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Abstract

Recent works using deep reinforcement learning (RL) to
solve routing problems such as the capacitated vehicle rout-
ing problem (CVRP) have focused on improvement learning-
based methods, which involve improving a given solution un-
til it becomes near-optimal. Although adequate solutions can
be achieved for small problem instances, their efficiency de-
grades for large-scale ones. In this work, we propose a new
improvement learning-based framework based on imitation
learning where classical heuristics serve as experts to en-
courage the policy model to mimic and produce similar or
better solutions. Moreover, to improve scalability, we pro-
pose Clockwise Clustering, a novel augmented framework for
decomposing large-scale CVRP into subproblems by cluster-
ing sequentially nodes in clockwise order, and then learning
to solve them simultaneously. Our approaches enhance state-
of-the-art CVRP solvers while attaining competitive solution
quality on several well-known datasets, including real-world
instances with sizes up to 30,000 nodes. Our best methods are
able to achieve new state-of-the-art results for several large
instances and generalize to a wide range of CVRP variants
and solvers. We also contribute new datasets and results to
test the generalizability of our deep RL algorithms.

Introduction
We study the vehicle routing problems (VRP), an important
class of combinatorial optimization problems which has a
wide range of applications in logistics (Laporte 2009). Ca-
pacitated vehicle routing problem (CVRP) is a basic variant
of VRP, aiming to find a set of routes that minimize the cost
and fulfill the demands of a set of customers without vio-
lating vehicle capacity constraints. The CVRP is NP-hard
(Lenstra and Kan 1981). Both exact and heuristic methods
have been developed to solve it (Toth et al. 2014). In re-
cent years, especially after the seminal work of Pointer Net-
works (Vinyals, Fortunato, and Jaitly 2015) and Graph Neu-
ral Networks (Prates et al. 2019), researchers have started to
develop new deep learning and reinforcement learning (RL)
frameworks to solve combinatorial optimization problems
(Kool, van Hoof, and Welling 2018; Chen and Tian 2019).
The idea behind the RL algorithms is that a machine learn-
ing method could learn better heuristics by extracting useful
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information directly from data, rather than having an explic-
itly programmed behavior like heuristic methods. In fact, it
has been known that, even though heuristics would get stuck
in local optimums, they often offer stable and high-quality
solutions, especially for large-scale instances and when the
problem involves complex constraints. The RL approach
is better in exploring new solutions and escaping from lo-
cal optimums, but needs time to train and would be unsta-
ble with complex constraints. This motivates us to combine
heuristics and RL in such a way that RL can learn and benefit
from heuristic operators.

In this work, we propose an imitation reinforcement learn-
ing algorithm trained via policy gradient to learn improve-
ment heuristics based on k-opt moves and treat advanced
heuristics (e.g., VNS or HGS) as experts to teach the policy
model. Our work aims to enhance the deep RL process via
heuristic methods and address scalability by learning from
smaller sub-problems simultaneously. That is, for each step,
a certain number of nodes are selected in turn clockwise,
following by an initial solution, to form sub-problems to our
RL policy for ease of learning. In fact, our clockwise mech-
anism offers a good initial solution structure and a natural
way to decompose the whole problem into sub-problems
that can be solved and learned simultaneously. Moreover,
a solution returned by the RL policy model will be fed to
a heuristic method to be further improved. Solutions from
heuristics are also collected to build an imitation learning
model that will be integrated back into the RL policy to per-
suade the RL to produce similar solutions.

In summary, by combining the clockwise framework,
heuristic methods and imitation learning, we bring several
advantages to the same place:
(i) Starting with poor quality solutions, we first use heuris-

tics to improve solutions, and heuristic operators are
learned and imitated by deep learning networks (i.e., Ho
and Ermon (2016)) to generate similar or better solutions
at each step. In fact, by letting deep RL and imitation
learning work together in an iterative manner, we encour-
age the algorithm to both explore new solutions (by deep
RL) and exploit operators that lead to high-quality solu-
tions (i.e. imitation learning mimicking heuristics).

(ii) The whole network is clustered into smaller sub-
problems of similar distributions, allowing our algo-
rithms to process them quickly and scale up.
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(iii) Heuristics play as experienced experts (teacher/correc-
tor) that help the deep RL generate more stable and
high-quality solutions. Faster convergence is to be ex-
pected with the powerful performance of heuristic meth-
ods. Moreover, since solutions are always corrected by
heuristics to ensure feasibility, the Policy Network does
not need to control infeasible solutions.

