
Priority-Based Search for the Virtual Network Embedding Problem

Yi Zheng1, Hang Ma2, Sven Koenig1, Erik Kline1, T. K. Satish Kumar1

1 University of Southern California
2 Simon Fraser University

yzheng63@usc.edu, hangma@sfu.ca, skoenig@usc.edu, kline@isi.edu, tkskwork@gmail.com

Abstract

The Virtual Network Embedding (VNE) problem is a con-
strained optimization problem. It arises in the context of allo-
cating resources on heterogeneous physical networks to pro-
vide end-to-end computing services. In this paper, we intro-
duce a new solver, called VNE-PBS, that uses priority-based
search (PBS) for solving the VNE problem. VNE-PBS uses a
prioritized heuristic search algorithm that explores the space
of all possible priority orderings using a systematic depth-first
search. The solver is inspired by the success of PBS for the
Multi-Agent Path Finding (MAPF) problem and the similar-
ities between the VNE and MAPF problems. We show that
VNE-PBS significantly outperforms competing methods on
various benchmark instances for both the offline and online
versions of the VNE problem.

Introduction
Network virtualization is an enabling technology that aims
to overcome the Internet ossification problem, a refer-
ence to the resistance of the current Internet to architec-
tural changes (Chowdhury, Rahman, and Boutaba 2009).
Through network virtualization, significant investment to
homogenize the physical infrastructure can be avoided. In-
stead, a proper allocation of the resources across heteroge-
neous physical networks can help service providers provi-
sion end-to-end services to the customers. They can do so
by leasing the shared network resources from infrastructure
providers (Feamster, Gao, and Rexford 2007). Network vir-
tualization also facilitates increased security and manage-
ability (Fischer et al. 2013).

The physical infrastructure managed by infrastructure
providers can be conceptualized as an undirected graph, of-
ten referred to as the Substrate Network (SN). The capacities
of an SN include its CPU capacity (i.e., the compute power
on its vertices) and its bandwidth capacity (i.e., the commu-
nication capacity on its edges). A request for network re-
sources can also be conceptualized as an undirected graph,
often referred to as a Virtual Network Request (VNR). In a
VNR, each vertex is annotated with a CPU requirement, and
each edge is annotated with a bandwidth requirement.

Network virtualization hinges on our ability to manage
the SN resources (i.e., the compute power on the SN ver-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tices and the communication capacity on the SN edges) ef-
ficiently and effectively. This resource management prob-
lem is formalized as the Virtual Network Embedding (VNE)
problem. In the VNE problem, each VNR vertex is required
to be mapped to an SN vertex (the vertex/node mapping),
and each VNR edge is required to be mapped to an SN path
(the edge/link mapping). The mapping must satisfy the CPU
and bandwidth capacity constraints on the SN vertices and
edges, respectively. It may also have to satisfy geolocation
constraints on the individual VNR vertices. The VNE prob-
lem and its many variants are NP-hard (Yu et al. 2008).

Recently, the Conflict-Based Search (CBS) algorithm,
imported from the Multi-Agent Path Finding (MAPF) lit-
erature, has been successfully applied to the VNE prob-
lem (Zheng et al. 2022). The resulting VNE-CBS algorithm
exploits the combinatorial similarities between the VNE and
MAPF problems. In the MAPF problem, we are given a team
of agents and an undirected graph. Each agent has a distinct
start vertex and a distinct goal vertex. It has to move from
its start vertex to its goal vertex while avoiding collisions
(also called conflicts) with the other agents. A conflict hap-
pens when two agents stay at the same vertex or traverse
the same edge in opposite directions at the same time. Each
action, such as moving to a neighboring vertex or staying at
the current vertex, has a cost. A common objective is to min-
imize the sum of the travel costs of the agents. Solving the
MAPF problem optimally for this objective is NP-hard (Yu
et al. 2008).

There are many similarities between the MAPF and VNE
problems. The VNE problem can be construed as a con-
strained path-coordination problem (Chowdhury, Rahman,
and Boutaba 2009). This makes it amenable to MAPF al-
gorithms (Zheng et al. 2022). Similar to CBS for MAPF,
VNE-CBS is a two-level search algorithm. The high-level
search is a best-first search that resolves conflicts arising
from resource contentions. The low-level search is a path
finding algorithm that allocates resources to each VNR ele-
ment under the constraints imposed by the high-level search
node. On the one hand, VNE-CBS exploits the similarities
between the VNE and MAPF problems. On the other hand, it
also successfully addresses the subtle differences and unique
challenges in applying the CBS framework to the VNE prob-
lem. VNE-CBS is complete and optimal.

Priority-Based Search (PBS) is another successful MAPF

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

472



algorithm. Similar to CBS, it is also a two-level search algo-
rithm. However, it conducts its high-level search on a pri-
ority tree, different from the conflict resolution tree used
in CBS. It uses a depth-first search instead of the best-first
search used in CBS. In the MAPF problem, the low-level
search of PBS finds a path for an agent that does not conflict
with the paths of the agents that have been assigned higher
priorities in the high-level search node. It conducts its low-
level search by treating higher-priority paths as constraints.

In this paper, we present a novel adaptation of the PBS
algorithm for solving the VNE problem efficiently and ef-
fectively. Our algorithm, called VNE-PBS, conducts a two-
level search, where the high-level search resolves conflicts
on a priority tree and the low-level search allocates SN
resources to VNR vertices and edges while avoiding con-
flicts with high-priority allocations. VNE-PBS intelligently
uses priorities for mapping both VNR vertices and edges si-
multaneously to SN vertices and paths, respectively. It also
explores the space of all possible priority orderings using
a depth-first search. We empirically show that VNE-PBS
significantly outperforms competing algorithms on various
benchmark instances in both offline and online settings.

