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Abstract
Goal recognition has been extensively studied by AI re-
searchers, but most algorithms take only observed actions as
input. Here we argue that the time taken to carry out these ac-
tions provides an additional signal that supports goal recog-
nition. We present a behavioral experiment confirming that
people use timing information in this way, and develop and
evaluate a goal recognition algorithm that is sensitive to both
actions and timing information. Our results suggest that ex-
isting goal recognition algorithms can be improved by incor-
porating a model of planning time on both synthetic data and
human data, and that these improvements can be substantial
in scenarios in which relatively few actions have been ob-
served.

Introduction
Imagine that you and a friend are playing a strategic
boardgame. Your friend just made a move that is compati-
ble with only two possible goals: a low-reward goal that is
easy to reach or a high-reward goal that is difficult to reach.
If your friend made her move very rapidly, you might in-
fer that she is aiming for the easily-reached goal, but if she
thought for a long time you might conclude that she is aim-
ing for the more ambitious goal.

As this example suggests, people’s inferences about the
intentions of others are sensitive to information that goes
beyond observed actions alone (Singh et al. 2018; Gates
et al. 2021). Real-world interactions are embedded in time
and timing information is almost always available. Current
goal recognition algorithms, however, mostly focus on ac-
tions only and rarely take auxiliary information such as tim-
ing into consideration (Zhi-Xuan et al. 2020; Ramı́rez and
Geffner 2010; Keren, Gal, and Karpas 2015; Pereira, Oren,
and Meneguzzi 2017; Masters and Sardina 2019). In this pa-
per we propose a new goal recognition framework that can
exploit observed planning times, and evaluate it using both
synthetic and human data.

The problem of goal recognition is the task of inferring
an actor’s real goal given a sequence of observations and a
set of possible goals. Early approaches to this problem often
used a plan library to perform goal inference and matched
the sequence of observations with a library of historical
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observations associated with each goal candidate (Blay-
lock, Allen et al. 2003; Vered, Kaminka, and Biham 2016).
Later, Ramirez and Geffner proposed a generative approach
that uses planning algorithms over planning models and is
known as plan recognition as planning (PRP) (Ramı́rez and
Geffner 2010; Sohrabi, Riabov, and Udrea 2016).

A small amount of work in AI and cognitive science has
explored how auxiliary information can be used to infer the
mental states of others. Singh et al. (2018) used gaze in-
formation for intention recognition and found that gaze can
help to reveal the hidden goals of players in a boardgame.
Gates et al. (2021) developed a Bayesian model that aims to
capture how people use response times when inferring the
preferences of an actor who is observed to make a single de-
cision. Our work generalizes the same underlying idea by
exploring how timing information can be used in situations
where actors generate rich sequences of actions, not just
one-shot decisions. Perhaps closest to our own approach is
the work of Avrahami-Zilberbrand, Kaminka, and Zarosim
(2005), who developed a plan-recognition algorithm that in-
corporates constraints on action durations. Our work also
highlights the role of time but focuses specifically on plan-
ning times that reflect the effort exerted by the actor when
selecting actions.

Figure 1 illustrates two cases in which planning times are
useful for goal recognition. In the Sokoban example (Fig-
ure 1a), the current position of the worker is shown in color
and the grey workers show the trajectory the worker fol-
lowed to reach this position. The actor is a real-time planner
that performs a look-ahead search using Manhattan distance
as a heuristic, and because the computational resources of
the actor are limited it is not guaranteed to choose the opti-
mal trajectory. Given the information in Figure 1a, goals A
and B may seem equally likely because the observed trajec-
tory is consistent with optimal paths to both goals. But if we
observe in addition that the actor spent a relatively long time
at the position shown, B now seems the more likely goal
because A is easily achieved with a single push to the left,
whereas the actor has to push the box away and then back to
achieve B.

In Figure 1a, timing information breaks a tie between two
goals that seem equally likely based on actions alone, but
there may also be cases where timing information reverses
the conclusion that would follow from actions alone. Figure
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(a) (b)

Figure 1: Examples from two domains showing two ways
in which timing information can influence goal recognition.
(a) Timing information can break a tie between two goals. In
this Sokoban example, observing the actor stop and think at
the position shown with blue jeans suggests that the actor’s
goal is to push the box to B rather than A. (b) Timing in-
formation can reverse the inference that would follow from
actions alone. In this navigation example, a protracted pause
at the position shown in purple suggests that the goal may
be A rather than B.