Altogether, we make the following contributions:
• We propose Imitation Improvement Learning, a new

learning-based framework using policy gradient with a
heuristic method that serves as an expert/teacher to cor-
rect and improve any solution to ensure feasibility and
teach the policy gradient to generate high-quality solu-
tions.
• We propose Clockwise Clustering, a recursive sub-

problem decomposition framework to handle large-scale
CVRP instances.
• We offer new state-of-the-art solutions for some well-

known large-scale CVRP instances.
Our experiments demonstrate the scalability of our Clock-
wise Clustering in solving large-scale real-world instances,
the benefits of using imitation learning to get high-
quality solutions, and the generalizability of our learning-
based model in solving instances of similar distributions.
Codes and models are available at https://github.com/vietbt/
VRPpp.

Related Work
Heuristics for solving combinatorial optimization problems
have been developed for decades. The most powerful meth-
ods, such as local search (Crama, Kolen, and Pesch 1995),
genetic algorithms (Heiss-Czedik 1997), and ant colony
methods (López-Ibáñez 2010), involve iteratively improving
solutions in a hand-designed neighborhood search. For ex-
ample, move, swap (Wu et al. 2016), and 2-opt (Croes 1958)
are well-known heuristics for the traveling salesman and
vehicle routing problems. Examples of the state-of-the-art
heuristic algorithms for the CVPR would be the HGS (Vidal
2022) that uses a hybrid genetic and local search procedure
to achieve state-of-the-art solution qualities on instances of
sizes up to 1000, or the LKH-3 (Helsgaun 2017) that uses
the Lin-Kernighan heuristic as a backbone, which involves
swapping pairs of sub-routes to create new routes. HGS is
considered one of the best heuristic algorithms for CVRP, to-
gether with LKH-3, but HGS is more focused on CVRP and
LKH-3 was designed for other variants. Our framework can
be straightforwardly adapted for other heuristics. For large-
scale problem instances, low-level heuristics are often com-
bined with meta-heuristics to achieve good performance,
e.g., Pruning and Sequential Search (Arnold, Gendreau, and
Sörensen 2019), Spatial Partitioning Strategies (Tu et al.
2017), Constrained Clustering (Alesiani, Ermis, and Gkiot-
salitis 2022), and Cluster-First Route-Second (Shalaby, Mo-
hammed, and Kassem 2021).

In recent years, there have been a number of studies focus-
ing on using deep RL to solve combinatorial optimization
problems. Those models are categorized into two classes:
construction and improvement methods (Kwon et al. 2020).

• Construction methods (Nazari et al. 2018): Starting with
an empty solution, a construction method constructs a so-
lution by sequentially assigning each customer to a ve-
hicle until all customers are served. Construction meth-
ods still require additional procedures such as beam
search, classical improvement heuristics, and sampling
to achieve such results.
• Improvement methods (Chen and Tian 2019; Hottung and

Tierney 2020): Starting with a complete initial solution,
the methods select either candidate nodes (customers or
depot) or heuristic operators (or both) to improve and
update the solution at each step. This is repeated until
termination. Here, if one can learn a policy to improve a
solution, such a policy can be used to obtain better solu-
tions from a construction heuristic or even random solu-
tions. Studies have shown that improvement methods are
able to provide better solutions than construction ones
(Lu, Zhang, and Yang 2020; da Costa et al. 2021).

Deep RL approaches have achieved competitive results as
compared to classical heuristics. For example, Lu, Zhang,
and Yang (2020) propose Learning-to-improve based on
Meta-controller learning, which outperforms LKH-3 but
only works on small-scale problems. da Costa et al. (2021)
propose Learning 2-opt based on learning from local search
operations, which also only works with small-scale prob-
lem instances. Recently, Li, Yan, and Wu (2021) develop
a learning to delegate approach in which sub-problem are
selected and learned. This method outperforms LKH-3 and
works well with uniformly large-scale problems. It is more-
over quite scalable and is efficient for generalization. How-
ever, since the approach requires a large dataset of instances
for training and similar data distributions for testing, the per-
formance on non-uniform large-scale CVRP instances such
as CVRPLIB would be poor. In fact, there are very few
learning-based experimental studies on very large-scale in-
stances. Although deep RL’s learnability is appealing, tra-
jectory collection becomes prohibitively expensive for large-
scale problem instances.

