
Dynamic Weight Setting for Personnel Scheduling with Many Objectives

Lucas Kletzander, Nysret Musliu
Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling

DBAI, TU Wien, Karlsplatz 13, 1040 Vienna, Austria
{lucas.kletzander,nysret.musliu}@tuwien.ac.at

Abstract

When large sets of constraints and objectives are combined in
a practical optimization problem, managing all these poten-
tially conflicting goals can become very difficult and might
require to solve an instance multiple times. First, an instance
might be infeasible with the current constraints, in which case
our system introduces a novel violation score to help iden-
tify the constraints that need to be relaxed for the next run.
Second, multiple objectives are often combined using a lin-
ear combination with hand-crafted weights, which are very
difficult to set such that the result matches the expectations
regarding the balance between individual objectives. Instead,
the user can tell our system particular thresholds for the ex-
pected changes in objectives, e.g., to reduce objective 1 by
10 % while not increasing objective 2 by more than 5 %.
Dynamic weight setting automatically adapts the weights to
reach these thresholds or uses the violation scores to explain
reasons for not reaching thresholds. It can not only be used for
soft constraints, but also to determine weights when hard con-
straints are internally represented as soft constraints in meta-
heuristics. While the methodology is general, we have imple-
mented it in the context of a personnel scheduling framework
of our industry partner and present a detailed evaluation on
the domain of Bus Driver Scheduling, where its benefits can
be seen in multiple scenarios.

Introduction
When dealing with scheduling problems in practice, a high
variety of different objectives and constraints can be found
in different application scenarios. This is especially true in
the area of personnel scheduling, where a wide range of legal
requirements, collective agreements, company agreements
and company goals affect the generation of a schedule in
various, often conflicting ways. Finding a solution that is
both efficient and respects employee well-being is of crucial
importance. Employees are usually one of the highest cost
factors for companies, and on the other hand bad schedules
can have a tremendous negative impact on the social life and
health of the employees. In the current time of employee
shortages these issues are even more important.

The wide range of different rules leads to the issue that
often no two problems for different companies are exactly

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the same. While there are common constraints and objec-
tives that are frequently reused, like the objective to mini-
mize paid working time, other constraints are very specific.
Further, the objective to minimize is typically a (usually lin-
ear) combination of various different goals.

In the optimization system of our industry partner, this
led to the development of a modular optimization tool that
allows to flexibly add or remove constraints and objec-
tives. While this approach works well to deal with the large
amount of variation, the growing system now suffers from
new issues based on the interactions of an increasing num-
ber of configuration options.

First, some problems might not admit feasible solutions
due to being over-constrained, however, the large amount of
constraints makes it hard to identify the root cause of such
infeasibilities. Second, the large number of objectives makes
it very difficult to set appropriate weights by hand, espe-
cially since the same change in weight might produce dif-
ferent changes in the result depending on the objectives and
their combination. Iterative manual refinement of constraints
or weights is often necessary to reach the desired results.

This paper addresses these issues by introducing weight
setting to this scheduling system, providing a systematic
optimization of the weights internally used by the system,
while thresholds allow easier interaction for the user. We fur-
ther introduce a novel score for constraint violations, making
it easier for the user to determine the cause of infeasibili-
ties, and providing recommendations for the constraints that
should be relaxed to resolve the conflicts.

The weight setting procedure is evaluated on the exem-
plary domain of Bus Driver Scheduling based on an Aus-
trian collective agreement, since this domain provides a pub-
lic benchmark with a range of complex hard and soft con-
straints. The evaluation shows that our system is able to
adapt internal weights to provide feasible solutions even in
highly constrained scenarios, and the capability to suggest
the correct constraints for relaxation in case of infeasibilites.
Evaluating the threshold mechanism shows that objectives
can successfully be guided in the required direction without
the need of directly manipulating weights.

Related Work
Personnel scheduling occurs in many practical scenarios in
different variations, several reviews give an overview (Ernst

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

509



et al. 2004; Burke et al. 2004; Van den Bergh et al. 2013;
De Bruecker et al. 2015; Özder, Özcan, and Eren 2020).
However, it has often been noted that only a small part of
the academic work is put into practice (Bökvarsdóttir et al.
2022). Identified issues include the fact that the full problem
complexity needs to be modeled by the solver, and flexibility
for changes in the specification is needed.

However, a wide range of constraints and objectives leads
to the question how to integrate these different goals. The
PhD thesis by Bökvarsdóttir (2021) contains a recent survey
that shows that the majority of methods uses weighted sums
to deal with multiple objectives. On the other hand, weights
for such sums are known to be very hard to properly adjust
(Gärtner et al. 2018), and can even lead to counter-intuitive
results (Petrovic and Vanden Berghe 2012). Multi-objective
methods that try to approximate a Pareto front, predomi-
nantly evolutionary methods (Coello et al. 2007), are usually
not designed to deal with the large number of objectives.

Not much work has been done in the area of automati-
cally setting the appropriate weights for each instance. There
has been work using historic data for weight extraction (Mi-
haylov et al. 2016), and similar ideas are used in guided
local search (Voudouris, Tsang, and Alsheddy 2010), but
new ideas have only recently been introduced as Behind-
the-Scenes Weight Tuning (Bökvarsdóttir, Smet, and Berghe
2020), based on a concept of acceptance thresholds (user-
defined goals for soft constraints or combinations of soft
constraints) that have been introduced in an earlier paper
(Bökvarsdóttir et al. 2019) and also used in further work
(Bökvarsdóttir et al. 2021).

