalty for constraint violation) is adapted slowly as the
learning proceeds, converging to constraint-satisfying policy
while also optimizing the primary reward objective. Other
approaches include Lyapunov functions (Chow et al. 2019),
Trust Region methods (Achiam et al. 2017), and constraint
safety layer (Dalal et al. 2018) methods. Notably, all these
methods model safety requirements as functions of safety
cost functions which are assumed to be known and Marko-
vian and hence functions of immediate state and action. Our
work focuses on settings without such modelling assump-
tions, where we learn a classifier trained on trajectories la-
beled with different categories of safety labels for NSEs,
hence modeling non-Markovian safety side effects. We then
integrate this classifier with our safe planning approach.

A closely related line of work for addressing NSEs is
presented in (Saisubramanian, Kamar, and Zilberstein 2020,
2022; Shah and Krasheninnikov 2019). Saisubramanian,
Kamar, and Zilberstein (2022) define NSE as undesired, un-
modeled effects due to incomplete MDP model specifica-
tions. Since not all undesirable effects can be foretold in ad-
vance, the model specification may lack sufficient fidelity to
represent different types of NSEs. Their work proposed a
supervised learning model to learn about NSEs through var-
ious types of human feedback data about NSEs, including
human demonstration. Other research works propose differ-
ent ways to infer NSEs, for instance through initial state
configuration (Shah and Krasheninnikov 2019), reachabil-
ity of other states (Krakovna et al. 2018) or attainable util-
ity (Turner, Hadfield-Menell, and Tadepalli 2020) after per-
forming an action, ability to perform future task different
from the current task (Krakovna et al. 2020). Bayes reason-
ing was also used in (Hadfield-Menell et al. 2017) to infer
the true reward specification from a number of candidate re-
ward functions. One common theme behind all these works
is that not all NSEs can be anticipated precisely at design
time and they need to be dynamically learned through hu-
man feedback or inferred. Furthermore, all these works fo-
cus on Markovian NSEs, rather than a more general model

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

596



where NSEs are associated with trajectories. It is a critical
gap in previous approaches, such as (Saisubramanian, Ka-
mar, and Zilberstein 2020), as they decompose the penalty
associated with an NSE into additive penalties associated
with each state-action pair, which may not always be the
case in a real world setting. Alternatively, one can expand
the state space definition to make NSEs Markovian, how-
ever this may make the agent’s primary task computation-
ally challenging due to complex state space, and knowledge
about different types of NSEs is also not known apriori.

Another line of work (Junges et al. 2016; Alshiekh et al.
2018; Jansen et al. 2020; Jothimurugan et al. 2021) has ex-
plored using logic specifications, such as temporal logic,
to specify safety constraints which can be non-Markovian.
In these methods, safety criteria need to be pre-specified.
As NSEs are side effects unmodeled at the design stage,
it is not feasible to pre-specify the NSE criteria and these
methods are not suitable for NSE setting. In contrast, our
method only requires trajectory labels for NSE trajecto-
ries. In addition, temporal logic methods typically assume a
safety-relevant abstraction of the original MDP (i.e. safety-
relevant MDP) (Alshiekh et al. 2018; Jansen et al. 2020)
which requires significant efforts from domain experts to
construct, as opposed to just using the NSE labels. Lastly,
our method learns to optimize reward and satisfy constraint
jointly, whereas temporal logic methods synthesize a safety
shield in-silos (Alshiekh et al. 2018; Jansen et al. 2020). The
shield either pre-specifies allowable actions or post-corrects
the actions selected by the agent. This may lead to a sub-
optimal strategy with reduced action space.

Our main contributions are the following. First, we
formulate safe MDP planning problem as constrained
MDP (Altman 2021). Unlike previous methods, we do not
assume a Markovian safety cost function is given. We utilize
a supervised learning model to learn safety characteristics
of a trajectory from the NSE data. Second, we integrate the
learned safety model and the MDP model in a single com-
putation graph, and develop a Lagrange multiplier (Bert-
sekas 1999) method to optimize the policy while respect-
ing trajectory-based safety constraints. We (a) proposed a
method applicable to both Markovian and non-Markovian
NSEs, and discrete and continuous domains, with much
higher scalability than the previous method (Saisubrama-
nian, Kamar, and Zilberstein 2020); (b) developed a model-
free approach and show that our model-based method is sig-
nificantly better. Finally, our empirical results on a variety of
discrete and continuous domains show that our highly scal-
able approach can satisfy complex non-Markovian safety
constraints, while optimizing agent’s total returns, and out-
perform previous best approach for Markovian NSEs.

Problem Formulation
Sequential decision making under uncertainty is typically
represented using Markov Decision Processes (MDPs) (Sut-
ton, Barto et al. 1998). Constrained Markov Decision Pro-
cesses (CMDPs) (Altman 1998) allow incorporation of con-
straints in the problem formulation, which for example can
model safety aspects in decision making. A CMDP can be
defined using tuple (S,A, T , R, γ, b0, C,D). We assume a

general setting with continuous state and action spaces (S ⊆
Rn, A ⊆ Rm). The environment state transition is charac-
terized by the function p(st+1|st, at) = T (st, at, st+1). A
reward function R : S × A → R maps a state, action to a
scalar reward value; γ ∈ [0, 1) is the reward discount factor,
and b0 is the initial state distribution. We assume a model-
based setting where different model components are known
(e.g., reward, transition function).