Background
In this section, we present the background literature relevant
to our work. In doing so, we also introduce important con-
cepts and definitions that will be useful later.

Virtual Network Embedding
The VNE problem is essentially a constrained resource allo-
cation problem that maps a VNR to an SN.

In the VNE problem, an SN is an undirected graph Gs =
(V s, Es, As

V , A
s
E), where V s is the set of SN vertices, Es

is the set of SN edges, As
V is a mapping from SN vertices

to their attributes, and As
E is a mapping from SN edges to

their attributes. For vs ∈ V s, As
V (v

s) includes its CPU
capacity CPU(vs) and its location LOC(vs). For es ∈ Es,
As

E(e
s) includes its bandwidth capacity BW(es). An SN

path is a path in Gs. A VNR is also an undirected graph
Gr = (V r, Er, Cr

V , C
r
E), where V r is the set of VNR ver-

tices, Er is the set of VNR edges, Cr
V is a mapping from

VNR vertices to their demands, and Cr
E is a mapping from

VNR edges to their demands. For vr ∈ V r, Cr
V (v

r) includes
its CPU requirement CPU(vr) and its geolocation require-
ment specified as a maximum distance D(vr) between its
desired location LOC(vr) and the location of the SN vertex
it is mapped to. For er ∈ Er, Cr

E(e
r) includes its bandwidth

requirement BW(er).
Given an SN Gs and a VNR Gr, a solution to the VNE

problem is a feasible mapping VNE(·) of VNR vertices to
SN vertices and VNR edges to SN paths. The mapping must
satisfy a number of constraints. The commonly used con-
straints are the following:

• Each VNR vertex vr ∈ V r is mapped to a unique SN
vertex VNE(vr) ∈ V s,

• No two VNR vertices vri ∈ V r and vrj ∈ V r from the
same VNR are mapped to the same SN vertex vs ∈ V s

• Each VNR vertex vr ∈ V r is mapped to exactly one SN
vertex such that CPU(vr) ≤ CPU(VNE(vr)) and
GEODIST(LOC(vr), LOC(VNE(vr))) ≤ D(vr), where
GEODIST(·, ·) is the geographical distance function be-
tween two locations.

• Each VNR edge er = (vri , v
r
j ) ∈ Er is mapped to

an SN path VNE((vri , v
r
j )) from VNE(vri ) to VNE(vrj ) in

Gs, such that, for any SN edge es ∈ Es, the sum of
the bandwidth requirements of the VNR edges that uti-
lize it does not exceed its bandwidth capacity, that is,∑

er∈Er: es∈VNE(er)BW(er) ≤ BW(es).

Several metrics are popular for evaluating VNE map-
pings. One of them is the revenue. It is the sum of the
resources requested by and successfully meted out to the
VNR. It is 0 if the VNR cannot be embedded in the SN.
Otherwise, it is given by∑

vr∈V r
CPU(vr) +

∑
er∈Er

BW(er). (1)

Another metric is the cost. It is the sum of the SN re-
sources that are utilized for embedding the VNR. It is 0 if
the VNR cannot be embedded in the SN. Otherwise, it is
given by∑

vr∈V r
CPU(vr) +

∑
er∈Er

∑
es∈VNE(er)

BW(er). (2)

The cost of embedding a VNR is larger than or equal to
its revenue since every VNR edge utilizes an SN path with
at least one SN edge in it. Another popular metric is the
cost/revenue ratio representing the cost divided by the rev-
enue. It measures how efficiently the SN resources are allo-
cated to a VNR.

The VNE problem and its many variants are NP-hard (Yu
et al. 2008). However, many practical solvers have been pro-
posed. The VNE problem with geolocation requirements
can be formulated as a Mixed Integer Linear Program-
ming (MILP) problem. This MILP problem can then be re-
laxed to a Linear Programming (LP) problem that can be
solved in polynomial time. Two solvers, D-ViNE and R-
ViNE (Chowdhury, Rahman, and Boutaba 2009), heuristi-
cally retrieve a solution of the VNE problem from the frac-
tional solution of the relaxed LP problem via a deterministic
and a randomized rounding technique, respectively. These
two solvers are often used as the standard baseline solvers
for comparatively evaluating new VNE solvers.

G-SP and G-MCF (Yu et al. 2008) are two solvers that
first greedily map VNR vertices to SN vertices and then use
shortest-path or multi-commodity flow computations to map
VNR edges to SN paths. Some VNE solvers use node rank-
ing to improve the greedy mapping of VNR vertices to SN
vertices. For example, drawing inspiration from Google’s
Page Rank algorithm, RW-MaxMatch-SP sorts the VNR and
SN vertices and maps them according to their ranks (Cheng
et al. 2011). Then, it uses a shortest-path algorithm to map
the VNR edges to SN paths. Fischer et al. (2013) and Cao
et al. (2019) provide detailed surveys of the VNE problem,
its variants, and a classification of their solvers.