While these authors present a general methodology that
our work builds upon, our system provides the novel contri-
butions to deal with meta-heuristics that need to internally
treat hard constraints as soft constraints, to deal with infea-
sible instances in a way that gives adequate feedback to the
user to determine the cause of infeasibility, and to extend
the system to new real-world problem domains including the
evaluation on public benchmark instances.

Weight Setting System
This section formally defines the weight setting methods as
well as the computation of the violation score. Independent
of the specific problem domain the constraints and thresh-
olds are given as follows:

• A set of hard constraintsH = {h1, . . . , hH}
• Hard constraint weights whi ∈ R+ for i ∈ 1, . . . ,H

• A set of soft constraints S = {s1, . . . , sS}
• Soft constraint weights wsi ∈ R+ for i ∈ 1, . . . , S

• A set of soft constraint thresholds T = {t1, . . . , tS}
The given problem has a set H of size H of hard con-
straints, each with a weight whi

. The reason for using a
weight for hard constraints is the use of meta-heuristic solu-
tion methods that internally convert hard constraints to soft
constraints, but require a weight for these constraints high
enough that the total amount of violation vhi

∈ R≥0 for each
hard constraint i is 0 when the meta-heuristic terminates.

For soft constraints a similar set S of size S is given, how-
ever, violations vsi ∈ R≥0 are permitted in a feasible solu-
tion. Note that this covers both simple objectives (violations
of a bound of 0) and soft constraints in relations to some
non-zero bound for a property of a solution.

obj =
S∑

i=1

wsi · vsi (1)

Equation (1) defines the typical objective function of the
problem that needs to be minimized. However, when solving
repeatedly, the user can provide soft constraint thresholds ti,
which tell the system to adapt the corresponding weight wsi
such that vsi ≤ ti for an acceptable solution.

Weight Setting Procedure
The system starts with the given set of weights and adapts
them in a repeated cycle until the goals are met or the situ-
ation is detected to be unrecoverable. The approach in this
section is based on previous work (Bökvarsdóttir, Smet, and
Berghe 2020), but our paper provides several novel exten-
sions including the treatment of hard constraints in meta-
heuristic methods, several adaptations to keep weights from
rising excessively, and the introduction of a novel violation
score to guide the user towards reasons for infeasibility.

Algorithm 1 shows the core loop of the weight setting pro-
cedure. There are two manipulations of the weights during
the initialization: First, the highest weights are limited to a
factor of wL times the lowest weight for both wH and wS in
line 1 to prevent excessive divergence after multiple appli-
cations. Second, if a solution is already given, it can already
be evaluated regarding the thresholds T in line 3:

wsi ← wsi ·min{1 + f · (vsi − ti); 10}
∀i ∈ 1, . . . , S with vsi > ti (2)

wsi ← wsi ·max

{
1− ti − vsi

ti
; 0.1

}
∀i ∈ 1, . . . , S with vsi < ti and ti > 0 (3)

Equation (2) shows the adaptation when the thresholds are
not met by the initial solution, therefore the weights are im-
mediately increased. f is an increase factor described later
in this section. The maximum increase is by a factor of 10.
Equation (3) shows the adaptation when there is room to the
threshold, leading to a proportional decrease in weight (to
at least on tenth of the previous value). These initial weight
manipulations are the only ones that can reduce weights.

A fail counter is initialized in line 5 and used to deter-
mine when the thresholds cannot be met during the follow-
ing loop. This main loop, starting at line 6, is otherwise con-
tinued until either successful termination or a timeout.

Depending on the current situation, the solution might be
reset in line 7. If no solution is given so far, a new solution
is initialized by a given initialization method. However, a
reset is also performed if hard constraint violations are cur-
rently present in the solution. This is due to the fact that
solutions with significant levels of hard constraint violations

510



Algorithm 1: Core weight setting structure
Input: Instance inst , hard constraint weights wH,

soft constraint weights wS , weight limit wL,
timeout t, optional solution sol , optional
thresholds T

Result: Termination status, optimized solution sol ,
violation scores vs in case of a failure

1 wH, wS ←limitWeights(wH, wS , wL);
2 if sol is given then
3 wS ←initialWeightUpdate(sol , wS);
4 end
5 fail count ← 0;
6 while timeout t not reached do
7 sol ← checkReset(sol);
8 sol ← appAlg(inst , sol , wH, wS , t, fast);
9 v hard , v soft ← evalViolations(sol , T );

10 if no violation in v hard and v soft then
11 sol ← appAlg(inst , sol , wH, wS , t, ext);
12 return Success, sol ;
13 end
14 if isImprovement(v hard , v soft) then
15 fail count ← 0;
16 else
17 fail count ← fail count + 1;
18 if abort(fail count) then
19 vs ← score(v hard , v soft);
20 return Failure, vs;
21 end
22 updateAlgSettings(v hard , v soft);
23 end
24 if no violation in v hard then
25 wS ← updateWeights(v soft);
26 else
27 wH ← updateWeights(v hard);
28 end
29 end
30 return Timeout;

often have very different structure than those without such
violations, and starting from scratch with adapted weights is
often easier than changing an existing infeasible solution.

Line 8 contains the main target algorithm call. It per-
forms the underlying solution method, which is a black box
as far as weight setting is concerned, until it terminates by
its internal criterion. Parameters are chosen to run the tar-
get algorithm in reasonable time for repeated execution (ar-
gument fast). Afterwards, the violations of hard constraints
and thresholds are extracted from the solution in line 9.