Background
Capacitated Vehicle Routing Problems
CVRP can be defined by a fully connected weighted graph
G = (V,A), where V = {0 ∪ I} stands for a set of nodes
and A = {(i, j)|i, j ∈ V, i 6= j} denotes a set of arcs con-
necting these nodes. Set I denotes the set of customers and 0
denotes the central depot. Each arc of the network is associ-
ated with a non-negative value dij representing the distance
between two nodes i and j. In case of Euclidean distance,
dij = ‖xi − xj‖2, where xi, xj are vectors of spatial coor-
dinates of nodes i and j, respectively. Each customer k ∈ I
is assigned a positive demand bk > 0. At central depot, the
demand b0 is set to 0. We also let B = {bk|k ∈ I} denote
the set of demands. The objective function of the CVRP, as-
suming that the fleet of vehicles is homogeneous, is to seek
a set of routes that minimize the total traveling distance. Ve-
hicles start and end at the depot and for every route, the total
demand of customers does not exceed the maximal carrying
capacity C > 0 of the vehicle. In Appendix we provide a
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more detailed description and a mixed-integer formulation
for the CVRP problem.

k-Opt Heuristic for the CVRP
An improvement heuristic concerns a search procedure that
iteratively improves feasible solutions. A procedure can start
with an initial solution S0 and iteratively search a better so-
lution St+1 from a current solution St. Local search methods
such as Lin-Kernighan-Helsgaun (LKH) (Helsgaun 2017)
performs well for CVRP. The procedure seeks for k edge
swaps (k-opt moves) that could be replaced by new edges
to form a shorter tour. Sequential pairwise operators such
as k-opt moves can be decomposed in simpler k′-opt ones
(k′ < k). For instance, sequential 3-opt operations can be
decomposed into one, two or three 2-opt operations. How-
ever, in local search algorithms, the quality of the initial so-
lution usually affects the quality of the final solution, i.e.
local search methods can easily get stuck in local optima
(Hansen and Mladenović 2006). To avoid local optima, dif-
ferent meta-heuristics have been proposed, including Simu-
lated Annealing and Tabu Search, which work by accepting
bad solutions to enhance exploration on the searching space.
Meta-heuristics, nevertheless, still require expert knowledge
and rely on sub-optimal rules in their designs.

Clockwise Clustering
In this section we formally introduce the “Clockwise Clus-
tering” framework, our method for solving large-scale
CVRPs. Figure 3 illustrates an overview of this framework.
From a large-scale instance input (G,B, C), we generate an
initial solution S0 by a clock-hand initializer, a simple pro-
cedure that arranges all nodes in clockwise order and se-
quentially groups nodes into tours satisfying that the total
demand of each tour is not greater than the demand capac-
ity C. Clock-hand initializer basically produces a feasible
solution that all tours T = [t1, t2, ..., tnT ] are ordered in
clockwise direction. Note that sorting tours in clockwise di-
rection means that tours are arranged by the angle between
y-axis and the line connecting the centroid point and the de-
pot of each tour. The first u tours (i.e., a proportion of all the
tours) [t1, t2, ..., tu] are then selected to form a sub-instance
(Gsub,B, C). Here, only a subset of tours is selected to pro-
cess, instead of all the tours, to enhance the scalability. Af-
ter solving this sub-instance by the Imitation Improvement
Learning framework (described in the next section), we then
send the first v tours of the returned sub-solution to a sub-
solution buffer to keep the results. The unprocessed tours
and nodes are then collected and sent back to the begin-
ning of the cycle loop for the next round of the Imitation
Improvement Learning. When all the nodes are processed,
we take the processed tours from the sub-solution buffer to
build a complete (and feasible) solution S1 of G. After that,
S1 could be processed same as S0 to create new solutions
S2, S3, S4, .... We accept bad solutions to allow more explo-
ration on the search space. After a certain number of loops,
we return the best solution among {S1, S2, S3, ...}. We pro-
vide an overview of the framework in Figure 1.