Recently, Zheng et al. (2022) proposed a CBS algorithm
for solving the VNE problem. The solver, VNE-CBS, is in-
spired by the success of the CBS algorithm for the MAPF

473



problem and the fact that the VNE problem can be converted
to a path-coordination problem, as proposed in (Chowd-
hury, Rahman, and Boutaba 2009). VNE-CBS is a two-
level heuristic search algorithm. The high-level search is a
best-first search that resolves any constraint violations (also
called conflicts) in resource allocation for the VNR ver-
tices and edges. In resolving conflicts, each high-level search
node imposes constraints on the allocation of SN resources.
The low-level search adheres to these constraints and maps
individual VNR vertices and edges to SN vertices and paths,
respectively. VNE-CBS demonstrates the benefit of import-
ing technologies from the MAPF literature.

Multi-Agent Path Finding
In the MAPF problem, the task is to find paths for a set of
k agents {a1, ..., ak} on a graph G = (V,E), where each
agent aj has a distinct start vertex sj ∈ V and a distinct
goal vertex gj ∈ V . Time is discretized into timesteps, and
each agent can either move to a neighboring vertex or wait
at its current vertex at any timestep t. Each action has a cost.
A path of an agent is a sequence of move and wait actions
that lead the agent from its start vertex to its goal vertex.
A conflict arises when two agents visit the same vertex or
traverse the same edge at the same time. A solution to a
MAPF problem is a set of paths, one for each agent, without
any conflicts. A popular objective is to minimize the sum
of the travel costs of all agents. The MAPF problem (Stern
et al. 2019) arises in many real-world applications, including
video games (Silver 2005), automated warehousing (Wur-
man, D’Andrea, and Mountz 2008), and multi-drone deliv-
ery (Choudhury et al. 2020).

Priority-Based Search in Multi-Agent Path Finding
Prioritized MAPF algorithms (Silver 2005; Sturtevant and
Buro 2006) are among the most efficient algorithms for solv-
ing MAPF problems. They are based on a simple prioritized
planning scheme: Each agent is given a unique priority and
computes, in priority order, a minimum-cost path from its
start vertex to its goal vertex that does not conflict with the
already planned paths of all higher-priority agents (Erdmann
and Lozano-Pérez 1987). This category of algorithms excels
in terms of runtime and is often used in MAPF solvers (Ve-
lagapudi, Sycara, and Scerri 2010; Wang and Botea 2011;
Cáp, Vokrı́nek, and Kleiner 2015). However, these solvers
use a predefined total priority ordering on the agents that
can result in solutions of bad quality or even fail to find any
solutions for solvable MAPF instances, where different total
priority orderings could have resulted in better solution qual-
ities or avoided failure. An efficient MAPF algorithm, called
Priority-Based Search (PBS), was proposed to address this
issue (Ma et al. 2019).

PBS generalizes prioritized planning from planning with
a predefined total priority ordering on the agents to plan-
ning with all possible total priority orderings. It explores the
space of all total priority orderings lazily using a systematic
depth-first search. PBS is a two-level search algorithm. On
the high level, it performs a depth-first search to construct
a priority ordering dynamically and thus builds a priority

tree. Each high-level node N contains a priority ordering
given by a set ≺N of priority relationships between agents.
Each high-level node also has a set of paths, one for each
agent, N.paths that respect the prioritized planning scheme
for the priority ordering ≺N . The cost of a high-level node
N is the sum of the travel costs of the paths in N.paths.
The root high-level node contains an empty set of priority
relationships and a set of shortest paths that may contain
conflicts. When PBS expands a high-level node N , it first
checks for conflicts in N.paths. If there are none, then the
high-level node is a goal high-level node and the solution
is its set of paths. If there is a conflict between the paths of
agent ai and agent aj , then PBS resolves it by splitting N
into two child high-level nodes N1 and N2. For child high-
level nodes N1 and N2, it introduces an additional priority
relationship j ≺ i (agent aj has a higher priority than agent
ai) and i ≺ j (agent ai has a higher priority than agent aj)
to ≺N1 and ≺N2 , respectively. In child high-level node N1,
PBS updates the paths of agent ai and all agents ak with
i ≺N1 k. The processing of child high-level node N2 is
symmetric. Each update is done in the low-level search of
PBS and results in a minimum-cost path for each agent that
does not conflict with the paths of all higher-priority agents.
The low-level search for updating the path of an agent is a
single-agent path finding procedure that expands only those
low-level nodes that do not result in conflicts with the paths
of the higher-priority agents.

Reformulating the VNE Problem as a
Path-Coordination Problem

In this section, we explain how the VNE problem can be
converted to a path-coordination problem on an artificially
created augmented SN, as proposed in (Chowdhury, Rah-
man, and Boutaba 2009).

We first create a fictitious vertex vf ∈ V f , where V f is
the set of fictitious vertices, for each VNR vertex vr ∈ V r.
vf inherits all attributes of vr, including CPU(vr), LOC(vr),
and D(vr). We then create fictitious edges Ef to connect
the fictitious vertices to the SN vertices. Each fictitious ver-
tex vf is connected to all SN vertices that satisfy both its
CPU requirement and the geolocation constraint. In other
words, each vf is connected via fictitious edges (vf , vs) to a
set of SN vertices {vs ∈ V s : CPU(vf ) ≤ CPU(vs) and
GEODIST(LOC(vf ), LOC(vs)) ≤ D(vf )}. The bandwidth
of a fictitious edge is set to infinity. The augmented SN is
the union of the original SN, the fictitious vertices, and the
fictitious edges. We denote it by Gm = (V m, Em), where
V m = V s ∪ V f and Em = Es ∪ Ef .