If no violation is found, weight setting was successful and
the algorithm can be run again (or continue running) with
the final weights, but different parameters like more run-
time or more steps until termination (extended run, argument
ext). This is done to save time during repeated weight set-
ting runs, but give the opportunity to improve the final re-
sults further. If any hard constraint weights were changed
during weight setting, these are doubled for the final phase

to provide a safety margin against reintroducing violations.
The call isImprovement in line 14 is supposed to de-

cide whether the overall amount of violations is moving in
the right direction. While it is expected that several weight
adaptations are necessary to reach all thresholds, a promis-
ing approach should at least get closer to this goal over time
according to some measure, otherwise the weight setting
process might be stuck, e.g., by just alternating violations
between different constraints. The most general choice is
to count the total (unweighted) violation of all constraints
which is also used in the current system. An improvement is
only made if a new best total violation is found. Note, how-
ever, that in the case of constraints with violations on very
different scales (e.g. one unit of violation for constraint 1
is about as hard to remove as 10000 units of violation for
constraint 2), it might be necessary to adapt this decision.

If the violation level is an improvement according to the
previous definition, the fail counter is reset, otherwise, it is
increased. In this case, in line 18 a choice on potentially
aborting the process is made. It is expected that even in a
successful weight setting process, sometimes violation lev-
els will briefly increase, however, not for too many consec-
utive steps. Therefore, if the system cannot reach a new best
violation level for 5 consecutive tries (up to 10 when the
level always stays constant), the process is aborted as a fail-
ure, and the violation score vs is provided as feedback.

If there is no improvement, but no abort yet, an optional
algorithm update is performed in line 22. This update might
change the parameters of the algorithm to allow a more thor-
ough optimization in the next loop. This update is meant to
resolve issues where the initial parameter setting of the al-
gorithm might not be well suited for the given instance.

Finally, weights are adapted based on the current viola-
tions in lines 24 to 28. This is first done for the hard con-
straints, and for the soft constraints only once the hard con-
straint violations are resolved. This is again due to structural
issues that a solution might have in case of severe hard con-
straint violations. When these violations are resolved, the
solution might look very different anyway, making it less
useful to adapt the soft constraint weights beforehand.

In any case, both hard and soft constraint weights are
adapted according to the same scheme, which is based on
Bökvarsdóttir, Smet, and Berghe 2020:

whi ← whi ·min{max{1 + f · vhi ; 2}; 100}
∀i ∈ 1, . . . ,H with vhi

> 0 (4)

wsi ← wsi ·min{max{1 + f · (vsi − ti); 2}; 10}
∀i ∈ 1, . . . , S with vsi > ti (5)

Equation (4) shows the update for hard constraints, Equa-
tion (5) for soft constraints. The only differences are that for
hard constraints, their value is directly equal to the amount
of violation, while for the soft constraints the difference to
the threshold is used, and a different maximum.

The value f , according to Bökvarsdóttir, Smet, and
Berghe 2020, is used to balance the speed of setting the
weights for different constraints where the amount of vi-
olation is measured on very different scales. On the other

511



hand, this may add many additional parameters to the con-
figuration of the system. Therefore, after some testing, we
decided to use f = 0.01 for all constraints in the current
system, which has the advantage of additional stabilization
due to the lower and upper bounds. However, if it occurs for
any problem domain that weights for individual constraints
are not adapted properly, this might need to be changed.

Another adaptation in relation to previous work is the in-
troduction of a lower and upper bound for the adaptation fac-
tor of the weight. A lower bound of 2 is introduced to speed
up very slow convergence, e.g., in case a constraint has a
very low violation like 1, but requires a significant increase
in weight to get rid of this violation. The upper bound of 100
for hard constraint weights is to prevent excessive weight
growth in case there is a large amount of violation. A factor
of 100 typically already changes the result in very signifi-
cant ways, even higher growth showed to lead to very huge
weights on larger instances. The factor for soft constraints is
chosen even lower at 10, mainly to prevent introducing too
many hard constraint violations that are otherwise caused by
very large increases of soft constraint weights.

Violation Score
Getting a result that conforms to given thresholds without
manually specifying weights is a very useful feature, but it
is equally important to deal with the case when no set of
weights can be found that can fulfill all requirements. In
Bökvarsdóttir, Smet, and Berghe 2020, the termination cri-
terion is when a weight reaches a certain factor compared to
its original weight. In our system, we use the fail counter as
described before, as the time it takes weights to reach such a
factor can be very different otherwise. However, so far none
of these methods help too much with identifying where the
process got stuck, and therefore help the user to figure out
what might be changed to resolve the infeasibility.

An option would be to look at the amount of violation
given when the decision of aborting is made. However, this
is just a momentary snapshot, e.g., if violation oscillates be-
tween two different constraints, this method might only cap-
ture one of them. In fact, one can think of several different
ways to get an idea about the main contributors:

• All constraints violated at the evaluation with the lowest
overall amount of violation (VL).

• All constraints violated in any smallest subset of violated
constraints (e.g., if always at least 2 constraints are vio-
lated, choose all constraints that are violated in any eval-
uation with exactly two violated constraints, Vs).

• Count the number of times since the evaluation with the
lowest overall amount of violations that a particular con-
straint was violated - the more often, the more this con-
straint contributes to infeasibility. All constraints with the
highest value are captured by Vr (recent violations).

• In contrast, constraints that were never violated since the
evaluation with the lowest overall amount of violation are
very unlikely to contribute to infeasibility (V0).