1b shows an example based on a navigation task. Here the
observed action sequence suggests that B is the likely goal
because this sequence is consistent with an optimal path to
B but not A. But if we see that the actor spends a long time
at the location shown, we might conclude that A is the actual
goal because there would be no reason for the actor to stop
and think if the goal were B rather than A.

Because timing information has received little attention in
the literature, standard goal recognition benchmarks do not
include this information. Most existing agent models do not
produce useful planning times because they either allocate
a constant amount of planning time for each step or do not
consider this factor at all (Zhi-Xuan et al. 2020; Masters and
Sardina 2019). We, therefore, develop an agent model that
is inspired by human behaviour, and use this model to gen-
erate human-like timing information along with action se-
quences for standard goal recognition benchmarks. We also
use the same agent model to develop our timing-sensitive
goal recognition algorithms.

To preview some of our results, we find that the extent
to which timing information helps in goal recognition de-
pends on how closely the agent model assumed matches the
agent actually generating the observations. Our agent model
draws on the extensive response-time modelling literature in
cognitive science (Ratcliff et al. 2016; Tavares, Perona, and
Rangel 2017), but is not intended to capture all of the reason-
ing strategies that humans may use. Instead, we rely on two
simple assumptions about human planners: (a) people carry
out a forward search to make a decision (i.e. they are not re-
flex agents), and (b) planning time depends only on the cur-
rent state and the true goal. Assumption (b) does not assume
that people only consider the current state, as humans typ-
ically anticipate the consequence of future moves. Instead,
the assumption is that the planning time for one move does
not depend on the planning times for previous moves.

This paper makes a sequence of four contributions. First,

we formally introduce a goal recognition framework that in-
corporates timing information and a novel goal recognition
algorithm that can exploit this information. Second, inspired
by the cognitive science literature, we develop a real-time
agent model, and use it to generate observations with tim-
ing information for standard goal recognition benchmarks.
Third, we use existing goal recognition datasets to show that
timing information can be helpful when our framework can
exploit an accurate model of timing. Finally, we show that
the proposed goal recognition algorithm can exploit timing
information in sequences generated by humans, and also ac-
counts for human inferences in a behavioral study of goal
recognition.

The next section reviews the relevant literature on goal
recognition, online planning agents and response time mod-
elling. We then present our agent model, formulate the prob-
lem of goal recognition with timing information, and present
an algorithm that addresses this problem. Finally, we present
a set of synthetic and behavioural experiment results and dis-
cuss prospects for future work.

Background
Theory of Mind and Goal Recognition
People’s ability to infer the mental states of others is known
as Theory of Mind (Leslie 1987), which is a classic topic
in cognitive science. Many behavioural and neural studies
have been done in this area while its computational basis has
been extensively explored in the last two decades (Rescorla
2020; Baker et al. 2017). In recent years, industry labs have
paid increasing attention to this field (Rabinowitz et al. 2018;
Raileanu et al. 2018) because AI systems that interact with
humans (e.g. self-driving cars) must be able to figure out the
goals and intentions of human users.

In the literature on computational cognitive science,
Baker et. al. developed a Bayesian model of theory of mind
and showed that it makes human-like judgements when in-
ferring people’s goals and beliefs (Baker et al. 2017). Jara-
Ettinger (2019) further suggested that theory of mind can be
formalised as inverse reinforcement learning and involves
inferring people’s internal model of the world and their re-
ward functions given some observed actions.

The automated planning community has proposed a va-
riety of models for efficiently solving the goal recognition
problem (Ramı́rez and Geffner 2010; Pereira, Oren, and
Meneguzzi 2017). It is still unknown whether these mod-
els are able to account for human goal-recognition abilities
but these models can inspire hypotheses about how peo-
ple carry out goal recognition. Integrating ideas from cog-
nitive science and automated planning literature is therefore
a promising way to develop computational models of human
goal recognition.

Online Agent Models and Suboptimal Behavior
When dealing with complex tasks with limited reasoning
time, it is often impractical for both human and agent mod-
els to find a full plan from the current state to a goal state.
Unlike classical planning algorithms, online agent models
do not aim to find a full plan but rather focus on choosing
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which single action should be executed at the current state.
A prominent approach used to develop online agent models
is Monte Carlo Tree Search (MCTS), which has achieved
striking success at playing Go (Chen 2016). MCTS has also
been explored as a model of human problem solving (Kuper-
wajs, Van Opheusden, and Ma 2019; Krusche et al. 2018).