On the augmented SN, the VNE mapping of a VNR edge
(vri , v

r
j ) can be identified by a path ⟨vfi , vs1, . . . , vs2, v

f
j ⟩ on

Gm, where vfi and vfj are the fictitious vertices correspond-
ing to vri and vrj , respectively, and (vfi , v

s
1), (v

s
2, v

f
j ) ∈ Ef .

The mapping of VNR vertices vri and vrj to SN vertices vs1
and vs2, respectively, can be identified by the utilization of
the fictitious edges (vfi , v

s
1) and (vs2, v

f
j ) in the path. This

reformulation bears a resemblance to the MAPF problem,
where a path is required for each agent from its start vertex

474



Figure 1: An example of a reformulated VNE problem. The
VNR vertices A, B, and C are added as fictitious vertices
in the augmented SN. Their connections to qualifying SN
vertices that satisfy the CPU and geolocation constraints are
indicated by the yellow areas. Fictitious edges are shown as
red dashed lines. Each VNR edge is implemented as a path
on the augmented SN, bearing the same color. For instance,
the blue path A-1-3-4-C represents the mapping of VNR ver-
tices A and C to SN vertices 1 and 4, respectively, and the
mapping of the blue VNR edge er(A,C) to the SN path 1-3-4.

to its goal vertex. Each VNR edge roughly corresponds to an
agent, although the MAPF problem has a temporal dimen-
sion that is not present in the VNE problem. Figure 1 shows
an example.

In general, for any feasible VNE mapping that maps a
given VNR into the given SN, Eq. 2 indicates that the cost
of the VNE mapping depends on the resources allocated to
the VNR. The CPU resources allocated to the VNR vertices
are the same for all feasible VNE mappings. However, the
bandwidth resources allocated to the VNR edges depend on
how the VNR edges are mapped to the SN paths. In particu-
lar, the cost of mapping each VNR edge er ∈ Er is equal to
its bandwidth requirement BW(er) multiplied by the length
of the SN path to which it is mapped. Thus, minimizing
the cost of a VNE mapping is equivalent to minimizing the
sum of the lengths of the chosen paths on Gm. This corre-
sponds to the sum of the travel costs objective in the MAPF
problem, furthering the combinatorial similarity between the
VNE and MAPF problems.

Conflict Resolution and Prioritization
The VNE problem is a path-coordination problem similar
to the MAPF problem. We now identify conflicts that can
arise for resources allocated by a VNE mapping. A feasi-
ble VNE mapping of a VNR to an SN must satisfy multi-
ple constraints. The violations of these constraints charac-
terize the conflicts (i.e., a feasible VNE mapping is conflict-
free). For the VNR edge (vri , v

r
j ) implemented as the Gm

path ⟨vfi , vs1, . . . , vs2, v
f
j ⟩, vs1 and vs2 represent the mapping

of the VNR vertices vri and vrj , respectively, and the SN

path ⟨vs1, . . . , vs2⟩ represents the mapping of the VNR edge
(vri , v

r
j ).

The first kind of constraints on a VNE mapping is that
each VNR vertex must be mapped to a distinct SN vertex.
Therefore, we have the following kinds of conflicts:

• A type-1 vertex conflict (vr, vs1, v
r, vs2) arises when the

Gm paths for two VNR edges er1 and er2 map the same
VNR vertex vr to two different SN vertices vs1 and vs2,
respectively.

• A type-2 vertex conflict (vr1, v
s, vr2, v

s) arises when the
Gm paths for two VNR edges er1 and er2 map two dif-
ferent VNR vertices vr1 and vr2 , respectively, to the same
SN vertex vs. It also arises when the Gm path for a VNR
edge er = (vr1, v

r
2) maps two different VNR vertices vr1

and vr2 to the same SN vertex vs.

The second kind of constraints on a VNE mapping is on
the CPU and geolocation attributes of the SN vertices that a
VNR vertex can be mapped to. Such constraints are incor-
porated by design in the construction of Gm. Therefore, no
conflicts arise in this regard.

The third kind of constraints on a VNE mapping is that
the sum of the bandwidth requirements of the VNR edges
that utilize an SN edge cannot exceed its bandwidth ca-
pacity. Therefore, we have the bandwidth capacity conflict
Ec = {er ∈ Er :

∑
er:es∈VNE(er) BW(er) > BW(es)}

that arises when an SN edge es does not have sufficient
bandwidth capacity to accommodate all VNR edges that uti-
lize it.

Priorities can be used to obtain a feasible mapping. In pre-
vious works on the VNE problem, priorities have been used
in greedy algorithms, such as in G-SP, G-MCF (Zhu and
Ammar 2006), and RW-MaxMatch-SP (Cheng et al. 2011).
However, their use of priorities is limited: Their first objec-
tive is to map the VNR vertices to SN vertices greedily. The
VNR edges are later mapped to SN paths only in accordance
with the vertex mappings. In VNE-PBS, we use priorities
in more sophisticated ways. First, the priorities are associ-
ated with the Gm paths, which simultaneously map the VNR
vertices and edges to SN vertices and paths, respectively.
Second, all possible priority orderings are explored. VNE-
PBS thus combines the benefits of priorities with a two-level
search procedure similar to PBS for the MAPF problem.