Now all these scores capture some potential aspects that
might contribute, and one can think of situations where one

of them helps, but another does not. On the other hand, giv-
ing a complex score with several components to a user is a
bad idea as well, since it can be hard to figure out all details
of the different ratings. While it should still be available for
expert users, a much simpler score is needed for regular use.
This is done by combining the above criteria into one score
per constraint as follows:

• High (3): Constraint is part of VL, Vs, and Vr, resolving
the violation without addressing this hard constraint or
threshold is unlikely.

• Moderate (2): Constraint is part of VL, Vs, or Vr, but not
all of them, it is significantly involved in the violations.

• Low (1): Not in any other category. Constraint shows
limited interaction with the cause of infeasibility.

• None (0): Constraint is part of V0, but not Vs. This con-
straint shows no significant interaction.

This system allows to give one simple feedback per con-
straint, can easily be integrated into the UI, e.g., by color-
coding, and provides a quick and intuitive visualization of
the most likely reasons for infeasibility. In case of soft con-
straint thresholds, these can then be made less strict, while
for some hard constraints it might be possible to adapt some
bounds to allow more feasible solutions.

Simulated Annealing
While the optimization algorithm in use is not the main fo-
cus of this paper, and the weight setting procedure does not
depend on the specific algorithm chosen (it just assumes that
the algorithm internally uses weights to transform hard con-
straints to soft constraints), this subsection is intended to
give a brief overview of the Simulated Annealing algorithm
used in our system, which is very similar to Kletzander and
Musliu 2020b, and its parameters and interactions with the
weight setting process.

Simulated Annealing is run until a given number of con-
secutive iterations without improvement or a given time-
out tSA, whichever is reached first. This number of iter-
ations is 10 during weight setting, increased by 10 % in
updateAlgSettings, and 100 in the final extended run.

Moves are selected randomly from a given set of moves
that depends on the problem domain. As usual, improving
moves are always accepted, while worsening moves are ac-
cepted with probability exp

(
− change

T

)
based on the change

in solution value change and the current temperature T .
The starting temperature Tstart = 100 is reduced by mul-

tiplication with a cooling factor Tf after each 1000 move
evaluations. Tf = 0.9 during weight setting, reducing the
distance to 1 by 10 % in updateAlgSettings, and
Tf = 0.999 for the final extended run. The algorithm re-
turns the best solution encountered during the whole search.

Application of the System
This section will present a detailed evaluation of different
usage scenarios both regarding hard and soft constraints
in feasible and infeasible applications. The evaluation was
done on an exemplary problem domain from practice, and

512



start work

ℓ1

rest

ℓ2

rest

passive ride

ℓ3

end work

Working time Ws

? ?

Driving time Ds

Total time Ts

Figure 1: Example shift for BDS (Kletzander, Musliu, and
Van Hentenryck 2021)

executed on a computing cluster running Ubuntu 16.04.1
LTS with Intel Xeon CPUs E5-2650 v4 (max. 2.90GHz, 12
physical cores, no hyperthreading), but each individual ex-
ecution was performed single-threaded. For the evaluation
timeouts are set to 10 minutes for Simulated Annealing dur-
ing weight setting, one hour for the final extended run, and
at most three hours for a full weight setting procedure.

While the system is not limited to a particular domain, we
use the Bus Driver Scheduling problem based on the Aus-
trian collective agreement (Kletzander and Musliu 2020b;
Kletzander 2022) as an exemplary domain. It is well suited
since it represents a complex problem formulation with mul-
tiple, partly contradicting, hard constraints and objectives,
and has a publicly available benchmark data set.

Bus Driver Scheduling (BDS) is a part of crew scheduling
in the process of operating bus transport systems (Ibarra-
Rojas et al. 2015). It has been considered by many authors
starting with Wren and Rousseau (1995), but mostly focused
only on cost only. A problem variant with slightly different
constraints from practice was previously tackled by a goal-
oriented method where weights were adapted in a manual
tuning process (Kletzander and Musliu 2020a).

The domain deals with the assignment of bus drivers to
vehicles that already have a predetermined route for one day.
Bus routes are given as a set L of individual bus legs, each
leg ℓ ∈ L is associated with a tour tour ℓ (corresponding to
a particular vehicle), a start time startℓ, an end time end ℓ,
a starting position startPosℓ, and an end position endPosℓ.
The driving time for leg ℓ is driveℓ = end ℓ − startℓ.

A tour change occurs when a driver has an assignment of
two consecutive bus legs i and j with tour i ̸= tour j . The
time it takes to change from position p to position q when not
actively driving a bus (passive ride time), is dp,q for p ̸= q.
dp,p represents the time it takes to switch tour at the same po-
sition, but is not considered passive ride time. Each position
p is further associated with an amount of working time for
starting a shift (startWorkp) and ending a shift (endWorkp)
at that position.

A solution to the problem is an assignment of exactly one
driver to each bus leg. A schematic example shift is shown
in Figure 1. It shows the three main measures of time that
are relevant for evaluating a shift: driving, working and total
time. For details of the problem constraints refer to Kletzan-

der and Musliu (2020b). The following definitions use E as
the set of all shifts (employees) of a potential solution.

The problem has the following set of hard constraintsH:

• Overlap (h1): No overlapping leg assignments and
enough changing time in case of a tour change.

• Max span (h2): Hard maximum Tmax = 14 hours for
the total span of a shift.

• Max drive (h3): Hard maximum Dmax = 9 hours for
the total driving time per shift.