Current algorithms in the field of goal recognition usually
assume full rationality, i.e. optimal behaviour for both the
agent model and the observer model (Ramı́rez and Geffner
2010). In contrast, the cognitive literature suggests that peo-
ple often depart from optimality (Baker et al. 2017; Gates
et al. 2021). Masters and Sardina (2019) explore how goal-
recognition systems can reason about irrational agents, but
their approach has not yet been directly connected with re-
search in cognitive science.

Response-time Modeling
An extensive literature in psychology treats response times
as a sign of underlying cognitive mechanisms. A prominent
approach in this area focuses on one-shot decision making,
and assumes that the decision-maker continually samples
evidence about the available response options until some
decision criterion is reached. This “evidence accumulation”
framework is widely used to account for both reaction times
and choice probabilities (Ratcliff et al. 2016).

There are a variety of evidence accumulation models that
make different assumptions, and in recent years psychol-
ogists have explored which model gives the best account
of behavioural data from perceptual decision-making tasks
(Ratcliff et al. 2016; Tavares, Perona, and Rangel 2017). Lit-
tle work has been done, however, in applying the evidence
accumulation task to sequential decision-making problems.
Solway and Botvinick (2015) take a step in this direction
by showing how an evidence integration mechanism can be
combined with a model-based tree search. Their work, how-
ever, focuses on simple two-step plans that are significantly
simpler than those used in standard AI planning bench-
marks. Ho et al. (2020) also consider sequential decision-
making problems, and use value iteration to account for hu-
man reaction times.

Framework
In this section, we first describe an agent model that aims to
produce human-like planning times by incorporating con-
cepts from the evidence accumulation literature. We then
propose a formal framework for modelling and solving the
problem of goal recognition with timing information.

Agent Model
The goal recognition algorithms proposed later require mod-
els of planning times, and the datasets used to evaluate
these algorithms must include planning times in addition
to actions. Standard AI planning algorithms do not gener-
ate human-like response times, and we therefore developed
a new agent model inspired by ideas from the evidence ac-
cumulation literature (Ratcliff et al. 2016; Tavares, Perona,
and Rangel 2017).

Given a problem with a goal hypothesis g and start state
s0, we carry out the tree search described below until the
goal state is found or the stop signal is triggered. The search
tree starts with the current state s0, or a subtree with root s0
from the last planning step if a memory mechanism is in-
cluded, and the algorithm traverses the tree using the UCB
policy (Kocsis and Szepesvári 2006) until the leaf node is
reached. If the leaf node is the goal state g, the tree search
process stops. Otherwise, the node is expanded by generat-
ing all possible successor states except those states visited
previously to avoid generating repeated states. Each succes-
sor state is initialized with the estimated cost-to-go and val-
ues of all ancestor nodes are then updated by averaging the
obtained values of all visits passing through the node.

After each iteration (expansion), the stop trigger is exe-
cuted to check if enough information has been collected to
make the decision. The probability of triggering the stop sig-
nal is calculated as

Probstop =
n

n+ I(s0)γ exp(−n/I(s0))
, (1)

where n is the number of iterations so far and γ is a parame-
ter that controls the depth of the trajectories considered. The
state importance I(s) is defined as:

I(s) =
vs,a

(1 + β)vs,a′ − vs,a
. (2)

Here vs,a and vs,a′ denote the cost estimates that result from
choosing the best applicable action a and second-best ap-
plicable action a′ towards a given goal from state s. The
denominator of Equation 2 is therefore based on the esti-
mated difference in cost between the top two applicable ac-
tions, and a small constant parameter β is included in order
to avoid zero denominators when the top two applicable ac-
tions have the same costs. When the tree search stops, the
agent model returns the number of iterations the planning
time for the current state.

The stop probability in Equation 1 captures the idea that
the actor will spend more planning time on states that have
two or more applicable actions that seem equally good (or
nearly so) while acting relatively fast in states with a dom-
inating action. This approach is broadly consistent with the
evidence accumulation literature, which suggests that peo-
ple tend to keep gathering evidence until one option emerges
as the winner (Ratcliff et al. 2016; Tavares, Perona, and
Rangel 2017). Moreover, similar ideas of state importance
have been used to summarise state trajectories over Pacman
games (Amir and Amir 2018).

Problem Formulation
We now formalize the problem of Goal Recognition with
Timing information (GRT). For simplicity, we assume a
fully-observable deterministic environment, but the frame-
work and goal recognition algorithms introduced later can
be extended to partial observability and/or probabilistic set-
tings by choosing appropriate cost-to-go estimators.