The clock-hand initializer offers a good initial solution

Algorithm 1: Clockwise Clustering

1: S ← Initializer(G,B, C) // Initial solution
2: S∗ ← S // Best solution
3: S′ ← [] // Solution buffer
4: while repeat a certain number of times do
5: Ssub ← S:u, Sother ← Su: // First u tours
6: S∗sub ← IILSolver(Ssub,B, C)
7: S′sub ← S∗sub,:v // First v tours
8: S′other ← S∗sub,v: // Remaining portion
9: S′ ← S′ ⊕ S′sub

10: S ← Sother ⊕ S′other // Unprocessed nodes
11: if S is empty then
12: if Cost(S′) < Cost(S∗) then
13: S∗ ← S′ // Best solution ever
14: end if
15: S ← S∗

16: end if
17: end while
18: return S∗

and a natural way to decompose the whole problem into sub-
problems of similar distributions, allowing heuristics to pro-
cess them quickly and providing RL with sub-instances of
similar distributions for efficient training. The learning-to-
delegate framework (Li, Yan, and Wu 2021) also endeav-
ors to select sub-problems to improve scalability, but differ
from our approach by the fact that the learning-to-delegate
learns to select sub-problems and uses traditional heuris-
tics (HGS/LKH3) with a huge number of running steps to
achieve good sub-instance selections. Instead, our method
does not require such a large number of steps as the sub-
instance decomposition is embedded as part of the heuristic
loop and cooperates with heuristics so both will be improved
over iterations.

The pseudo-code of the Clockwise Clustering framework
is provided in Algorithm 1. We first employ Clock-hand ini-
tializer for creating initial solution S and send it into a loop
to find the best improvement solution S∗. We denote by S:t

and St: the sub-problems containing nodes from the first t
tours and the rest , respectively, in clockwise order. Inspired
by the Divide-and-Conquer mechanism, we select the first
u tours of S to form a sub-problem Ssub (e.g., S:u) and for-
ward it to the Imitation Improvement Learning framework
to find an optimal solution S∗sub. We then put its first v tours
(e.g., S∗sub,:v) to a solution buffer S′. After that, we com-
bine all unprocessed nodes from Su: and S∗sub,v: into S and
continue to find improved solutions until S is empty. We de-
scribe in detail the selection of u and v in the appendix.

Imitation Improvement Learning
In this section, we present our Imitation Improvement Learn-
ing (IIL) framework, a main component of the Clockwise
Clustering for solving sub-instances. Figure 2 provides an
overview of the framework. Our framework is iterative
in nature; a sub-solution S is improved after each cycle
loop. Starting with an initial sub-solution as S, a state

553



... ...

Instance Solution

Unprocessed

Sub-problem

Stacked

Unstacked

Figure 1: A visualization of the Clockwise Clustering framework: The clock-hand initializer is used to construct an initial
solution. At each round, a small proportion of the tours are selected to form a sub-problem and sent to Imitation Improvement
Learning to improve. A majority of the output are kept in a sub-solution buffer (stacked) and the remaining portion (unstacked)
is merged with unprocessed tours to start the next round. Once all nodes are processed, we get all the sub-solutions from the
sub-solution buffer and build a complete solution, save it and start a new round with the new solution to further improve it.

s(G, S,B, C) is forwarded to a neural encoder-decoder net-
work to approximate the stochastic policy πθ (a|s), where θ
are trainable parameters. The value function Vφ (s) is also a
neural network, where φ are trainable parameters. This plat-
form uses policy gradient to optimize the parameters of the
policy and value functions of the RL network. Here, thanks
to the Clockwise Clustering platform, the sub-instances sent
to IIL are significantly smaller in size, as compared to the
original instance, and are of similar numbers of nodes. This
matches well the ability of learning-based RL models to pro-
duce high-quality solutions for small-sized instances (Chen
and Tian 2019; Hottung and Tierney 2020). Intuitively, a
good RL policy model would provide the heuristics with
better local search space, leading to better expert solutions to
further teach and improve the RL through imitation learning.
Figure 3 provides an overview of our frameworks, showing
how the Clockwise Clustering and Imitation Improvement
Learning frameworks work together. Detailed steps of the
Imitation Improvement Learning framework are provided in
Algorithm 2.