Constraints are represented using cost functions ci ∈ C,
and cost limits di ∈ D on the total expected costs. Each
function ci(s, a) maps a state-action tuple to a real valued
cost. Often, cost functions and constraints are used to repre-
sent safety aspects in a problem domain.
Policy: We consider a probabilistic policy parameterized by
a rich function approximator, such as a deep neural network.
A probabilistic parameterized policy is denoted as πθ(s, a)
which refers to the probability of executing action a in state
s; θ refers to the parameters (to-be-optimized) of the policy
function approximator.
The CMDP problem: The primary objective of a CMDP is
to maximize the expected sum of discounted rewards over
trajectories τ = (s0, a0, s1, a1, ...) by following a parame-
terized policy πθ. The objective is (Achiam et al. 2017):

JR(πθ) = Eτ∼πθ
[
∞∑
t=0

γtR(st, at)]

where τ ∼ πθ indicates that trajectories are sampled from
the distribution induced by the policy πθ, initial state distri-
bution b0, and the state transition function.

Similar to JR, we can define the expected value of a cost
function ci ∈ C over the induced trajectories:

Jci(πθ) = Eτ∼πθ
[
∞∑
t=0

γtci(st, at)] (1)

The CMDP problem is expressed as:

max
θ
JR(πθ) (2)

s.t. Jci(πθ) ≤ di ∀ci ∈ C (3)

where di ∈ D is the corresponding threshold for Jci .
There are some key implicit assumptions in such a CMDP

formulation. First, it is assumed that the cost functions ci,
which for example can define the safety aspects, are known.
This may not always be the case in a real world setting as ob-
taining the exact numerical specification of safety cost func-
tions is challenging. Second, it is assumed that the expected
safety cost in (1) is decomposed and additive per time step.
As noted in section , this may not be always feasible if the
model specification is incomplete, which may make safety
as a function of the entire trajectory τ , rather than just the
immediate state and action. To address these issues, next we
discuss a formulation in which data about safety aspects is
collected in the form of negative side effects (NSEs), and a
safety model is learned from such a dataset.

Negative Side Effects (NSEs)
Our NSE definition is similar to Saisubramanian, Kamar,
and Zilberstein (2022) where we consider episodic tasks and

597



each complete trajectory τ = ⟨s0, a0, s1, . . . , aT , sT ⟩ can be
of arbitrary (but finite) length, terminating in state sT .

Definition 1. Let Ψ denote a partition of the space of all
possible complete trajectories for the given MDP. The set Ψ
can be further divided intoK mutually exclusive sets of NSE
categories: Ψ = ψ1 ∪ ψ2 ∪ . . . ∪ ψK .

Each ψi defines a category of NSEs (e.g., mild, moder-
ate, severe, or no-NSE). Without loss of generality, we as-
sume that a trajectory only belongs to a single category of
NSEs (e.g., the most severe form of NSE occurring in the
trajectory). When a trajectory τ ∈ ψi is observed during
execution, NSE i is said to have occurred. We consider non-
Markovian NSEs as NSE severity can depend on the entire
trajectory, in contrast to Markovian NSEs which depend on
a single state-action pair (Saisubramanian, Kamar, and Zil-
berstein 2020). Non-Markovian NSEs are more general than
Markovian NSEs, and can model complex NSEs without the
need to expand the state representation of the MDP. Expand-
ing the state representation to ensure Markovian NSEs may
introduce new risks and require extensive data collection/e-
valuation, which is undesirable.

We also note several modeling benefits of our method
over prior works (Saisubramanian, Kamar, and Zilber-
stein 2020, 2022). Although prior works introduce non-
Markovian NSEs, they do not present an approach to solve
it. We use powerful neural network based function approxi-
mators that can scale well to large state spaces, unlike tabular
policies used in prior works, which are not scalable to large
state spaces. Previous work is also limited to discrete state
and action spaces, whereas our method can handle both dis-
crete and continuous problems. In prior works, one needs to
chose an arbitrary numerical penalty score for different types
of NSEs, and it is unclear how to choose it, whereas in our
work, we directly exploit different categories of NSEs (e.g.,
mild, moderate, no-NSE), which is relatively easy to specify
(e.g., by elicitation from domain experts) in comparison.

Trajectory Classification with RNNs
In general, it is infeasible to exactly define each NSE par-
tition ψi beforehand. As noted in (Saisubramanian, Kamar,
and Zilberstein 2020, 2022), as agents are deployed in the
real world, data about different NSEs can be collected. We
assume that such a dataset is available that contains trajec-
tories for different NSE categories k = 1 : K (as noted in
definition 1). A data entry in this set, (τ, k), implies NSE cat-
egory k is associated with the state-action trajectory τ . In our
empirical experiments, we optimized a policy without avert-
ing NSEs for a domain, and subsequently used the trajectory
data during the learning process for NSE labeling. This ap-
proach resembles incremental learning process in practice,
where an agent interacts with the environment without first
being aware of the NSE. The historical trajectory data is
collected and labeled with the corresponding NSE class (in-
cluding no-NSE). The labeled data entries (τ, k) can then be
used for classifier training.

As the trajectory τ can be of variable length for
episodic tasks, we propose an RNN - Recurrent Neural Net-
work (Rumelhart, Hinton, and Williams 1986) in classifying

Fu
lly

-C
on

ne
ct

ed
 L

ay
er

GRU GRU GRU

Figure 1: NSE Classifier Using Recurrent GRUs

a trajectory τ into its respective NSE category k. We used
Gated Recurrent Units (GRU) as our specific RNN architec-
ture, which balances between accuracy and network param-
eter size (Cho et al. 2014). The GRU network used in our
empirical experiment is depicted in Figure 1.