The planning domain is a planning problem without a
goal, which can be defined as follows.
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Definition 1 A planning domain D = ⟨S, s0, A, f, c⟩ con-
sists of a finite set of discrete states S, an initial state
s0 ∈ S, a finite set of actions A, a state transition func-
tion f : S × A → S that maps a state-action pair (s, a)
into another state s′ and a cost function c : S × A → R
which specifies the cost c(s, a) incurred when applying ac-
tion a ∈ A on state s ∈ S.

A planning problem D[g] is instantiated by adding a goal
g to the planning domain D. For a goal recognition problem,
we have a set of possible goals along with a sequence of
observations in a planning domain.

Definition 2 A goal recognition problem with timing in-
formation (GRT) is a tuple ⟨D,G,Prior,O⟩, where D =
⟨S, s0, A, f, c⟩ is the planning domain, G = {g1, g2, ..., gn}
is a set of possible goals for the planning domain, Prior
is the prior probability over G, and O is a sequence of ob-
servations ⟨a0, t0⟩, ..., ⟨am, tm⟩, where ai ∈ A is an action,
and ti is a non-negative real number denoting the planning
time used to select ai for execution.

The key difference compared to a classical goal recogni-
tion setup is that we include planning times in the observa-
tion sequence.

Timing-sensitive Goal Recognition Algorithm
We assume that actions and planning times only depend on
the current state and the true goal (Markovian), and that
planning time and action are conditionally independent on
states and goals. Using a uniform prior, we can decompose
the likelihood P (O|g) as :

P (O|g) =P (⟨a0, t0⟩, ..., ⟨am, tm⟩|g)

=
m∏
j=0

P (tj |g, ⟨a0, t0⟩, ..., ⟨aj−1, tj−1⟩)

P (aj |g, ⟨a0, t0⟩, ..., ⟨aj−1, tj−1⟩, tj)

=
m∏
j=0

P (aj |g, sj)
m∏
j=0

P (tj |g, sj)

We call the product
∏m

j=0 P (aj |g, sj) the action compo-
nent and

∏m
j=0 P (tj |g, sj) the timing component. The next

section explains how we estimate both components, and we
then discuss how these components are combined to produce
a GRT solution.

Action Component We follow the PRP approach pro-
posed by Ramı́rez and Geffner (2010) to estimate∏

j P (aj |g, sj). Rather than estimating the probability for
each step of the observation sequence, their approach ap-
proximates the full sequence directly as

∏
j P (aj |g, sj) ∝

exp(v∗s0(g) − v∗s0(g,O)), where v∗s0(g) denotes the optimal
(thus smallest) cost-to-go from start state s0 while v∗s0(g,O)
represents the cost of the best path consistent with cur-
rent observations O. Their approach uses the full observa-
tion trajectory and is computationally expensive, as optimal
planning is hard unless approximated with suboptimal plan-
ners or suitable relaxations (Bylander 1994). Thus, we pro-
pose a novel method, namely real-time PRP via simulation

through the agent model we proposed. Compared to the orig-
inal PRP, real-time PRP assumes the problem to be Marko-
vian and considers each step independently:∏

j

P (aj |g, sj) ∝
∏
j

exp(vsj (g)− vsj (g, aj)),

where vsj (g) denotes the approximation of cost-to-go from
the state sj and vsj (g, a) denotes the approximation of cost-
to-go if action a is taken on sj . This allows for real-time
performance instead of computing a full plan as in PRP.

Timing Component We define expected planning time
for state sj given goal g as t∗(sj , g), and decision cost
(which captures the total effort needed by an actor to choose
the move at state sj when pursuing goal g) as t(sj , g). In
this paper, we assume for simplicity that the decision cost
t(sj , g) is identical to tj , the time recorded in the observa-
tion sequence.

We use exp(−|t∗(sj , g)− t(sj , g)|) = exp(−|t∗(sj , g)−
tj |) to estimate P (tj |g, sj). We propose two approaches to
approximate the expected planning time t∗(sj , g):
• Agent-based. Given goal g, t∗(sj , g) is considered as the

number of iterations to make the decision at state sj via
simulation by the agent model described above.

• Importance-based. In this approach, t∗(sj , g) is esti-
mated directly by the state importance I(sj) defined in
the agent model shown in Equation 2.

Note that t∗(sj , g) and t(sj , g) may be measured on differ-
ent scales. t(sj , g) is typically measured in seconds, whereas
t∗(sj , g) is generated by the timing component of the model
and has iterations or importance as units. To map between
these different scales, we normalize t∗(sj , g) by scaling its
sum over sj to match the sum of t(sj , g).