• Driving breaks (h4): Driving breaks after at most 4
hours of driving time, with the options of one break of at
least 30 minutes, two breaks of at least 20 minutes each,
or three breaks of at least 15 minutes each.

• Max work (h5): Hard maximum Wmax = 10 hours for
the total paid working time per shift.

• Rest breaks (h6): Rest breaks of at least 30 minutes
are required for shifts between 6 and 9 hours, and of at
least 45 minutes for shifts of more than 9 hours.

Note that there are three hard constraints (Overlap,
Driving breaks, Rest breaks), that deal with the
structure of a shift without depending on a parameter and
have to be fulfilled no matter what. In case they are violated,
a numeric penalty is computed that indicates the amount of
violation in minutes (vhi

). The other three hard constraints
(Max span, Max drive, Max work) depend on a pa-
rameter that could be changed if the surrounding rules were
to be remodeled. This assumption will be made in some of
the following experiments. Again the amount of violation in
minutes is used to compute the penalty (vhi

).
There is an additional hard constraint that is treated in a

different way: A maximum number of shifts can be speci-
fied. Since all other constraints are evaluated for each shift,
this one is implemented in a different way, providing a limit
of shifts for the algorithm to use at any time. Therefore it
can never be violated, on the other hand, every violation of
hard constraints can usually be reduced by allowing more
shifts. The limitation of treating this constraint differently
comes from Simulated Annealing struggling with removing
full shifts (intermediate states with short shifts are expen-
sive), not from the weight setting procedure.

BDS further uses the following soft constraints S:

• Working time (s1): The total amount of paid working
time vs1 =

∑
e∈E We excluding additional paid working

time used to fill up shifts below Wmin = 6 hours.
• Min working time (s2): The additional amount of

paid working time to fill up shifts below Wmin , obtained
by vs2 =

∑
e∈E max{Wmin −We; 0}.

• Span (s3): The sum of all total spans vs3 =
∑

e∈E Te.
• Passive ride (s4): The sum of passive ride times
vs4 =

∑
e∈E ridee.

• Tour changes (s5): The total number of tour changes
vs5 =

∑
e∈E che.

• Shift splits (s6): The total number of shift splits
(breaks of at least 3 hours which are always unpaid, but
not rest breaks) vs6 =

∑
e∈E splite.

513



Simulated Annealing Weight Setting
Size Avg time Best res Avg res Std dev Avg time Best res Avg res Std dev Adapt.

10 601.0 15224.6 15224.6 0.0 731.1 14929.0 15038.4 115.2 4.3
20 587.8 31147.0 31228.4 86.6 845.1 30854.4 31309.4 419.7 5.3
30 757.7 51055.4 51247.6 159.2 940.4 51002.8 51908.2 851.9 5.7
40 862.3 69065.0 69225.9 148.9 1102.1 68517.6 69860.4 1528.3 4.4
50 911.8 87219.0 87450.0 236.9 1248.2 86381.8 87599.1 1193.3 5.2
60 1020.0 103265.2 103653.2 299.0 1409.2 103112.2 104545.2 1748.0 5.6
70 1097.0 121523.4 121947.5 355.0 1597.0 121959.8 123341.5 1365.9 5.0
80 1148.8 139620.8 140179.5 429.9 1804.9 139578.0 140666.5 1431.3 5.6
90 1235.9 155293.0 155883.3 520.0 2063.9 155548.8 156710.3 1181.9 4.9

100 1372.3 171766.0 172644.1 572.5 2327.2 171891.2 173458.9 1674.8 5.6

Table 1: Results for hard constraint weight setting

These six objectives can be combined to the overall objec-
tive function of the problem according to Equation (1). The
objective function used in previous work defined the follow-
ing cost for each shift:

coste = 2 ·W ′
e + Te + ridee + 30 · che + 180 · splite (6)

Equation (6) uses weights based on real-life requirements
of balancing cost optimization with the need to create prac-
tically workable schedules for the employees. It combines
Working time and Min working time using W ′

e.
While this set of weights is derived from practice, it is not
sufficient for all application scenarios and frequently needs
to be changed when priorities for the optimization shift.

The standard benchmark data set for this problem (Klet-
zander and Musliu 2020b) contains 50 instances distributed
in 10 size categories with 5 instances each. These reach from
around 10 tours (70 legs) to around 100 tours (1000 legs)
based on real-life demand distributions. The moves used for
Simulated Annealing either exchange individual legs or con-
secutive legs between pairs of employees.

Weight Setting for Hard Constraints
For the first experiment we want to come up with use-
ful hard constraint weights from scratch. Obviously very
high weights can always be used to ensure that hard con-
straints are not violated, but when the scale of soft con-
straint weights changes (e.g. because a user would enter very
high weights for some soft constraints), previously working
weights might not be enough. On the other hand, allowing
meta-heuristics to also explore the infeasible space by using
hard constraint weights that are not too high might benefit
the solution process, but makes it more difficult to ensure no
hard constraints are violated in the end.

We start all hard constraint weights at 1, using weight set-
ting to raise them to values that ensure no violations remain
in the solution. We compare the results to using Simulated
Annealing in exactly the same configuration as used in the fi-
nal extended run directly with preset hard constraint weights
(whi = 1000 for all).

Table 1 shows a summary of these results where each row
represents the average across the instances of the given size.