Given two VNR edges er1 = (vri , v
r
j ) and er2 = (vrk, v

r
l ),

we use er1 ≺ er2 to denote that the path from vfi to vfj on Gm

is found with a higher priority than the path from vfk to vfl .
When finding any Gm path, VNE-PBS constrains that path
to avoid all vertex conflicts and bandwidth capacity conflicts
with the higher-priority Gm paths. There can be conflicts be-
tween Gm paths with no priority relationship between them.
Any such conflict is resolved by adding a priority relation-
ship between every pair of Gm paths participating in the
conflict.

To resolve a type-1 vertex conflict (vr, vs1, v
r, vs2) be-

tween two Gm paths found for er1 and er2, we create two
child high-level nodes N1 and N2. For N1, we add a priority
relationship er1 ≺ er2 to ≺N1

and replan the path for er2 and
all paths with a lower priority than er2. The new path for er2

475



Figure 2: An example of resolving a type-2 vertex conflict.
The type-2 vertex conflict (A, 1, A, 2) between the Gm paths
implemented for er(A,B) and er(A,C) is resolved by adding
the priority relationship er(A,B) ≺ er(A,C) in one of the child
high-level nodes. Therefore, the Gm path from A to C (blue)
is changed to A-1-3-4-C so that A is mapped to 1 to agree
with the path from A to B (red).

must map the VNR vertex vr to vs1 instead of vs2 since it can-
not conflict with any higher-priority path, including that for
er1. The procedure is symmetric for N2. To resolve a type-2
vertex conflict (vr1, v

s, vr2, v
s) between two Gm paths found

for er1 and er2, we create two child high-level nodes N1 and
N2. As before, for N1, we add a priority relationship er1 ≺ er2
to ≺N1

and replan the path for er2 and all paths with a lower
priority than er2. The new path for er2 must map the VNR
vertex vr2 to an SN vertex different from vs since the new
path cannot conflict with any higher-priority path. The pro-
cedure is symmetric for N2. Figure 2 shows an example of
resolving a type-2 vertex conflict.

As described before, a bandwidth capacity conflict Ec =
{er ∈ Er :

∑
er:es∈VNE(er) BW(er) > BW(es)}, arises

when an SN edge es does not have sufficient bandwidth ca-
pacity to accommodate all VNR edges that utilize it. Such
a conflict is first recognized and triggered by a VNR edge
er1 that cannot be accommodated by es when the Gm path
for er1 wants to utilize es. To resolve the conflict, we cre-
ate two child high-level nodes N1 and N2 for each VNR
edge ec ∈ Ec \ {er1}. For N1, we add a priority relationship
ec ≺ er1 to ≺N1

and replan the path for er1. The new path for
er1 must not utilize es. For N2, we add a priority relationship
er1 ≺ ec and follow a symmetric procedure.

Our conflict-resolution methods address all kinds of con-
flicts and explore all possible combinations of priorities for
implementing the VNR edges as Gm paths.

VNE-PBS
In this section, we describe the algorithmic aspects of VNE-
PBS, see Algorithm 1.

High-Level Search
Algorithm 1 shows the high-level search of VNE-PBS. It
takes two inputs: the SN graph Gs and the VNR graph Gr.
On Line 2, it uses Gs and Gr to create the augmented SN
Gm, as described previously. On Line 3, it precomputes a
table of true cost heuristic values for guiding the low-level

Algorithm 1: VNE-PBS

1: Input: Gs, Gr

2: Gm ← create augmented SN for Gs and Gr

3: Precompute the true cost heuristic table h table
4: NR ← empty high-level node
5: ≺NR

← empty set of priority relationships
6: NR.mapping ← UpdateMapping(Gm, NR, e

r) for
all er ∈ Er

7: NR.cost← cost(NR.mapping)
8: NR.num conf← count conf(NR.mapping)
9: STACK← {NR}

10: while STACK ̸= ∅ do
11: NT ← STACK.top()
12: Remove NT from STACK
13: if NT .num conf = 0 then
14: return NT .mapping as solution
15: Conf← chosen conflict in NT .mapping
16: C = {}
17: for (eri , e

r
j) involved in Conf do

18: N1
C , N

2
C ← copy of NT

19: ≺N1
C
←≺NT

∪{erj ≺ eri }
20: ≺N2

C
←≺NT

∪{eri ≺ erj}
21: for NC ∈ {N1

C , N
2
C} do

22: success← UpdateMapping(Gm, NC ,
erlow)

23: if success then
24: NC .cost← cost(NC .mapping)
25: NC .num conf← count conf(

NC .mapping)
26: Insert NC into C
27: Sort child high-level nodes in C, and insert all NC ∈

C into STACK
28: return “No Solution”

29: Function UpdateMapping(Gm, N, eri ):
30: SORTED← topological sorting of the VNR edges {erj :

eri ≺N erj} ∪ {eri } based on ≺N

31: for erj ∈ SORTED do
32: if erj = eri or erj conflicts with a higher-priority VNR

edge erk then
33: Update N.mapping by invoking a low-level path

search for erj to find a Gm path for it that avoids conflicts
with all higher-priority VNR edges

34: if unsuccessful in finding a low-level path then
35: return false
36: return true

search. The true cost heuristic values are the shortest hop
distances from all fictitious vertices to all other vertices in
the augmented SN.