Combining Components We use two approaches to com-
bine the action and timing components. The first one adds
evidence from the two components and uses the result-
ing sum to rank the goals. Let pt(g) be the log probabil-
ity of

∏
j P (tj |g, sj) and pa(g) be the log probability of∏

j P (aj |g, sj) for the potential goal g. Then the combined

probability of goal g is pt(g)∑
j pt(gj)

+ w pa(g)∑
j pa(gj)

where w is
an adjustable balance factor.

The second approach uses the evidence from the action
component to rank the goals, and relies on the timing com-
ponent only to break ties. In this approach, the timing com-
ponent cannot reverse the inference suggested by the action
component, and can contribute only when the action compo-
nent does not provide enough information to infer a single
most likely goal.

Synthetic Experiment
This section describes an experiment that uses standard
goal-recognition data sets to evaluate whether timing infor-
mation can improve the performance of goal-recognition al-
gorithms. Existing goal recognition algorithms return the set
of most likely goals, and accuracy is typically used as an
evaluation metric. Here we use fractional ranking to evalu-
ate the extent to which timing information helps distinguish
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between equally likely goals. Fractional ranking generates
the same mean rank as ordinal ranking but allows for ties.
For example, if the likelihoods of 4 potential goals were 0.8,
0.5, 0.5, 0.2, the ordinal ranks would be 1,2,3,4 and the frac-
tional ranks would be 1,2.5,2.5, 4.

For each instance, the performance of an algorithm is
measured by the fractional rank assigned by the algorithm
to the true goal. The performance on an entire domain is
measured by the average performance across all instances
of that domain. Given the average fractional rank rD for an
algorithm on each domain D, the overall normalized score
for that algorithm is

∑
D

2rD
kD+1 , where kD is the number

of potential goals in domain D. Note that kD+1
2 is the ex-

pected fractional rank achieved by a random algorithm in
the domain D. Overall, lower fractional ranks or normalized
scores indicate better performance.

Experiment Configuration
We evaluated goal recognition algorithms on 10 domains
from the goal recognition dataset of Pereira, Oren, and
Meneguzzi (2017). Because this dataset does not include
timing information, we used our agent model to supplement
the trajectories with times: for each state s, we ran the agent
model (without memory mechanism) given the real goal g
and took the average number of iterations over 100 runs as
the planning time for that state. Although we record the plan-
ning time, we disregard the action chosen by the agent to en-
sure that the trajectories remain consistent with the original
dataset.

We use the satisfying planner DUAL-BFWS (Lipovetzky
and Geffner 2017) to approximate the optimal cost-to-go in
the goal recognition algorithm PRP (Ramı́rez and Geffner
2010). For initializing node values in the agent model and
computing the importance-based timing component, we use
the heuristic function hff (Hoffmann and Nebel 2001). All
experiments were conducted on 4 servers each running In-
tel®Xeon®Gold 6138 CPU @ 2.00GHz with 4 CPUs, and
8GB of RAM each.

All action costs were set to 1. Constants in the agent
model (γ = 10000, β = 0.2) were chosen manually so that
the model generated human-like response times in naviga-
tion tasks like Figure 1b. Except when mentioned otherwise,
the observation ratio is set to 0.25, which means that we use
the first quarter of observations in a trajectory as the input to
the goal recognition algorithms. The adjustable weight w is
set to 1, which means that we weigh the action and timing
components equally.

Experiment Results
Table 1 shows the performance of 8 goal-recognition algo-
rithms along with a random baseline.

Action-only Algorithms Columns rtPRP and PRP in Ta-
ble 1 show the results of real-time PRP and standard PRP
(both without a timing component). In DEPOTS, DWR, MI-
CONIC, DRIVERLOG, FERRY, BLOCKSWORLD and LO-
GISTICS, real-time PRP outperforms PRP. In SOKOBAN and
EASYIPCGRID, PRP performs better while in INTRUSION-
DETECTION, both approaches have the same performance.

Overall, the normalized score for rtPRP is 6.06, which is
slightly better than the score of 6.22 achieved by PRP.

These results suggest that real-time PRP performs simi-
larly to PRP, which implies that computing a full solution
might not be necessary for goal recognition even when con-
sidering the action component alone.