First, the results show that, while starting from very low
hard constraint weights, weight setting can effectively find

20 40 60 80 100

0

100

200

Size

W
ei

gh
t

h1 h2

h3 h4

h5 h6

Figure 2: Final weights for different sizes

weights such that feasible solutions are reliably found. The
process was successful for all 250 runs (5 per instance), and
the number of weight iterations, shown in the very right col-
umn, was very moderate and consistent across all instances.
In never took more than 10 steps for any run, and the over-
all average is 5.15 with a standard deviation of 1.54. The
overhead in runtime is in the average 43.9 %. Since weight
setting does a full Simulated Annealing run at the end of the
procedure, this means that despite starting from obviously
too low weights, the majority of the runtime is still dedicated
to the final optimization run with the appropriate weights.

Regarding the solution quality, differences are in general
low, after all the same algorithm is employed, however a
slight but clear pattern emerges that shows better results for
weight setting for smaller instances and pure SA for larger
instances. This is most likely due to lower final weights al-
lowing SA to also explore parts of the infeasible space. This
can be very beneficial for small instances where the search
space is small and good parts might be separated by infea-
sible regions, while for large instances an already too large
search space in enlarged even more.

On the positive side this effect can especially be seen for
instances 1, 5 (size 10), and 6 (size 20), where both the best
and average results are each more than 3.6 % better with
weight setting compared to pure SA, which is a very good
improvement for this kind of problem. On the negative side,
with weight setting the standard deviation rose very signifi-
cantly, making the results for larger instances less stable.

514



Violation scores Final
Sh. Run 1 Run 2 Run 3 Run 4 cost
12 14417
11 130111 14598
10 230011 130011 14590
9 230100 130111 14969
8 230110 230020 15548
7 231221 331231 15798
6 333330 322220 331130 320020 311010

Table 2: Squeezing instance 10 1 until infeasibility

Figure 2 shows the average value of the weights for each
size of instances. This comparison shows that in general
weights stayed much smaller than the presets of 1000. In
particular, for BDS most weights can stay below 100 (ex-
cept h1), and h2 and h5 mostly did not need to exceed 10.

Further weights stayed smaller for smaller instances, and
then grew with increasing instance size up to a certain point,
however, for most weights (except h3), the required weights
seem to grow more and more slowly or even reach a plateau.
These plateau values could then be used with a safety margin
for unseen instances.

For the next two experiments, we will artificially make it
more and more difficult to find a feasible solution by reduc-
ing the maximum number of shifts, which is enforced by a
hard boundary. Eventually the maximum for span, driving
time, or working time per shift would need to be extended
to fit the legs into even fewer shifts. Note that raising these
limits would not be a goal in practice, but it allows a very
controlled and systematic way to reduce the feasible space.

The first feasibility experiment is performed exemplary
on instance 10 1. Table 2 shows one line for each maximum
number of shifts (Sh.) that was tested. The next columns
show violation scores for consecutive runs for the hard con-
straints in order of H (e.g., 130111 means a violation score
of 1 for h1, 3 for h2, 0 for h3 and so on). In case Max span
(h2), Max drive (h3), or Max work (h5) were among
the ones with the highest violation score, the corresponding
limits were increased by one hour and weight setting retried.
The first empty column marks reaching a feasible solution.

Obviously, h2 (Max span) seems to be the most violated
constraint using fewer shifts. In all cases with 11 to 7 shifts,
span is correctly identified as the major contributor. For 11
shifts, setting Tmax = 15 is enough for feasibility, while
for the others span is again correctly identified as the major
contributor in run 2. For cases with 10 to 8 shifts Tmax = 16
resolves the infeasibility. For 7 shifts, it correctly identifies
both span and h5 (Max work) as major contributors (to-
gether with h1 that has no parameter). Indeed, only raising
both Tmax to 16 and Wmax to 11 resolves the infeasibility.

For 6 shifts, there is no hope of a feasible solution, since
7 tours are active at the same time. The first result shows a
massively over-constrained problem (most constraints have
very high score), already the second result hints at the unre-
coverable infeasibility by showing the highest score for h1

(Overlap). Still, the attempt to increase parameters of con-
straints with at least score 2 is executed for several further

C. Reduct. Incr. Feas. Avg. t. W. fac.
s1 11.7 483.7 72.2 973.5 1178.8
s2 94.8 215.4 100.0 986.4 5.9
s3 4.5 27.7 0.0 1255.1 526056
s4 94.4 25.9 100.0 1149.2 25.0
s5 73.5 4.8 100.0 1012.4 7.5
s6 100.0 0.0 100.0 1929.0 60.4

Table 3: Reducing different soft constraint values

steps to make sure. Finally, h1 is the only constraints with
a score > 1, making it clear that no further changes to the
other constraints will resolve this situation.

Overall, this experiment showed that our violation score
works very well to identify the causes for infeasibility and
resolve them, as well as to identify infeasibility that cannot
be resolved.

In the final experiment regarding hard constraints we ex-
tended this approach for the whole set of 50 instances. The
initial number of shifts was repeatedly reduced by 10 % un-
til the instance was infeasible, then the recommended hard
constraint parameter was increased by one hour just as be-
fore. As it turns out, for all instances this should be h2 (Max
span). Out of the 250 total runs, only for 8 runs additional
violations were reported where other runs showed that the
given setting should already be feasible. Out of these, 7 runs
ended after the next (not necessary) parameter adaptation,
one reported the most violation for h4 (Driving break).