In the high-level search, every high-level node N contains
a set ≺N of priority relationships on the Gm paths found
for the VNR edges, a VNE mapping N.mapping, the cost
of the VNE mapping N.cost, and the number of conflicts
in the VNE mapping N.num conf. On Lines 4-8, VNE-PBS
initializes the root high-level node NR. On Line 5, it starts

476



with an empty set of priority relationships. On Line 6, it uses
the function UpdateMapping to find a shortest path for
each VNR edge er. For NR, the paths found for all er via
UpdateMapping may conflict with each other since there
is no priority relationship on them yet. On Line 7, VNE-PBS
calculates the cost of NR.mapping. On Line 8, it counts the
number of conflicts in NR.mapping. NR is then inserted into
a first-in-last-out stack of high-level nodes STACK.

VNE-PBS expands high-level nodes until either a feasi-
ble VNE mapping is found or STACK is empty. On Lines
11-12, it retrieves and removes the top high-level node NT

from STACK. On Lines 13-14, it returns the feasible VNE
mapping NT .mapping if it has no conflicts. Otherwise, it
starts to resolve the conflicts in NT .mapping. On Line 15,
it chooses the first identified conflict in NT .mapping to re-
solve. On Line 16, VNE-PBS initializes an empty set C of
child high-level nodes. On Lines 17-26, it resolves the cho-
sen conflict, as described earlier. For each child high-level
node, it creates a copy of the high-level node NT , adds a
new priority relationship to ≺NC

, and updates the Gm paths
accordingly. On Line 22, erlow refers to the VNR edge that is
assigned the lower priority between eri and erj . If the update
is successful, on Lines 24-25, VNE-PBS computes the cost
and the number of conflicts for the child high-level node NC .
On Line 26, it then inserts NC into the set C of high-level
child nodes. After generating all child high-level nodes for
the chosen conflict, on Line 27, VNE-PBS sorts the child
high-level nodes in non-increasing order of their costs. If
two child high-level nodes have the same cost, it uses the
number of conflicts for tie-breaking and prefers child high-
level nodes with fewer conflicts. It then inserts the sorted
child high-level nodes NC ∈ C into STACK.

Low-Level Search
The function UpdateMapping takes three inputs: the aug-
mented SN graph Gm, the current high-level node N , and
the VNR edge eri whose path needs to be updated. This func-
tion finds shortest Gm paths for the VNR edge eri and all
paths with a lower priority than eri that avoid conflicts with
all higher-priority paths. On Line 30, it uses a topological
sort to obtain a set of VNR edges that are sorted in the order
of their priorities. This set contains eri and all other paths
with lower priority. On Line 32, it checks if Gm paths re-
quire an update, either for being associated with eri or by
virtue of conflicting with higher-priority paths.

On Line 33, the function calls the low-level search of
PBS. The low-level search is an A∗ search that finds a short-
est path from vf1 to vf2 on Gm for implementing the VNR
edge erj = (vr1, v

r
2) that avoids conflicts with the Gm paths

of all VNR edges that have a higher priority than erj .
When generating the neighbors of vf1 , it returns those

SN vertices vs that satisfy the CPU and geolocation con-
straints. If vf1 has been mapped to an SN vertex vs in the Gm

paths with higher priority, vf1 is restricted to be mapped to
vs again. Similarly, it obeys the higher-priority paths when
mapping vf2 to an SN vertex. When generating the neigh-
bor vs2 of an SN vertex vs1, it includes SN vertices {vs2 :
BW((vs1, v

s
2)) ≥ BW(er)}. It also computes the total band-

Figure 3: An example of a VNE instance that VNE-PBS fails
to solve.

width usage on the SN edge (vs1, v
s
2) from the higher-priority

paths that utilize it. If the sum of the bandwidth usage and
the bandwidth requirement of erj is larger than the bandwidth
capacity of the SN edge, it does not consider vs2 as a neigh-
bor. It also excludes all fictitious vertices other than vf2 as
neighbors since a path is not allowed to pass through other
fictitious vertices. Moreover, it rejects any path from vf1 to
vf2 that maps two different VNR vertices to the same SN ver-
tex since such a path would result in a type-2 vertex conflict.

Incompleteness of VNE-PBS
VNE-PBS is incomplete since it does not backtrack on all
possible paths for each VNR edge. Figure 3 shows a VNE
instance that is optimally solvable with prioritized planning
but requires not only using the correct total priority ordering
but also breaking ties correctly when planning paths for the
VNR edges, which, if done incorrectly, can prevent priori-
tized planning and VNE-PBS from finding any solution.

In Figure 3, we assume that the CPU requirements of all
VNR vertices and the bandwidth requirements of all VNR
edges are 1. We also assume that the CPU capacity of all
SN vertices and the bandwidth capacity of all SN edges are
1. VNE-PBS starts with the root high-level node that finds
the Gm path A-1-2-3-8-B for the VNR edge er(A,B) and the
Gm path C-5-2-3-4-D for the VNR edge er(C,D). This results
in a bandwidth capacity conflict at the SN edge 2-3 since
its sum of bandwidth usage is 2. To resolve this conflict,
VNE-PBS creates two branches that give er(A,B) a higher
or a lower priority than er(C,D), respectively. In the branch
where er(A,B) has a higher priority than er(C,D), there exists
no Gm path for er(C,D) that does not conflict with the Gm

path for er(A,B). Similarly, in the branch where er(A,B) has
a lower priority than er(C,D), there exists no Gm path for
er(A,B) that does not conflict with the Gm path for er(C,D).
Therefore, both branches are pruned, and VNE-PBS returns
no solution. However, VNE-PBS successfully terminates at
the root high-level node with an optimal solution if it finds
the Gm path A-1-2-3-4-B for er(A,B) and the Gm path C-5-
6-7-8-D for er(C,D).