Effect of Timing Components When supplied with the
agent-based timing component, rtPRP-a and PRP-a re-
ceive overall scores of 3.76 and 3.82 respectively, while
importance-based timing components increase these scores
to 7.48 and 7.10. The scores for importance-based timing
components are worse than those for the corresponding al-
gorithms without timing components (6.06 and 6.22). These
results indicate that an accurate timing component can sub-
stantially increase the performance of both PRP and rtPRP,
but that incorporating evidence from an inconsistent timing
component using a sum can be harmful.

Using the timing component as a tiebreaker (AF-a) per-
forms worse (4.43) than the sum of evidence algorithms. On
the other hand, AF-i (6.16) is slightly better than the action-
only algorithm PRP (6.22). These findings imply that the
agent-based timing component can sometimes reverse incor-
rect inferences made by the action component alone, while
even importance-based timing components can be helpful
for breaking ties between goals. They also suggest that non-
linear evidence combination strategies are likely to be supe-
rior to the simple sum used by rtPRP-i and PRP-i.

Observation Ratio To explore whether timing infor-
mation is especially valuable in scenarios with rela-
tively few observed actions, we ran rtPRP / rtPRP-a on
BLOCKSWORLD with observation ratios set to 0.25, 0.5,
0.75 and 1.

Table 2 shows that given the timing goal recognition
dataset, rtPRP-a has the largest performance boost when
fewest observations are available. As expected, timing infor-
mation appears to be especially valuable when the informa-
tion conveyed by the action trajectory is relatively minimal.

Discussion
The result suggests that if we want to take advantage of tim-
ing information, then we have to access an accurate timing
model or at least a good approximation. Our experimental
results are in line with the findings in theory of mind (Leslie
1987): if you can construct an accurate model of an actor’s
mind, then you stand a good chance of correctly inferring
their intentions. On the other hand, an inaccurate model is
likely to lead to faulty inferences about others.

One possible criticism of our synthetic experimental setup
is that the algorithms with the agent-based model timing
component rely on the same mechanism used to generate
the timing data, and it is therefore not surprising that timing
information turns out to be useful to infer the real goal. The
next section addresses this concern by demonstrating that
the agent-based timing component is still useful when goal
inference is performed on human data. Our results for syn-
thetic data, however, still make a useful point: they demon-
strate that timing information can be used to distinguish be-
tween candidate goals that are not distinguishable based on
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Algorithm rtPRP rtPRP-a rtPRP-i PRP PRP-a PRP-i AF-a AF-i Random
DEPOTS 4.61 2.46 5.14 4.96 3.36 5.32 3.71 5.09 5.5
MICONIC 1.48 1.15 1.38 2.18 1.45 1.55 1.90 1.85 3.5
DWR 2.98 1.57 3.70 3.38 2.04 3.52 2.50 3.38 3.5
SOKOBAN 3.52 2.05 3.55 2.02 1.23 2.50 1.41 2.09 3.5
EASYIPCGRID 3.58 1.74 3.45 3.07 1.44 3.73 1.31 3.21 5.5
DRIVERLOG 2.93 1.71 2.98 3.14 1.54 3.21 2.18 3.04 3.5
INTRUSIONDETECTION 1.99 3.16 2.13 1.99 3.16 2.13 1.93 2.13 8.83
FERRY 1.71 1.14 2.64 2.04 1.39 2.52 1.82 2.02 4
BLOCKSWORLD 4.43 2.83 10.08 5.84 2.54 9.51 2.88 5.76 11
LOGISTICS 2.18 1.33 4.33 2.36 1.23 3.51 1.67 2.33 5.5
Normalized Score 6.06 3.76 7.48 6.22 3.82 7.10 4.43 6.16 10

Table 1: Performance of eight goal recognition algorithms on the timing goal recognition dataset: real-time PRP (rtPRP), real-
time PRP with agent-based timing component (rtPRP-a), real-time PRP with importance-based timing component (rtPRP-i),
PRP, PRP with agent-based timing component (PRP-a), PRP with importance-based timing component (PRP-i), action first with
agent-based timing component (AF-a) and action first with importance-based timing component (AF-i). The best algorithm for
each domain is shown in bold. Both AF-a and AF-i use PRP as the action component.

Ratio Quarter Half Three-quarter Full
rtPRP 2.53 1.5 1.17 1.03
rtPRP-a 1.67 1.17 1.13 1
Difference 0.86 0.33 0.04 0.03

Table 2: Performance of rtPRP-a and rtPRP on
BLOCKSWORLD with different observation ratios.

action sequences alone (as in Figure 1a), and can even re-
verse weak inferences based on action sequences alone (as
in Figure 1b).