Out of the 272 violations scores excluding those spurious
8 (most instances needed one round of adaptations, some
two), only 6 did not report h2 in the high category. For all
of them, h2 was in the modest category. In 109 cases h1 was
in the highest category, which makes sense as the choice is
either to violate the maximum span or assign overlapping
bus legs. Out of the 6 cases with h2 getting moderate score,
for four of them h1 got high score, for two of them h1 got
moderate score. Only at two other occasions one of the other
constraints got a high score, which was h5 with a high score,
but no actual need to increase Wmax , and both occurred on
the same instance (20 8).

Overall, this experiment showed that across different in-
stances of very different sizes, and multiple repetitions, our
system is very reliable and consistent in reporting the most
involved constraints regarding infeasibility.

Weight Setting for Soft Constraints
The final part of the experiments deals with weight setting
for soft constraints. The concept of weight setting itself stays
the same, internally the difference is only whether the viola-
tion is obtained directly from the value of the constraints or
by calculating the difference to a given threshold.

This section presents two different experiments: Initially,
in each experiment the first run is done without any thresh-
olds. Then, in the first experiment, a threshold is set to
lower the value for one of the soft constraints by 10 %
(ti = 0.9 · vsi ) without any restrictions on the remaining
constraints (keeping their original weights, no thresholds),
while in the second experiment, a maximum worsening of 5

515



Thresholds Values Weights
work m.w. span r c s work m.w. span r c s work m.w. span ride change split

4129 1053 4546 31 1 0 2 2 1 1 30 180
4335 948 4773 33 2 1 4194 975 4601 31 6 0 62 72 55 52 480 18
4335 948 4773 33 3 1 4197 909 4700 0 1 0 471 456 493 4628 31027 1.8

236 228 493 4628 1034 0.01

Table 4: Balanced reduction of Min working time

% for any other soft constraint (ti = 1.05 · vsi ) is used.
Table 3 shows the results of the first experiment, where

each instance was assigned to one of the soft constraints with
the goal of a 10 % reduction (equally distributed across all
sizes). Each row shows the summary for instances where one
particular soft constraint was chosen. Reduct. shows the per-
centage of reduction for the threshold value, Incr. shows the
average percentage increase for all other soft constraint val-
ues (a raise from 0 is counted like 100 % increase). The next
columns shows the percentage of runs that did not report
violations, the average runtime in seconds, and the average
factor of the weight increase for the target constraint.

As expected, the results show very different findings for
the different soft constraints. This highlights how individual
the reactions to weight changes can be. For s1 (Working
time), we see indeed an average reduction by slightly
above 10 %, however, a very strong increase for the other
objectives with an average of more than 480 %. A reduction
of working time by 10 % is actually a very challenging task
(also seen by the weight factor of over 1000), and the only
way to manage such a strong reduction is by greatly increas-
ing the use of shift splits, which is the highest contributor to
this increase. In several occasions, the threshold could not be
achieved, but the soft constraint threshold is reliably identi-
fied as the cause by the violation score in these cases.

s2 (Min working time), s4 (Passive ride), s5
(Tour changes), and s6 (Shift splits), despite a
much smaller weight factor, lead to a tremendous decrease in
the respective constraint value, far beyond the original goal.
Especially the last three are constraints with often few vi-
olations, where each decrease is very close to eliminating
the whole soft constraint violation. Note, however, that this
comes with much smaller increase in other soft constraints,
except for s2, since the reduction of minimum working time
typically requires to chain short shifts with other parts of the
schedule by using more tour changes. s5, on the other hand,
is below 5 %, and s6 can be eliminated while other changes
average out to 0.

Finally, s3 (Span) can clearly not be reduced by 10 %
without getting infeasible. Despite a massive increase in
weight, an average reduction of only 4.5 % could be reached,
and the violation score clearly identifies the threshold for s3
as the cause of the problems for all runs.

In the second experiment, the use of thresholds for all soft
constraints is demonstrated on the example of instance 10 1
again. Table 4 shows the process. The initial values (first
line), obtained with the initial weights, are adapted to ob-
tain the thresholds in the second line: A reduction of 10 %
for Min working time and a maximum increase of 5 %

(at least 1) for the other soft constraints. First the number of
tour changes rises beyond the limit, while s2 is still above the
goal. After a threshold increase, however, the second round
of adaptations manages to find a differently structured so-
lution that only increases span and working time within the
bounds, while the others stay on the original value or even
decrease.

Note, however, the completely counter-intuitive changes
in weights that were necessary to obtain this result, as shown
by the increase factors in the last line. The highest increase
was necessary for ride time, followed by tour changes, while
the actual goal had the second lowest increase. With weight
setting, this could be achieved easily, with only one interac-
tive step, while figuring out these weights manually would
have taken considerable effort and time.

Conclusion
Overall, we presented a weight setting system that dynam-
ically adapts weights to reach various optimization goals
without exposing the user to tedious tuning of weights.
While very general regarding both algorithms and appli-
cation domains, we evaluated it in detail on a personnel
scheduling domain with Simulated Annealing.

The system includes the transfer from hard constraints
to soft constraints for use with various meta-heuristics and
showed to be very efficient in providing good weights for
hard constraints. When instances are infeasible, a violation
score combines multiple indicators to a simple, yet very ef-
fective score that the user can easily use to adapt constraint
parameters to resolve the infeasibility. Finally, instead of
manually adapting the combination of weights to get solu-
tions with different properties, soft constraint thresholds can
be used to modify solutions in a controlled way. The eval-
uation showed the very counter-intuitive way weights affect
the resulting values, and that our weight setting system is a
very valuable tool to perform such changes.