We also note that the trajectory classification method we
have presented above allows a modular separation between
optimizing the primary task of the underlying MDP, and
safety specifications. As more NSE data is gathered, we can
update our NSE classifier with additional data, without the
need to always change the underlying state space and reward
function each time new NSEs are discovered. This enables
modular and continual safety learning, which is critical for
real world deployment of autonomous agents.

CMDP for Avoiding Non-Markovian NSEs
As noted in section , the CMDP objective is to maximize
the expected sum of discounted rewards over trajectories τ .
The additional NSE constraints imposed are to limit the oc-
currence probability of trajectories with undesirable NSEs.
Note that we consider NSEs which are non-Markovian and
depend on the entire trajectory. Thus, the non-Markovian
NSE based CMDP problem can be expressed as:

max
θ

JR(πθ) = Eτ∼πθ
[
∞∑
t=0

γtR(st, at)]

s.t. Jci(πθ) = Eτ∼πθ
[Ci(τ)] ≤ di ∀i ∈ 1, 2, ...,K

(4)

In this formulation, K refers to the number of NSE cate-
gories while 0 ≤ di ≤ 1 specifies the tolerable propor-
tion of trajectories having NSE of class i. The value di is
application-dependent and typically configured by the prac-
titioner. Ci(τ) is an indicator function to denote the pres-
ence of NSE of class i in the given trajectory τ . As NSEs
are unmodeled side effects, they may not have a closed-form
expression. Instead, it needs to be estimated using labelled
trajectory data as noted in section . In this paper, we approx-
imate the ground-truth Ci(τ) using RNN-based trajectory
classifier output Ĉi(τ), which can be interpreted as the esti-
mated probability of NSE of class i occurring in trajectory τ .
The approximate CMDP problem using trajectory classifier
can be rewritten as follows:

max
θ

JR(πθ) = Eτ∼πθ
[
∞∑
t=0

γtR(st, at)]

s.t. Jĉi(πθ) = Eτ∼πθ
[Ĉi(τ)] ≤ di ∀i ∈ 1, 2, ...,K

(5)

598



Proposed Method
We next present a Lagrangian relaxation based
method (Bertsekas 1999), which has been popular re-
cently to solve CMDPs. We will primarily focus on new
techniques that enable us to handle trajectory based con-
straints Jĉi(πθ) ≤ di in (5), which are complex to optimize
over as they involve a RNN-based trajectory classifier (i.e.,
Ĉi), and are non-additive and non-decomposable among
time steps, unlike the case in standard CMDPs (see Eq. (1)).

Lagrangian Method
We apply the Lagrange multiplier method to solve the
CMDP problem (5). The Lagrange multiplier method is
shown to converge to the local optimum of CMDP prob-
lems and performs well empirically (Tessler, Mankowitz,
and Mannor 2018; Stooke, Achiam, and Abbeel 2020). The
Lagrangian dual problem of (5) is written as:

min
λ≥0

max
θ

L(λ, θ) = JR(πθ)−
∑K

i=1
λi[Jĉi(πθ)− di]

(6)

We can also compute the gradient of Lagrangian function
L w.r.t. different Lagrange multipliers λi and the policy pa-
rameters θ as:

− ∂L

∂λi
= Jĉi(πθ)− di = Eτ∼πθ

[Ĉi(τ)− di] (7)

∂L

∂θ
= ∇θJR(πθ)−

∑K

i=1
λi∇θJĉi(πθ)

= ∇θJR(πθ)−
∑K

i=1
λi∇θEτ∼πθ

[Ĉi(τ)]

(8)

Optimizing the Lagrangian problem (6) can provide a
local optimum of the problem (5). The vector, λ =
[λ1 λ2 ... λK ] ≥ 0, contains the Lagrange multipli-
ers for each of the K constraints. Each Lagrange multi-
plier serves as the tradeoff coefficient for the respective
constraint. Learning to solve this Lagrangian problem, as
shown in (Tessler, Mankowitz, and Mannor 2018), typi-
cally involves updating λ and θ using the gradient expres-
sions derived in (7) and (8) (we refer the reader to Tessler,
Mankowitz, and Mannor (2018) for details).

There are a number of methods estimating the first gradi-
ent term ∇θJR(πθ) in (8), including model-based Stochastic
Value Gradients (Heess et al. 2015), iterative lower bound
optimization (Low, Kumar, and Sanner 2022), and model-
free Proximal Policy Optimization (PPO) (Schulman et al.
2017). The empirical study in this paper has been conducted
using PPO as it provided better performance compared to
others in terms of achieving good solution quality with
higher sample efficiency. Next, we mainly focus on estimat-
ing the second gradient term ∇θEτ∼πθ

[Ĉi(τ)]. This is much
more challenging than the standard Lagrangian method for
CMDPs (Tessler, Mankowitz, and Mannor 2018) as Ĉi is
an RNN output, rather than an additive sum of costs as in a
standard CMDP (see Eq. (1)).

Model-Free Gradient Estimation

The second term ∇θEτ∼πθ
[Ĉi(τ)] of (8) involves a gradient

of an expectation taken over a random variable. The score
function estimator (Fu 2006) makes use of the log derivative
trick and estimates the gradient using the output score from
classifier. The score function estimator is derived as:

∇θEτ∼πθ
[Ĉi(τ)]

=∇θ

[
Eτ∼πθ

[Ĉi(τ)]− di

]
=∇θEτ∼πθ

[Ĉi(τ)− di]

=Eτ∼πθ
[(Ĉi(τ)− di)∇θ logP (τ ; θ)]

=Eτ∼πθ
[(Ĉi(τ)− di)

T∑
t=0

∇θ log πθ(st, at)] (9)

T in (9) is the maximum timestep encountered in a partic-
ular trajectory τ . The −di term, introduced at the first step,
serves as a baseline to reduce the variance of this estima-
tor. This estimator provides a clever way to collect on-policy
samples, estimate gradients wrt θ and adjust the policy pa-
rameters θ accordingly.