Over the past decade, several goal recognition algo-
rithms have been developed based on PRP that outperform
the original PRP in certain conditions (Pereira, Oren, and
Meneguzzi 2017; Santos et al. 2021). These alternatives may
perform slightly better than PRP in Tables 1 and 2, but this
would not affect our main conclusions. For the behavioral
experiments described in the next section, these alternatives
would yield the same goal inference as PRP because the ac-
tion trajectories provide no information about the goal.

Behavioral Experiments
The major question left open by our synthetic experiment
is whether timing information can still be exploited when
the process generating planning times is not fully known. In
real-world settings, for example, we might aspire to make in-
ferences about the goals of human actors even in the absence
of a veridical model of human planning. We therefore de-
veloped the behavioral experiments to explore whether our
current agent model matches humans closely enough to al-
low rtPRP-a to exploit timing information when inferring
the goals of humans.

Problem-solving Experiment
Our first experiment collected human actions and planning
times on a series of Sokoban problems. We used these data
to ask whether the agent model proposed earlier can gen-
erate human-like planning times, and whether timing infor-

mation can be exploited when inferring the goals of humans.
Our experiment was carried out with approval from Human
Ethics Advisory Group at the University of Melbourne.

Experiment Configuration 50 participants (21 females
and 29 males with a median age of 27) were recruited using
Prolific and asked to complete 24 Sokoban instances each.

Sokoban is a classic puzzle game where the player must
push boxes to designated locations while navigating a maze-
like environment. The goal is to successfully move all the
boxes to their targets without getting stuck or blocking the
path. For simplicity, all off our instances included a single
box only. The 24 instances were designed to fall into 6 sets,
where each set includes 4 different goal positions located
on the same map configuration. One such set is shown in
Figure 2a. The presentation order of all 24 instances was
randomized for each participant.

Within each set, the 4 goal positions were chosen as fol-
lows. A goal is deemed intuitive if the first box push on an
optimal path to the goal reduces the distance between the
box and the goal, and counter-intuitive otherwise. In Fig-
ure 2a, goals IE and IH are intuitive but goals CH and CE are
not. Of the two intuitive goals, IE denotes the “easier” goal
and IH the “harder” goal, which in some instances can be un-
reachable. The difficulty is formalized based on the number
of nodes expanded by the A* algorithm. Similarly, CH and
CE denote the harder and easier of the two counter-intuitive
goals. Choosing goals in this way was inspired by results
from the psychological literature suggesting that people tend
to spend more time planning when the solution length is
long and when the solution involves counter-intuitive moves
(MacGregor and Chu 2011; Newell, Simon et al. 1972).

Human planning times are typically highly variable, and
to minimize the variance we use only the initial action and
initial planning time to generate goal recognition instances
with timing information (GRT). We generate 4 separate GRT
instances for each set, and each GRT instance includes all
four goal positions (IE, IH, CE, and CH) as candidates. All
instances were designed so that the first move is forced: in
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Figure 2: (a) GRT set 2. One of the 4 potential goal posi-
tions is shown in the problem-solving experiment, and the
resulting timing is used for goal recognition. (b) Comparison
between human initial planning time rank and agent model
prediction rank within each group. All instances have simi-
lar ranks, with a maximum difference of 1. (c) Performance
of rtPRP-a on all GRT instances. The red dotted line de-
notes the performance of the rtPRP algorithm (2.5) and the
blue dotted line denotes the average performance of rtPRP-a
(1.75).

Figure 2a, for example, the agent has no option except to
move up on the first move. As a result the initial action pro-
vides no information about the goal position, but the time
taken before this action is potentially informative.

Results and Discussion Some of the “hard” goals in the
task are actually unachievable, including goals IH and CH in
Figure 2a. We used rtPRP-a as a goal recognition algorithm
with both timing and action components and rtPRP as an
action-only algorithm.

First, we asked whether rtPRP-a generates human-like
planning times. Within each set, we ranked the 4 instances
separately by human planning time and by the prediction
of rtPRP-a. Figure 2b compares these ranks. Most instances
lie along the diagonal, which means that rtPRP-a and hu-
mans both give the same rank to those instances. When the
rtPRP-a ranking departs from the human ranking, the rank
difference for any instance is no more than 1.

We then applied rtPRP-a to the goal recognition task. Be-
cause the observation sequences include a single action only,
our previous method for aligning t (measured in seconds)
with t∗ (measured in iterations) no longer applies. We there-
fore align the two by using ranks relative to the entire set

Figure 3: Human and algorithm responses on the GRT in-
stances. The effect of thinking time is significant for humans
(p < 0.05) and for rtPRP-a (p < 0.005) but there is no ef-
fect for rtPRP. Error bars show the standard deviation of the
mean.

of 24 instances. For example, the median t across this set is
mapped to the median t∗.