Experiments
In this section, we present experimental results comparing
VNE-PBS against VNE-CBS, G-SP, and RW-MaxMatch-
SP. The last two algorithms are popular baseline meth-
ods for the core VNE problem. We also experimented

477



Figure 4: The results of offline experiments averaged over 3, 000 VNE instances for each setting of the number of VNR vertices.

Figure 5: The results of online experiments averaged over 3 runs on each SN for each setting of the number of VNR vertices.

with two other popular baseline methods, D-ViNE and R-
ViNE (Chowdhury, Rahman, and Boutaba 2009), but they
do not scale well to our large-scale VNE instances. There-
fore, we do not include them in the results.

We implemented VNE-PBS and all competing methods
in C++ 1. For VNE-CBS, we used a suboptimality factor
w = 2.0, the value that gives the shortest runtime as reported
in (Zheng et al. 2022). All experiments were run on an AWS
machine with 8 CPUs and 16GB RAM. We used a timeout
of 60 seconds for embedding a VNR in an SN.

Waxman graphs (Waxman 1988) are commonly used in
the VNE literature to simulate communication networks.
Our SN topologies were randomly generated Waxman
graphs with parameter values α = 0.3 and β = 0.1. We
generated 3 SNs, each with 500 vertices in a 100× 100 grid
space. The CPU and bandwidth capacities of the SN vertices
and edges are real numbers generated uniformly at random
from the interval [50, 100]. Our VNR topologies are ran-
domly generated Waxman graphs with α = 0.3 and β = 0.2.
We set the number of VNR vertices to be 10, 20, 30, 40, and
50, generating 1, 000 VNRs for each setting. The VNR ver-
tices were located in the same 100×100 grid space as the SN
vertices. The maximum allowed Euclidean distance for the
geolocation constraints of VNR vertices was set to 15. The
CPU requirements of the VNR vertices and the bandwidth
requirements of the VNR edges were real numbers drawn
uniformly at random from the interval [0, 20] and [0, 50], re-
spectively.

1https://github.com/YiZ7699/VNE-PBS

Our SNs and VNRs used in our experiments are signifi-
cantly larger than those used in previous works. While pre-
vious works use SNs with only about 100 vertices and 500
edges and VNRs with only about 10 vertices, here, we use
SNs with 500 vertices and around 3, 500 edges and VNRs
up to with 50 vertices and around 80 edges.

Offline Experiments
In this subsection, we present the results of our offline VNE
experiments. For each setting of the number of VNR ver-
tices, we create 3, 000 VNE instances by mapping each of
the 1, 000 VNRs to each of the 3 SNs. The reported results
are averaged over these 3, 000 VNE instances for each set-
ting of the number of VNR vertices.

Both D-ViNE and R-ViNE show poor performance even
on the VNE instances with only 10 VNR vertices, where
they managed to solve only 54 and 49 VNE instances, re-
spectively, out of the 3, 000 VNE instances, with an average
runtime of around 58.3 seconds on the successful VNE in-
stances. They failed to solve any of the VNE instances with
more than 10 VNR vertices. Therefore, we exclude them
from the presented experimental results.

Figure 4 shows the following performance metrics: (a) the
success rate, representing the percentage of the successfully
solved VNE instances; (b) the average cost, representing
the cost of the VNE mapping averaged over the success-
fully solved VNE instances; (c) the average cost/revenue
ratio, representing the cost divided by the revenue of the
VNE mapping averaged over the successfully solved VNE
instances; and (d) the average runtime, representing the run-

478



time averaged over the successfully solved VNE instances.
In general, the success rate of VNE-PBS is very high

and much better than that of VNE-CBS-w2.0. Although the
other algorithms have high success rates as well, VNE-PBS
produces solutions that have significantly lower costs com-
pared to them. A similar trend holds for the average cost/rev-
enue. VNE-PBS also outperforms the other algorithms on
the metric of the average runtime, despite some of them
being greedy algorithms. Overall, VNE-PBS wins over the
other algorithms on all performance metrics.

Online Experiments
In this subsection, we present the results of our online VNE
experiments. Here, VNRs arrive at different timesteps, and
each successfully embedded (accepted) VNR holds the SN
resources allocated to it until it departs at the end of its life-
time. VNRs arrive according to a Poisson process at an aver-
age rate of 4 VNRs per 100 timesteps. This experiment setup
is commonly used in the VNE literature to simulate online
VNE problems. The lifetime of each VNR is drawn from an
exponential distribution with an average of 1, 000 timesteps.
When mapping a new VNR, no algorithm is allowed to re-
configure the mapping of previously embedded VNRs. If an
algorithm fails to map a VNR within 60 seconds, it rejects
the VNR and tries the next one. We perform 3 runs corre-
sponding to the 3 SNs, each on the same 1, 000 VNRs for
each number of VNR vertices.

Figure 5 presents the comparative performance results of
the various algorithms on the metrics of acceptance ratio, to-
tal revenue, and cost/revenue, averaged over the 3 runs. The
acceptation ratio is the fraction of accepted VNRs. The total
revenue is the sum of the revenues of the accepted VNRs.
The cost/revenue is the cost divided by the revenue for each
accepted VNR.