Before discussing the interpretation of the estimator
in (9), we first highlight that the policy parameters are ad-
justed in the opposite direction of this gradient due to the
negative sign in (8). Consider one particular trajectory τ

from the minibatch samples collected in (9). When Ĉi(τ)−
di is positive, the policy update will move in the opposite di-
rection of

∑T
t=0 ∇θ log πθ(st, at), decreasing the likelihood

of performing similar sets of actions in future. Conversely,
when Ĉi(τ) − di is negative, the incremental update will
increase the likelihood of performing such actions.

Although the model-free method provides a neat way of
estimating the gradient, it is rather difficult to apply in prac-
tice due to the following reasons. Firstly, score function es-
timators tend to have high variance (Schulman et al. 2015),
in turn increasing the difficulty of moving towards the fea-
sible constraint region in a consistent manner. Secondly, the
output Ĉi(τ) is an approximate value of the unknown true
value Ci(τ). The classification error exacerbates the high
variance issue. Lastly, the score function estimator sums
up the gradients evaluated at all individual timesteps, i.e.∑T

t=0 ∇θ log πθ(st, at). This implies that the policy will be
adjusted to decrease or increase (depending on the sign of
Ĉi(τ) − di) the likelihood of performing the sampled ac-
tions at every single timestep. Even though the presence of
an NSE is determined by inspecting the entire trajectory τ ,
the contributing factor could be a smaller subpart of the tra-
jectory. In such cases, adjusting the actions at every single
timestep can lead to over-correction.

In light of the difficulties in applying model-free gradi-
ent estimation methods, we now propose a model-based gra-
dient estimation method which better exploits the differen-
tiable function approximator learned in Ĉi(τ).

599



Fully Connected Layer

G
R

U

G
R

U

G
R

U

C
at

eg
or

ic
al

 C
ro

ss
-E

nt
ro

py
 L

os
s

Figure 2: Stochastic Computation Graph of Ĉi(τ) for trajectory τ where number of NSE classes is K = 3

Model-Based Gradient Estimation
The pathwise derivative (PD) estimator (Glasserman 2004;
Schulman et al. 2015) has lower variance but it requires (a)
Ĉi(τ) be a continuous function of θ, (b) τ be a deterministic
and differentiable function of θ. To fulfil these conditions,
we apply the “reparameterization trick” on both the transi-
tion model T (st, at, st+1) and the policy πθ(s, a).

Figure 2 illustrates such a reparameterized model using a
stochastic computation graph (Schulman et al. 2015). Fig-
ure’s upper half depicts the GRU network used in clas-
sifying trajectory τ , which outputs Ĉi(τ). The bottom
half outlines the relationship between policy parameters θ
and the state-action pairs (st, at) observed in trajectory τ .
To express st, at as deterministic and differentiable func-
tion of θ, the reparameterization trick uses exogenous ran-
dom samples ξ, ϵ to sample from the probability distribu-
tions T (st, at, st+1) and πθ(s, a) respectively. For location-
scale probability distributions (e.g. Gaussian, Gamma), sam-
pled state can be written (Kingma and Welling 2014) as
st+1(θ, ξ) = µ(st, at; θ) + σ(st, at; θ) · ξt+1 where µ,
σ refer to the location and scale respectively while ξt
is a random sample drawn from a normalized distribu-
tion with zero location and unit scale. For categorical dis-
tributions, Gumbel softmax (Jang, Gu, and Poole 2016)
can be employed to rewrite sampled action at(θ, ϵ) =
one hot(softmax(log πθ(st, a) + ϵt)) with ϵt drawn from
Gumbel(0, 1). Sampled state can be rewritten similarly.

We call this method model-based gradient estimation as
the transition model T is required for the reparameterization
trick. The pathwise derivative estimator is written as:

∇θEτ∼πθ
[Ĉi(τ)]

=∇θEτ∼πθ
[Ĉi(s0, a0, s1, a1, ..., sT , aT )]

=∇θEϵ,ξ∼p(·)[Ĉi(s0, θ, ϵ, ξ)] (10)

=Eϵ,ξ∼p(·)[∇θĈi(s0, θ, ϵ, ξ)] (11)

The reparameterization trick is performed in step (10)
to rewrite Ĉi(τ) as a function of the initial state s0, pol-
icy parameters θ and the exogenous noise vectors ϵ, ξ (of
size T + 1 and size T respectively) drawn from probability
distribution independent of θ. Recall that classifier output
is a function of trajectory τ = (s0, a0, s1, a1, ..., sT , aT ).
All intermediate sk (except s0) has a recursive relationship
with the previous state-action pair (sk−1, ak−1) and can be
rewritten as a function of θ and ξ using the reparamterization
formulae described earlier. Similarly, ak is dependent on sk
and θ. Since sk can be written as a function of θ and ξ, the
observed ak (sampled from probability parameterized pol-
icy πθ(s, a)) can also be written as a function of θ, ϵ and ξ in
a similar manner. As the function approximator Ĉi(τ) pro-
vides a continuous and differentiable function, the model-
based gradient estimation method exploits this and averages
the sample derivative ∇θĈi(s0, θ, ϵ, ξ) in the minibatch.