Imitation Learning with Experts

The key component of the IIL framework is an imitation
learning model that uses heuristics’ solutions to teach
the RL policy to generate high-quality solutions. More
precisely, the RL policy model acts as a student who wants
to learn from experts. Classical heuristics are ideal experts,
which are also iterative and are able to generate good
solutions quickly. Combining the loop of RL policy (stu-
dent) and heuristics (expert), we have a closed loop where
the imitation learning model encourages the RL policy to

mimic the heuristics’ policy. There are two main parts of RL
policy: Encoder (extracting features from input states to rep-
resentation vectors) and Decoder (generating actions based
on representation vectors). As the heuristic agents only give
solutions and there is no direct policy associated with them,
we propose to mimic the encoder network of the heuristics
To this end, we adapt the generative adversarial imitation
learning (GAIL) algorithm (Ho and Ermon 2016), which is
based on a discriminative neural model Dδ to distinguish
between solutions generated by the RL policy and the expert
(i.e. heuristics), where δ are trainable parameters. Modi-
fying GAIL with encoder feature extraction, our objective
is maxθminδ Es∼Expert [log (Dδ (Encoderθ(s)))] +
Es∼Student [log (1−Dδ (Encoderθ(s)))] , where
Encoderθ(s) refers to the representation vector of state
s. By solving the max-min problem, one can force the
RL policy to generate solutions whose encoder feature
extractions are similar to those from expert’s solutions.

Improvement Learning with k-Opt Moves

Inspired by the Learning 2-opt (da Costa et al. 2021), our al-
gorithm will continuously select k different nodes and swap
its edges in the selection order to form a student solution. It
is to be expected that RL will learn to find out which order
would be good for the learning. The RL policy samples an
action a which contains k nodes in I used for k-opt moves
to generate a student solution Sstudent. After that, this solu-
tion is forwarded to the Local Search component of classical
heuristics to get an expert solution Sexpert. The heuristics do
not need to be refreshed after generating this solution. Ex-
pert solution Sexpert continues to be forwarded to RL policy
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Figure 2: An overview of our Imitation Improvement Learning framework: Starting with an initial sub-solution S, the input is
forwarded to an imitation cycle loop between RL Policy (student) and Heuristics (expert) to be improved after each iteration. At
each iteration, the RL Policy, together with k-opt operators, generate a student solution and brings it directly to the traditional
heuristics’s local search to produce an expert solution. These two solutions are used to calculate rewards and imitation loss for
training RL policy with policy gradient.

for a new loop. As Sstudent is not always feasible, rewards
are computed by the gap between input and output solutions,
e.g., r = Cost (S) − Cost (Sexpert). For each step, replay
buffer D collects states, actions, rewards and expert/student
solutions for updating model parameters via policy gradient
with RL loss and imitation learning loss.

Network Architecture

Our neural network is based on an encoder-decoder archi-
tecture (a detailed description is given in appendix). The
encoder learns representations that embed graph topology.
We create node features X ∈ R|V|×3 (x-coordinate, y-
coordinate, and demand rate), edge features E ∈ R|A|×2
(euclidean distance and radian angle between each edge and
x-axis), and import them into the Residual E-GAT (Lei et al.
2021) for feature extraction. Given these representations, the
policy decoder samples action indices a1, a2, ..., ak sequen-
tially for k-opt. We aim to learn the parameters of a stochas-
tic policy πθ(a|s) that, given a state s, assigns high proba-
bilities to moves that reduce the cost of a tour. Our architec-
ture uses a chain rule to factorize the probability of a k-opt
move as πθ(a|s) =

∏k
i=1 pθ(ai|s). We use a pointing mech-

anism (da Costa et al. 2021) to predict a distribution over
node outputs given encoded actions (nodes) and a state rep-
resentation (query vector). The value decoder operates on
the same encoder outputs but outputs real-valued estimates
of state values. We give more details of network architecture
in Appendix .

Loss Function
We use PPO (Schulman et al. 2017) for policy gradient op-
timization with the loss function Eπθ [LPPOπθ

]. We also add
an imitation loss to for imitation learning, leading to the fol-
lowing overall loss

LIILπθ
= LPPOπθ

+ cIL

{
min
δ

Es∼Expert [log (Dδ (Enθ(s)))]

+Es∼Student [log (1−Dδ (Enθ(s)))]
}
,

where Enθ stands for our Encoderθ model, the first term is
the PPO loss from standard RL policy and the second term
(with weight parameter cIL) is from the imitation learning
model. By optimizing maxθ E[LIILπθ

], we seek for a policy
that both maximizes the standard long-term reward function
of the RL policy and mimics the heuristics’ policy feature
extraction. Intuitively, the first term of the loss function is to
encourage exploration of new solutions and the second term
is to exploit high-quality solutions from heuristics.