Note that other methods to deal with the thresholds are
possible, including non-linear options like only penalizing
values above the threshold within the algorithm. However,
our system allows application on any optimization algorithm
using a linear combination of objectives without any internal
modification, and it allows to obtain weights that might be
very useful for other instances of the same problem.

Beside other weighting options, future work might in-
clude user studies evaluating in detail how users interact
with the system, as well as methodological extensions like
the inclusion of priorities, more fine-grained weight adjust-
ments to prevent overshooting thresholds, or learning from
the results of weight adaptations.

516



Acknowledgments
The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development and the Christian
Doppler Research Association is gratefully acknowledged.

References
Bökvarsdóttir, E. B. 2021. Addressing real-world challenges
in nurse rostering. Ph.D. thesis, Technical University of
Denmark.
Bökvarsdóttir, E. B.; Bagger, N.-C. F.; Høffner, L. E.; and
Stidsen, T. J. 2022. A flexible mixed integer programming-
based system for real-world nurse rostering. Journal of
Scheduling, 25(1): 59–88.
Bökvarsdóttir, E. B.; Smet, P.; and Berghe, G. V. 2020.
Behind-the-Scenes Weight Tuning for applied nurse roster-
ing. Operations Research for Health Care, 26: 100265.
Bökvarsdóttir, E. B.; Smet, P.; Berghe, G. V.; and Stidsen,
T. J. 2021. Achieving compromise solutions in nurse ros-
tering by using automatically estimated acceptance thresh-
olds. European Journal of Operational Research, 292(3):
980–995.
Bökvarsdóttir, E. B.; Smet, P.; Vanden Berghe, G.; and Stid-
sen, T. 2019. A modeling methodology to support nurse
rostering practitioners. In Proceedings of the 9th Multidis-
ciplinary International Conference on Scheduling: Theory
and Applications, 141–155. MISTA.
Burke, E. K.; De Causmaecker, P.; Vanden Berghe, G.; and
Van Landeghem, H. 2004. The State of the Art of Nurse
Rostering. Journal of Scheduling, 7(6): 441–499.
Coello, C. A. C.; Lamont, G. B.; Van Veldhuizen, D. A.;
et al. 2007. Evolutionary algorithms for solving multi-
objective problems, volume 5. Springer.
De Bruecker, P.; Van den Bergh, J.; Beliën, J.; and Demeule-
meester, E. 2015. Workforce planning incorporating skills:
State of the art. European Journal of Operational Research,
243(1): 1–16.
Ernst, A.; Jiang, H.; Krishnamoorthy, M.; and Sier, D. 2004.
Staff scheduling and rostering: A review of applications,
methods and models. European Journal of Operational Re-
search, 153(1): 3–27.
Gärtner, J.; Bohle, P.; Arlinghaus, A.; Schafhauser, W.;
Krennwallner, T.; and Widl, M. 2018. Scheduling matters–
Some potential requirements for future rostering com-
petitions from a practitioner’s view. In 12th Interna-
tional Conference of the Practice and Theory of Automated
Timetabling, 33–42.
Ibarra-Rojas, O.; Delgado, F.; Giesen, R.; and Muñoz, J.
2015. Planning, operation, and control of bus transport sys-
tems: A literature review. Transportation Research Part B:
Methodological, 77: 38–75.
Kletzander, L. 2022. Automated Solution Methods for Com-
plex Real-life Personnel Scheduling Problems. Ph.D. thesis,
TU Wien.

Kletzander, L.; and Musliu, N. 2020a. Scheduling Bus
Drivers in Real-Life Multi-Objective Scenarios with Break
Constraints. In Proceedings of the 13th International
Conference on the Practice and Theory of Automated
Timetabling-PATAT 2021, volume 1, 34–40.
Kletzander, L.; and Musliu, N. 2020b. Solving Large Real-
Life Bus Driver Scheduling Problems with Complex Break
Constraints. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, 421–
429.
Kletzander, L.; Musliu, N.; and Van Hentenryck, P. 2021.
Branch and Price for Bus Driver Scheduling with Complex
Break Constraints. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 11853–11861.
Mihaylov, M.; Smet, P.; Van Den Noortgate, W.; and Van-
den Berghe, G. 2016. Facilitating the transition from man-
ual to automated nurse rostering. Health Systems, 5(2): 120–
131.
Özder, E. H.; Özcan, E.; and Eren, T. 2020. A Systematic
Literature Review for Personnel Scheduling Problems. Int.
J. Inf. Technol. Decis. Mak., 19(6): 1695–1735.
Petrovic, S.; and Vanden Berghe, G. 2012. A comparison
of two approaches to nurse rostering problems. Annals of
Operations Research, 194(1): 365–384.
Van den Bergh, J.; Beliën, J.; De Bruecker, P.; Demeule-
meester, E.; and De Boeck, L. 2013. Personnel scheduling:
A literature review. European Journal of Operational Re-
search, 226(3): 367–385.
Voudouris, C.; Tsang, E. P.; and Alsheddy, A. 2010. Guided
local search. In Handbook of metaheuristics, 321–361.
Springer.
Wren, A.; and Rousseau, J.-M. 1995. Bus Driver Schedul-
ing — An Overview. In Fandel, G.; Trockel, W.; Daduna,
J. R.; Branco, I.; and Paixão, J. M. P., eds., Computer-Aided
Transit Scheduling, volume 430, 173–187. Berlin, Heidel-
berg: Springer Berlin Heidelberg.

517