We also discuss the characteristics of this estimator.
First, model-based gradient estimation utilizes the deriva-
tive ∇θĈi instead of the actual output Ĉi. Using the deriva-
tive typically results in lower variance (Schulman et al.
2015; Heess et al. 2015), especially when the function Ĉi

is smooth. Second, the proposed trajectory classifier uses
the cross-entropy loss function, causing the gradient ∇θĈi

to gradually diminish when predicted probability Ĉi ap-
proaches 1 or 0. The small gradient values encountered will
impede the gradient update of the Lagrange Multiplier term.
Regularization (e.g. Dropout) is recommended to prevent
the classifier from outputting a value very close to 1 or 0
(e.g. ≥ 0.9999). In addition, we recommend a non-zero ini-
tial value for λ to prevent θ from quickly converging to
an infeasible region where the evaluated gradient ∇θĈi is
very small. Last, for the computation of Ĉi, the trajectory
classifier can have different weights for the state-action pair
(st, at) at different timestep t. This permits the policy net-

600



Boxpushing Driving
Reward NSE Reward NSE

Markov-HA-S −30.43± 2.29 0.76± 3.40 −26.59± 0.46 8.24± 8.75
MF-Lagrange −28.29± 1.92 59.00± 10.95 −28.10± 0.98 5.10± 7.46

MBGE −26.80± 0.89 0.30± 0.72 −25.78± 1.01 2.97± 6.61

Table 1: Grid World Experiment Results - Boxpushing & Driving

work to target specific timesteps which greatly impacts the
final score Ĉi and adjust the policy parameters θ using the
gradients evaluated at these timesteps accordingly. This is
beneficial and tackles the over-correction issue discussed in
model-free gradient estimation.

Empirical Experiments
To test the effectiveness of our proposed methods1, we
present two sets of experiment results. The first set of ex-
periments involves two different tasks in a grid-world en-
vironment where state and action spaces are both discrete.
The objective of this experiment is to compare against the
current state-of-the-art safe planning approach (Saisubrama-
nian, Kamar, and Zilberstein 2022) which avoids Marko-
vian NSEs. We show that our proposed model-based gra-
dient estimation (MBGE) method produces better results in
balancing between maximizing reward and averting NSEs.
The second set of experiments evaluates the performance in
performing two distinct tasks in continuous MDP planning
domains. The detailed definitions of these continuous MDP
planning domains can be found in (Bueno et al. 2019; Bueno
2020). Our proposed method successfully optimizes rewards
while reducing the occurrence of non-Markovian NSEs be-
low the specified thresholds.

To perform gradient-based updates, our proposed method
collects a batch of trajectory samples in a learning epoch
and each experiment run trains the agent for a number of
learning epochs (1000 for Grid-Worlds, 5000 for continu-
ous domain). During training, after a fixed number of learn-
ing epochs, 100 separate test trajectories (different from the
training trajectories) are collected for performance evalua-
tion. The rest of hyperparameter settings used in our experi-
ments are provided in the supplement2.

For performance reporting, we report the average and
standard deviation values for 5 training runs. This is because
our approach involves learning from samples collected from
stochastic environments, while conventional planning ap-
proach like (Saisubramanian, Kamar, and Zilberstein 2022)
does not collect trajectory samples. To have a fair estimate
of the planning performance of our approach, we evaluate
the average performance over the 5 runs.

Grid World Domains
Here we provide a brief description of the grid world do-
mains used to test our approach against current state-of-the-
art Markovian NSE planner which learns NSE from human-
provided numerical score of a state-action pair. We call this

1Code at https://github.com/siowmeng/Avert-NonMarkovNSE
2Supplement in arXiv version (Low, Kumar, and Sanner 2023)

method Markov-HA-S and refer the readers to (Saisubrama-
nian, Kamar, and Zilberstein 2022) for more comprehensive
description of the experiment setup. Experiments have been
carried out for two separate tasks:

Boxpushing The agent is required to pick up a box at a
specific location and move towards a goal position (Seuken
and Zilberstein 2007). The agent will incur NSEs if it lands
on certain surface types (e.g. surface with carpet, fragile sur-
face) while pushing the box.

Autonomous Driving The autonomous agent is incen-
tivized to move toward a goal position as quickly as posi-
tion (Wray, Zilberstein, and Mouaddib 2015). However, it
will incur NSEs if it tries to drive fast while nearing a pedes-
trian or a puddle.

Negative Side Effects For Markov-HA-S, NSEs are de-
fined as Markovian NSEs which are immediately observable
for a given state-action pair. To compare against their re-
sult, we adapt our classifier architecture and make it a Multi-
Layer Perceptron (MLP) classifier (Goodfellow, Bengio, and
Courville 2016) which classifies NSE for a given state-
action pair, i.e. Ĉi(s, a). Similar to Markov-HA-S, experi-
ments were conducted in fully avoidable NSE scenarios and
thus our constraint can be adapted as

∑T
t=0 Ĉi(st, at) ≤ 0.

Classifier Training We use similar strategy as Markov-
HA-S in training the classifier Ĉi(st, at), using random
query data. Note that for our training data, Ci(st, at) is
an indicator function specifying whether NSE of class i is
present while Markov-HA-S requires it to be a numerical
score. For boxpushing domain, our classifier was trained
with ∼1.7k samples as it was enough to achieve close to
100% classifier accuracy. We compare our method with the
Markov-HA-S trained with larger learning budgets, i.e. {2k,
4k, 6k, 7k} samples, and we report its average performance
over these training budgets. This ensures that variation in a
single Markov-HA-S learning budget does not unfairly af-
fect our comparisons. For driving domain, our classifier was
trained with ∼3.5k samples (our classifier achieved close
to 99% accuracy) and compared against the Markov-HA-S
trained with learning budgets {4k, 6k, 7k}.