Experiments and Results
We provide extensive experimental results based on some
large-scale well-known CVRP datasets, targeting the follow-
ing questions.
(i) By using heuristic methods as an expert/teacher for the

policy model, can our Imitation Improvement Learning
framework outperform the standing-alone heuristics?

(ii) Can the Clockwise Clustering and Imitation Improvement
Learning frameworks help us solve very-large-scale in-
stances with competitive performance?
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Figure 3: An overview of our Clockwise Clustering platform.

Algorithm 2: Imitation Improvement Learning

1: S ← InitSolution(G,B, C) // Global solution
2: D ← [] // Replay buffer
3: while repeat a certain number of times do
4: s← InputFeatures(S,G,B, C) // State
5: a← SampleNodesFromPolicy(s) // Action
6: Sstudent ← ProcessOperators(S, a) // k-opt
7: Sh ← Sstudent // Heuristic solution
8: while repeat a certain number of times do
9: S′h ← LocalSearch(Sh)

10: S∗h ← Perturbation(S′h)
11: Sh ← AcceptanceCriterion(S′h, S

∗
h)

12: end while
13: Sexpert ← Sh
14: r ← Cost(S)− Cost(Sexpert) // Reward
15: D ← D.append((s, a, r, Sstudent, Sexpert))
16: S ← Sexpert // Update global solution
17: if |D| > nD then
18: UpdateRLWithImitation(D)
19: D ← [] // Clear replay buffer
20: end if
21: end while
22: return S

(iii) Can our frameworks generalize to other instance sets of
similar distributions?

(iv) Can our algorithms offer new state-of-the-art (SOTA) so-
lutions for some popular CVRP instances?

As HGS is considered one of the best heuristic algorithms
for CVRP, we use HGS as the expert heuristic of our IIL
framework. Besides, VNS is a popular heuristic method. The
use of VNS is to explore the impact of different heuristics

on our approach. Below, we present our datasets and our
comparison results. We trained each dataset separately and
evaluated on the test set if the dataset provides one, or the
training set otherwise. Other details can be found in the ap-
pendix.

Dataset
We benchmark our frameworks using large-scale instances
from three recent datasets from CVRPLIB (http://vrp.atd-
lab.inf.puc-rio.br/index.php/en/), which are known to be
challenging for both heuristic and learning-based meth-
ods. To test the generalizability of our clockwise cluster-
ing (CC) and IIL method, we experiment on an uniform
dataset from Li, Yan, and Wu (2021). We also benchmark
on constrained electrical vehicle routing (CEVRP) datasets,
a CVRP variant for electrical vehicles with battery con-
straints. For this, Mavrovouniotis et al. (2020) contribute a
large-scale CEVRP dataset containing 17 instances. Same
as CVRP, we test the generalizability of our approaches in
CEVRP by using this dataset to train the RL policy and uni-
formly generating 238 new instances to serve as a test set.

Six datasets used for benchmarking are listed in Table 1.
First, we try to test the efficiency of our algorithms, com-
pared to the heuristic counterparts, using Dataset 1. Next,
we test the generalizability of our model by learning with
a train set and evaluating with another test set of Dataset
2. We then benchmark our algorithms with two real-world
large-scale datasets, called as Dataset 3&4, which are col-
lected in Brazil and Belgium, respectively. Although most of
the CVRP datasets use 2D euclidean distances, the DIMACS
dataset (Dataset 3) use weights specifically defined for pairs
of nodes. For CEVRP, we benchmark with instances from
Mavrovouniotis et al. (2020) (named as Dataset 5) and our
newly generated instances (Dataset 6).
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Dataset Source VRP Type Distance Space # instances # customers
1 Uchoa et al. (2017) CVRP Euclidean 100 100-1000
2 Li, Yan, and Wu (2021) CVRP Euclidean 2000/40/40 500-2000
3 DIMACS1 CVRP Explicit 12 241-1000
4 Arnold, Gendreau, and Sörensen (2019) CVRP Euclidean 10 3000-30000
5 Mavrovouniotis et al. (2020) CEVRP Euclidean 17 21-1000
6 Ours CEVRP Euclidean 238 21-1000

Table 1: Datasets.

Experimental Results and Analysis
In this section, we use GAP (percentage) scores defined be-
low as the main criteria for comparison. A GAP score is cal-
culated as the percentage gap w.r.t the corresponding BKS
(best-known-solutions), i.e.,

GAP (X,BKS) =
Cost(SX)− Cost(SBKS)

Cost(SBKS)
.