With respect to the average cost/revenue ratio, VNE-PBS
outperforms the other algorithms, indicating that it allocates
SN resources to accepted VNRs more efficiently. VNE-
CBS-w2.0 outperforms VNE-PBS for small VNRs but is
unviable for larger VNRs. With respect to the average ac-
ceptance ratio, VNE-PBS outperforms the other algorithms
due to the efficient allocation of SN resources to previously
accepted VNRs. With respect to the average total revenue,
VNE-PBS again outperforms the other algorithms, primar-
ily because of its higher average acceptance ratio.

Conclusions and Future Work
The VNE problem is central to network slicing and network
resource management in 5G technologies. It is a constrained
optimization problem that models the allocation of resources
on heterogeneous physical networks for seamless connectiv-
ity. In this paper, we presented VNE-PBS, a successful im-
port from the MAPF literature, to solve the VNE problem
efficiently and effectively. VNE-PBS is a prioritized heuris-
tic search algorithm that uses priorities in more sophisticated
ways than other algorithms. It not only associates priorities
with simultaneously mapping the VNR vertices and edges
to SN vertices and paths, respectively, but also explores the
space of priority orderings using a systematic depth-first

search. Through experiments on large-scale VNE instances,
we demonstrated its superiority over competing algorithms
on various performance metrics in both offline and online
settings.

In future work, we plan to enhance VNE-PBS with in-
telligent strategies for selecting conflicts for resolution. We
also plan to apply VNE-PBS to richer variants of the VNE
problem.

Acknowledgments
The research at the University of Southern California was
supported by DARPA under grant number HR001120C0157
and by NSF under grant numbers 1409987, 1724392,
1817189, 1837779, 1935712, 2112533, and 2121028. The
research at Simon Fraser University was supported by
NSERC under grant number RGPIN2020-06540 as well as
a CFI JELF award. The views, opinions, and/or findings ex-
pressed are those of the author(s) and should not be inter-
preted as representing the official views or policies of the
sponsoring organizations, agencies, or the U.S. Government.

References
Cao, H.; Wu, S.; Hu, Y.; Liu, Y.; and Yang, L. 2019. A
Survey of Embedding Algorithm for Virtual Network Em-
bedding. China Communications, 16(12): 1–33.
Cáp, M.; Vokrı́nek, J.; and Kleiner, A. 2015. Complete
Decentralized Method for On-Line Multi-Robot Trajectory
Planning in Well-Formed Infrastructures. In International
Conference on Automated Planning and Scheduling, 324–
332.
Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F.; Luo, Y.;
and Wang, J. 2011. Virtual Network Embedding Through
Topology-Aware Node Ranking. Computer Communication
Review, 41(2): 38–47.
Choudhury, S.; Solovey, K.; Kochenderfer, M. J.; and
Pavone, M. 2020. Efficient Large-Scale Multi-Drone De-
livery Using Transit Networks. In IEEE International Con-
ference on Robotics and Automation, 4543–4550.
Chowdhury, M.; Rahman, M. R.; and Boutaba, R. 2009. Vir-
tual Network Embedding with Coordinated Node and Link
Mapping. In Joint Conference of the IEEE Computer and
Communications Societies, 783–791.
Erdmann, M. A.; and Lozano-Pérez, T. 1987. On Multiple
Moving Objects. Algorithmica, 2: 477–521.
Feamster, N.; Gao, L.; and Rexford, J. 2007. How to Lease
the Internet in Your Spare Time. Computer Communication
Review, 37(1): 61–64.
Fischer, A.; Botero, J. F.; Beck, M. T.; de Meer, H.; and Hes-
selbach, X. 2013. Virtual Network Embedding: A Survey.
IEEE Communications Surveys and Tutorials, 15(4): 1888–
1906.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with Consistent Prioritization for Multi-
Agent Path Finding. In AAAI Conference on Artificial Intel-
ligence, 7643–7650.

479



Silver, D. 2005. Cooperative Pathfinding. In Artificial Intel-
ligence and Interactive Digital Entertainment Conference,
117–122.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In Symposium on
Combinatorial Search, 151–159.
Sturtevant, N. R.; and Buro, M. 2006. Improving Collabora-
tive Pathfinding Using Map Abstraction. In Artificial Intel-
ligence and Interactive Digital Entertainment Conference,
80–85.
Velagapudi, P.; Sycara, K. P.; and Scerri, P. 2010. Decen-
tralized Prioritized Planning in Large Multirobot Teams. In
International Conference on Intelligent Robots and Systems,
4603–4609.
Wang, K. C.; and Botea, A. 2011. MAPP: a Scalable Multi-
Agent Path Planning Algorithm with Tractability and Com-
pleteness Guarantees. Journal of Artificial Intelligence Re-
search, 42: 55–90.
Waxman, B. M. 1988. Routing of Multipoint Connections.
IEEE Journal on Selected Areas in Communications, 6(9):
1617–1622.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. AI Magazine, 29(1): 9–20.
Yu, M.; Yi, Y.; Rexford, J.; and Chiang, M. 2008. Rethink-
ing Virtual Network Embedding: Substrate Support for Path
Splitting and Migration. Computer Communication Review,
38(2): 17–29.
Zheng, Y.; Ravi, S.; Kline, E.; Koenig, S.; and Kumar, T.
K. S. 2022. Conflict-Based Search for the Virtual Network
Embedding Problem. In International Conference on Auto-
mated Planning and Scheduling, 423–433.
Zhu, Y.; and Ammar, M. H. 2006. Algorithms for Assign-
ing Substrate Network Resources to Virtual Network Com-
ponents. In Joint Conference of the IEEE Computer and
Communications Societies, 1–12.

480