Results and Discussion As we are using Markovian NSEs
for the Grid-World experiments, we report the NSE values
using the same NSE penalty as Markov-HA-S: fixed numeri-
cal value 5 and 10 for mild and severe NSEs respectively. We
adapt our MBGE method to reduce the Markovian NSEs.
For our model-free variant, classifier’s output Ĉi(s, a) is
treated as a proxy for true costs c(s, a) and the accumulated
cost over the trajectory is to be minimized. The performance

601



0 200 400 600 800 1000

100

80

60

40

20

Re
w

ar
d

MBGE Reward (Averaged over 100 Trajectories)

0 200 400 600 800 1000
Learning Epoch

0

20

40

60

80

N
SE

MBGE NSE (Averaged over 100 Trajectories)

Figure 3: One MBGE Training Run for Boxpushing

(average ± one standard deviation) of this model-free vari-
ant is reported in Table 1 as MF-Lagrange, alongside MBGE
and Markov-HA-S. The reported values are aggregated over
five different problem instances for each task.

In both tasks, MBGE achieves the highest rewards and
lowest NSEs. In boxpushing domain, MBGE’s NSE is
very close to zero with very low variance. In comparison,
Markov-HA-S incurs significantly higher NSE with much
higher variance and MF-Lagrange has serious difficulty in
NSE reduction. This agrees with our analysis in Section ,
since an agent only incurs NSE when it is already pushing
the box. MF-Lagrange treats classifier output as a blackbox
and adjusts all the performed actions in an NSE-inducing
trajectory. In contrast, MBGE utilizes the classifier gradient
and can fine-adjust the actions only at timesteps when agent
is pushing the box, resulting in better NSE performance.
In autonomous driving domain, MBGE manages to reduce
the average NSE to a very small value with lower variance.
These results support our claim where our method is general
enough to be applied to Markovian NSEs and yet achieve
better performance than baselines.

To better understand how MBGE learns a safe policy,
we plot a single MBGE training run in Figure 3. Every 50
epochs, the policy is executed in test environment and the
reported reward and NSE are averaged over 100 test trajec-
tories. The semi-transparent band indicates ±0.5 standard
deviation. In the first 200 epochs, the agent explores the en-
vironment and has not discovered that the box can be picked
up to achieve higher reward, thus both the reward and NSE
are low. After epoch 200, the agent learns to push the box to
the goal and starts achieving better reward. At the same time,
the amount of NSE increases because agent has not learned
to avoid dangerous surfaces and this in turn increases the

value of Lagrange Multiplier λi. This makes the effect of
∇θJĉi(πθ) in (8) larger and causes the agent to adjust its
policy based on both ∇θJR(πθ) and ∇θJĉi(πθ). This can be
observed toward the later part of training (after epoch 500),
where the agent learns to jointly optimize both reward and
NSE, eventually converges to a safe optimal policy.

Non-Markovian NSE Experiment We refer the readers
to the supplement for additional experiments demonstrating
that MBGE better satisfies non-Markovian NSE constraints
than MF-Lagrange and Markov-HA-S baseline.

Continuous Domains
We experimented with two distinct tasks in continu-
ous planning domains: Navigation (Faulwasser and Find-
eisen 2009) and Heating, Ventilation and Air Conditioning
(HVAC) (Agarwal et al. 2010). We provide brief descrip-
tions of these two tasks below and refer the readers to Bueno
(2020) for complete specifications.

Navigation The agent is required to avoid a deceleration
zone and move toward a goal position in a 2D continuous
grid. Reward is defined as the Euclidean distance between
the agent and goal position at every timestep. On top of the
existing specifications, we defined an additional dirty zone
(2 ≤ x ≤ 4.5, 0 ≤ y ≤ 10), sitting between the agent’s
starting position and goal position. The agent incurs no NSE
if it passes through the dirty zone fewer than two timesteps
throughout the entire trajectory (mild NSE: 2− 3 timesteps,
severe NSE: ≥ 4 timesteps in the dirty zone). Our target is
to be NSE-free 95% of the time (i.e. Eτ∼πθ

[C0(τ)] ≥ 0.95).

HVAC In HVAC control, the agent controls the amount
of heated airflow into a set of inter-connected rooms. The
original problems specifies room temperature to be between
20◦C to 23.5◦C. It also incentivizes the agent to main-
tain the room temperatures at the midpoint of this temper-
ature range (around 21.75◦C). Unbeknownst to the MDP
designer, one of the rooms is actually a server room and
there is a safety requirement to further keep the tempera-
ture of this room below 21◦C. As such, our non-Markovian
NSEs are defined as follows: a trajectory is NSE-free if the
server room temperature is higher than 21◦C for no more
than one consecutive timestep (mild NSE: 2 − 3 consecu-
tive timesteps, severe NSE: ≥ 4 consecutive timesteps above
21◦C). The NSE constraint is to have no-NSE 95% of the
time (i.e. Eτ∼πθ

[C0(τ)] ≥ 0.95).