For Datasets 1-4, the BKS were taken from the datasets’ au-
thors (continuously updated on their website2), which are
found by any method with unknown computing resources.
We also use BKS from the recent CEC-12 competition for
Dataset 5, and VNS as a baseline for Dataset 6 (our new
dataset). We do not aim to compare our approach with BKS;
rather, they are only used to compare our frameworks against
other well-known baseline methods.

Method GAP vs BKS
OR-tools -4.01%

VNS -3.08%
HILS -1.00%
KGLS -0.66%
SISR -0.54%

HGS (30k) -0.30%
HGS (95%) -0.48%

RL+VNS (ours) -2.15%
RL+HGS (ours) -0.31%
IIL+VNS (ours) -1.79%
IIL+HGS (ours) -0.27%

Table 2: Experimental results for Dataset 1.

With Dataset 1, we compare our methods with OR-tools,
VNS, HILS (Subramanian, Uchoa, and Ochi 2013), KGLS
(Arnold and Sörensen 2019), SISR (Christiaens and Van-
den Berghe 2020), and HGS (Vidal 2022). Instead of run-
ning HGS with full settings, we compare with HGS 30k
steps and HGS 95% solution quality, similarly to Li, Yan,
and Wu (2021). Table 2 reports the results from previous
works and our results, compared to the BKS by GAP scores,
where IIL stands for our Imitation Improvement Learning
method and RL stands for our learning-based framework
but without the imitation learning loss. Our methods are

1The 12th DIMACS Implementation Challenge (http://dimacs.
rutgers.edu/programs/challenge/vrp/cvrp/cvrp-competition)

2The Capacitated Vehicle Routing Problem Library (http://vrp.
atd-lab.inf.puc-rio.br/index.php)

clearly better than the corresponding standing-alone heuris-
tics (i.e., RL+VNS and IIL+VNS versus VNS, and RL+HGS
and IIL+HGS versus HGS). For instance, with HGS, our IIL
method get −0.27% GAP vs BKS, better than −0.30% of
HGS 30k steps. In terms of running time, our algorithms
need about 10 hours while HGS takes about 16 to 40 hours
to finish. We do not report the running times of the other
methods because they are not reported in their respective
papers, and these methods are clearly outperformed by our
algorithms in terms of solution quality. The results also in-
dicate that our IIL framework works the best with HGS sub-
solver.

Table 3 shows a comparison of our best method IIL+HGS
with previous results reported for Dataset 2 (Li, Yan, and
Wu 2021). Note that all cost scores are divided by 1e5. Our
costs are better than the previous SOTA results obtained by
Learning-to-delegate (L2D) (Li, Yan, and Wu 2021) for all
the three sub-datasets.

Method Dataset 2
N = 500 N = 1000 N = 2000

LKH-3 (95%) 62.00 120.02 234.89
LKH-3 (30k) 61.87 119.88 234.65

OR-tools 65.59 126.52 244.65
AM sampling 69.08 151.01 356.69
AM greedy 68.58 142.84 307.86

NeuRewriter 73.60 136.29 257.61
Random 61.99 120.02 234.88

Count-based 61.99 120.02 234.88
Max Min 61.99 120.02 234.89

L2D (short) 61.99 119.87 234.89
L2D (long) 61.70 119.55 233.86

IIL+HGS (ours) 60.49 118.37 225.43

Table 3: Average costs for instances of different sizes N ∈
{500, 1000, 2000} of Dataset 2.

Table 4 shows the results for Dataset 3 & 4. For Dataset
3, the classical HGS’s score is not significantly better than
that of the IIL+HGS. Note that it is a non-euclidean dataset
so we are not able to set correctly the node and edge features
for our E-GAT encoder. It might affect the performance of
our framework. In addition, initial solutions created by our
clock-hand could be worse, making it difficult for our Clock-
wise Clustering framework to split nodes into sub-instances.
Nevertheless, we achieved a new SOTA result for Loggi-
n501-k24 instance; our solution cost is 177078, better than
the previous one 177176 reported by the CVRPLIB authors
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Initial solution -
cost: 1406303

IIL+HGS -
cost: 285021

Figure 4: Instance Loggi-n1001-k31 from Dataset 3, which
does not support 2D Euclidean space.