Classifier Training The NSEs defined for the two tasks
above are non-Markovian NSEs in nature and the whole tra-
jectory needs to be inspected to determine the presence of an
NSE, i.e. Ci(τ). As such, we use the GRU-based classifier
Ĉi(τ) illustrated in Figure 2 and report the percentages of
test trajectories actually having no NSE, i.e. Eτ∼πθ

[C0(τ)].
For both navigation and HVAC tasks, we trained the clas-
sifier using close to 200k labelled trajectories, achieving
around 99% classification accuracy.

Results and Discussion The boxplots in Figure 4 report
the total reward and percentage of NSE-Free Trajectories
achieved by policies trained using PPO, model-free gradient

602



PPO MFGE MBGE
110

100

90

80

70
Reward (Nav)

PPO MFGE MBGE

0.0

0.2

0.4

0.6

0.8

1.0
%NSE-Free (Nav)

PPO MBGE
580000

560000

540000

520000

500000

480000

460000
Reward (HVAC)

PPO MBGE

0.0

0.2

0.4

0.6

0.8

1.0
%NSE-Free (HVAC)

Figure 4: Continuous Domain Experiments (box plots)

estimation (MFGE) and MBGE methods (the latter two be-
ing the proposed methods in this paper). The charts present
the policy performance within their last 200 epochs in five
independent training runs.

From the top half of Figure 4 (for navigation domain),
PPO achieves the best reward while incurring NSE almost
100% of the time. This is expected since PPO simply opti-
mizes reward, without being aware of the presence of NSEs.
Our proposed MBGE method is able to strike good balance
between reward optimization and NSE avoidance, achiev-
ing average reward around -95 while almost always satisfy
the NSE constraint. The MFGE method significantly under-
performs, collecting lower reward and never meets the NSE
constraint. The high-variance nature of MFGE method cre-
ates difficulty in practice. Furthermore, the NSE we defined
is typically observed over a smaller subpart of the trajectory.
As discussed in Section , MFGE tends to overcorrect the en-
tire trajectory and cannot perform targeted adjustment.

We do not include MFGE in HVAC performance report-
ing since it fails to converge to the constrained local opti-
mum in all training runs. The bottom half of Figure 4 shows
similar pattern, with PPO being able to maximize reward
but violating constraint all the time. For MBGE, most runs
converge to safe policy with average returns around -520k,
supporting our claims that MBGE enables agent to optimize
reward and NSEs jointly.

Figure 5 illustrates the MBGE learning process for the
navigation domain (figure for HVAC can be found in the
supplement). The solid blue line indicates the total reward
averaged over 100 test trajectories and the semi-transparent
band outlines the maximum and minimum reward among
the 100 test trajectories. As the agent learns the move to-
ward to goal, it starts to incur NSE (around epoch 150) since
the shortest path would pass through the dirty zone. This in-

0 1000 2000 3000 4000 5000
250

225

200

175

150

125

100

75

Re
w

ar
d

MBGE Reward (Averaged over 100 Trajectories)

0 1000 2000 3000 4000 5000
Learning Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
SE

Percentage of NSE-Free Trajectories

Figure 5: One MBGE Training Run for Navigation

creases λi and intensifies the effects of NSE term ∇θJĉi(πθ)
during policy update. Armed with the gradient information
from the learned classifier, MBGE optimizes total return and
NSE jointly and discovers a safe path bypassing the dirty
zone (around epoch 500). The red curve demonstrates that
the converged policy is NSE-free at least 95% of the time.

Conclusion
We have presented a method for safe MDP planning that
avoids negative side effects (NSEs), which may arise during
policy execution based on an incomplete model of a complex
real world environment. Unlike previous works that require
knowledge of numerical safety cost functions, our method
learns a RNN-based classifier that learns to label state-action
trajectories with different safety categories based on col-
lected NSE dataset. Thus, our method can address a rich set
of non-Markovian NSEs, unlike previous works which are
limited to Markovian safety cost functions. Furthermore, we
developed a model-based method that integrates the differ-
entiable classifier with the MDP model to estimate the gradi-
ent of the classifier w.r.t. policy parameters, which is a better
approach than an entirely model-free way of estimating gra-
dients. Empirically, our method worked significantly better
than a number of baselines.

Acknowledgments
This research/project is supported by the National Research
Foundation Singapore and DSO National Laboratories un-
der the AI Singapore Programme (Award Number: AISG2-
RP-2020-016).