Brussels Flanders

Figure 5: Solutions generated by IIL+HGS for two very-
large-scale instances of Dataset 4, which represent the real-
world maps of Brussels&Flanders, Belgium with sizes up to
30k.

(http://vrp.galgos.inf.puc-rio.br/index.php/en/updates/). For
Dataset 4, even-though it contains very-large-scale instances
of sizes up to 30k, our IIL+HGS performs better than the
classical HGS and any other methods. We illustrate initial
solutions (from the Clock-hand initializer) and our best so-
lutions for two large instances from Dataset 3&4 in Figure 4
and 5.

Methods Dataset 3 Dataset 4
CW - -8.00%

MDM -0.10% -3.63%
HGS -0.10% -4.89%

IIL+VNS (ours) -0.80% -6.71%
IIL+HGS (ours) -0.10% -2.95%

Table 4: GAP vs BKS (percentage) for two real-world
datasets.

Table 5 reports results for large-scale CEVRP instances
from Dataset 5&6, where “-” indicates that the informa-
tion is not available from previous works. For these in-
stances, battery information is added to the node features.
IIL+HGS outperforms other classical heuristics. Specifi-
cally, IIL+HGS gets a new SOTA results with 1.88% GAP
vs BKS. Note that HGS does not support the CEVRP variant
with battery constraints, so we are not able to embed directly
HGS library to our IIL framework. To make it work, we
add a post-processing step, similarly to the GRASP (Woller,
Kozák, and Kulich 2021), to rebuild feasible solutions that fit

the battery constraints. To test the generalizability of our ap-
proach, we run our IIL algorithms on Dataset 6 and compare
the results with VNS and BACO (i.e., SOTA algorithms for
the CEVRP instances), which clearly shows that IIL+HGS
is much better than the heuristics in terms of both solution
quality and running time.

Methods Dataset 5 Dataset 6
GA -4.57% -
SA -2.65% -

VNS -1.08% 0.00%
BACO -0.43% 0.13%

IIL+VNS (ours) 0.43% 1.36%
IIL+HGS (ours) 1.88% 2.15%

Table 5: GAP vs BKS (percentage) for CEVRP datasets

Conclusion
We proposed a new learning-based framework for CVRP,
which employs heuristic methods as an expert to teach the
RL policy model to generate high-quality solutions. To en-
hance the scalability and take the advantage of the RL ap-
proaches in learning from similar instances, we propose
the Clockwise Clustering framework that offers good ini-
tial solutions and a nature way to decompose the whole in-
stances into sub-instances having similar numbers of nodes.
We benchmarked on several popular large-scale CVRP in-
stances of sizes up to 30k, showing that our proposed al-
gorithms outperform the respective standing-alone heuris-
tics and offer competitive solutions, compared to previous
SOTA algorithms. Our methods also archive new best solu-
tions for several instances and generalize for a wide range of
CVRP distributions and solvers. In general, we highlight the
effectiveness of using generative adversarial imitation learn-
ing to help RL and heuristic methods work together in an
iterative manner. Our clockwise clustering can be used with
other VRP solvers. Exploring the use of this framework for
other RL and heuristic algorithms would be an interesting
direction for future work. It is also interesting to see how
our frameworks can be extended to solve other challenging
combinatorial optimization problems.
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Arnold, F.; and Sörensen, K. 2019. What makes a VRP
solution good? The generation of problem-specific knowl-
edge for heuristics. Computers & Operations Research, 106:
280–288.
Chen, X.; and Tian, Y. 2019. Learning to Perform Local
Rewriting for Combinatorial Optimization. In Proceedings
of the 33rd International Conference on Neural Information
Processing Systems.
Christiaens, J.; and Vanden Berghe, G. 2020. Slack In-
duction by String Removals for Vehicle Routing Problems.
Transportation Science, 54(2): 417–433.
Crama, Y.; Kolen, A. W. J.; and Pesch, E. J. 1995. Lo-
cal search in combinatorial optimization. In Artificial Neu-
ral Networks: An Introduction to ANN Theory and Practice,
157–174.
Croes, G. A. 1958. A Method for Solving Traveling-
Salesman Problems. Operations Research, 6: 791–812.
da Costa, P.; Rhuggenaath, J.; Zhang, Y.; Akcay, A.; and
Kaymak, U. 2021. Learning 2-Opt Heuristics for Routing
Problems via Deep Reinforcement Learning. SN Computer
Science, 2(5): 388.
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