603



References
Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Constrained
policy optimization. In International conference on machine learn-
ing, 22–31. PMLR.
Agarwal, Y.; Balaji, B.; Gupta, R.; Lyles, J.; Wei, M.; and Weng, T.
2010. Occupancy-Driven Energy Management for Smart Building
Automation. Power, 50(100): 150.
Alizadeh Alamdari, P.; Klassen, T. Q.; Toro Icarte, R.; and McIl-
raith, S. A. 2022. Be Considerate: Avoiding Negative Side Effects
in Reinforcement Learning. In AAMAS-22, 18–26.
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.; Niekum, S.;
and Topcu, U. 2018. Safe Reinforcement Learning via Shielding.
In AAAI-18, 2669–2678.
Altman, E. 1998. Constrained Markov decision processes with
total cost criteria: Lagrangian approach and dual linear program.
Mathematical methods of operations research, 48(3): 387–417.
Altman, E. 2021. Constrained Markov Decision Processes. CRC
Press. ISBN 9781351458245.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schulman,
J.; and Mané, D. 2016. Concrete problems in AI safety. CoRR,
abs/1606.06565.
Bertsekas, D. 1999. Nonlinear Programming. Athena Scientific.
Bueno, T. P. 2020. rddlgym. https://github.com/thiagopbueno/
rddlgym. Accessed: 2022-03-08.
Bueno, T. P.; de Barros, L. N.; Mauá, D. D.; and Sanner, S. 2019.
Deep Reactive Policies for Planning in Stochastic Nonlinear Do-
mains. AAAI, 33(01): 7530–7537.
Cho, K.; van Merriënboer, B.; Bahdanau, D.; and Bengio, Y.
2014. On the Properties of Neural Machine Translation: Encoder–
Decoder Approaches. SSST-8, 103.
Chow, Y.; Nachum, O.; Faust, A.; Duenez-Guzman, E.; and
Ghavamzadeh, M. 2019. Lyapunov-based safe policy optimization
for continuous control. arXiv preprint arXiv:1901.10031.
Dalal, G.; Dvijotham, K.; Vecerik, M.; Hester, T.; Paduraru, C.; and
Tassa, Y. 2018. Safe exploration in continuous action spaces. arXiv
preprint arXiv:1801.08757.
Dietterich, T. G. 2017. Steps toward robust artificial intelligence.
AI Magazine, 38(3): 3–24.
Faulwasser, T.; and Findeisen, R. 2009. Nonlinear model predictive
path-following control. Nonlinear model predictive control, 384:
335–343.
Fu, M. C. 2006. Gradient estimation. Handbooks in operations
research and management science, 13: 575–616.
Glasserman, P. 2004. Monte Carlo methods in financial engineer-
ing, volume 53. Springer.
Goodfellow, I. J.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. Cambridge, MA, USA: MIT Press. http://www.
deeplearningbook.org.
Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S. J.; and Dra-
gan, A. 2017. Inverse reward design. Advances in neural informa-
tion processing systems, 30.
Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Erez, T.; and Tassa,
Y. 2015. Learning continuous control policies by stochastic value
gradients. Advances in neural information processing systems, 28.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical reparameteriza-
tion with gumbel-softmax. arXiv preprint arXiv:1611.01144.
Jansen, N.; Könighofer, B.; Junges, S.; Serban, A.; and Bloem, R.
2020. Safe Reinforcement Learning Using Probabilistic Shields.
In CONCUR 2020.

Jothimurugan, K.; Bansal, S.; Bastani, O.; and Alur, R. 2021.
Compositional reinforcement learning from logical specifications.
NeurIPS, 34: 10026–10039.
Junges, S.; Jansen, N.; Dehnert, C.; and Topcu, U. 2016. Safety-
Constrained Reinforcement Learning for MDPs. TACAS, 130.
Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Variational
Bayes. In International Conference on Learning Representations.
Krakovna, V.; Orseau, L.; Kumar, R.; Martic, M.; and Legg, S.
2018. Penalizing side effects using stepwise relative reachability.
arXiv preprint arXiv:1806.01186.
Krakovna, V.; Orseau, L.; Martic, M.; and Legg, S. 2019. Penaliz-
ing Side Effects using Stepwise Relative Reachability. In AI Safety
Workshop, IJCAI.
Krakovna, V.; Orseau, L.; Ngo, R.; Martic, M.; and Legg, S. 2020.
Avoiding side effects by considering future tasks. Advances in Neu-
ral Information Processing Systems, 33: 19064–19074.
Low, S. M.; Kumar, A.; and Sanner, S. 2022. Sample-Efficient It-
erative Lower Bound Optimization of Deep Reactive Policies for
Planning in Continuous MDPs. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 36(9): 9840–9848.
Low, S. M.; Kumar, A.; and Sanner, S. 2023. Safe MDP Plan-
ning by Learning Temporal Patterns of Undesirable Trajectories
and Averting Negative Side Effects. arXiv:2304.03081.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986. Learn-
ing representations by back-propagating errors. nature, 323(6088):
533–536.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2020. A Multi-
Objective Approach to Mitigate Negative Side Effects. In IJCAI-
20, 354–361.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2022. Avoiding
Negative Side Effects of Autonomous Systems in the Open World.
Journal of Artificial Intelligence Research, 74: 143–177.
Schulman, J.; Heess, N.; Weber, T.; and Abbeel, P. 2015. Gradi-
ent Estimation Using Stochastic Computation Graphs. In NeurIPS,
3528–3536.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov,
O. 2017. Proximal Policy Optimization Algorithms. CoRR,
abs/1707.06347.
Seuken, S.; and Zilberstein, S. 2007. Improved Memory-Bounded
Dynamic Programming for Decentralized POMDPs. In UAI,
344–351.
Shah, R.; and Krasheninnikov, D. 2019. Preferences Implicit in
the State of the World. In International Conference on Learning
Representations (ICLR).
Simão, T. D.; Jansen, N.; and Spaan, M. T. J. 2021. Al-
waysSafe: Reinforcement Learning Without Safety Constraint Vi-
olations During Training. In AAMAS 2021, 1226–1235.
Stooke, A.; Achiam, J.; and Abbeel, P. 2020. Responsive safety in
reinforcement learning by pid lagrangian methods. In International
Conference on Machine Learning, 9133–9143. PMLR.
Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to reinforce-
ment learning. Vol. 135.
Tessler, C.; Mankowitz, D. J.; and Mannor, S. 2018. Reward con-
strained policy optimization. arXiv preprint arXiv:1805.11074.
Turner, A. M.; Hadfield-Menell, D.; and Tadepalli, P. 2020. Con-
servative agency via attainable utility preservation. In Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society, 385–391.
Wray, K.; Zilberstein, S.; and Mouaddib, A.-I. 2015. Multi-
Objective MDPs with Conditional Lexicographic Reward Prefer-
ences. AAAI, 29(1).

604