When choosing among 4 possible goals, rtPRP achieves
an average fractional rank of 2.5 (the same as random
choice) because by design the initial action is uninforma-
tive about the goal. rtPRP-a achieves an average ranking
of 1.75, and a paired t-test suggests that the improvement
with respect to rtPRP is statistically significant (t(23) =
−3.89, p < 0.001).

Even though our agent model is at best a coarse approx-
imation of the strategies used by our experimental partic-
ipants, our results suggest that this approximation is good
enough to be usefully incorporated into our goal recognition
framework.

Goal Recognition Experiment
Our work is motivated in part by the idea that humans take
timing information into account when faced with goal recog-
nition problems such as those in Figure 1a. To our knowl-
edge, this idea has not been previously tested, and we there-
fore designed a second behavioral experiment to verify that
timing information can influence human goal recognition.

Experiment Configuration We designed 13 pairs of goal
recognition instances based on the Sokoban domain. One
pair used the configuration in Figure 1a. The instances in
each pair included the same map and the same two potential
goals. One goal (e.g. A in Figure 1a) was easy and the other
(e.g. B in Figure 1a) was hard, where “hard” and “easy” are
defined as for the previous experiment using A*.

For each member of a pair, participants saw the same se-
quence of three actions, and the only difference within a pair
was the time observed for the third action. For “long” in-
stances, the time associated with the third action was 3 sec-
onds, and for “short” instances the time was only 0.5 sec-
onds. The first two actions were always forced (e.g. in Fig-
ure 1a an actor who does not backtrack has no option but to
move up twice), and the time for both actions was always set
to 0.1 seconds.

For each instance, participants observed the sequence of
three actions and then indicated whether A or B was more
likely to be the goal pursued by the actor. For each pair of
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instances, we anticipated that participants would be more
likely to choose the hard goal in the long version than the
short version.

The same 50 participants who completed the problem-
solving experiment also completed the goal-recognition ex-
periment, and the goal-recognition experiment was always
completed second. As a result participants were familiar
with the Sokoban domain by the time they started the goal-
recognition task. The presentation order of the 26 goal
recognition instances was randomized within participants.

Results and Discussion Figure 3 shows the average prob-
ability of choosing the easy goal across all 13 pairs of in-
stances. As predicted, humans are more likely to choose the
easy goal given a short instance than when given the corre-
sponding long instance. A paired t-test reveals that this dif-
ference between long and short instances is statistically sig-
nificant, and confirms that human goal inference is sensitive
to timing information. rtPRP-a (t(12) = 5.48, p < 0.001)
shows the same pattern as humans (t(12) = 4.26, p =
0.001) but the action-only algorithm rtPRP does not con-
sider timing information and therefore generates identical
responses to short and long instances.

Although humans and rtPRP-a are both sensitive to timing
information, they respond differently to long instances. Hu-
mans prefer to choose easy goals even for long instances, but
rtPRP-a is more likely to choose hard goals than easy goals
across the set of long instances. This difference may reveal a
lack of calibration between rtPRP-a and humans. For exam-
ple, if the true goal were easy, spending 3 seconds on a sin-
gle move would be highly anomalous according to rtPRP-a,
but is apparently less anomalous according to people. Fu-
ture work can attempt to better calibrate the predictions of
rtPRP-a by aligning human and model planning times across
responses to a large set of planning problems.

Future Directions
Our framework opens up a number of additional directions
for future work, and here we consider four that seem espe-
cially important. First, as mentioned in our discussion of our
synthetic experiment, a generative approach that makes ac-
curate inferences based on human planning times will need
to incorporate an accurate generative model of human plan-
ning times. Our behavioral experiments suggest that our cur-
rent agent model is accurate enough to support useful in-
ferences about human planners. This model, however, is far
from a comprehensive account of human planning and fu-
ture agent models can incorporate additional factors that in-
fluence human planning times. For example, future models
may be able to capture the notion of action commitment by
incorporating a meta-reasoning process about when to stop
searching and add the current best action to the execution
queue (Gu et al. 2022). Future versions of the model can
also take a bounded-rationality approach and explicitly in-
corporate human memory limitations (Simon 1990).

A second direction is to develop agent models that allow
for individual differences. Our behavioral data suggested
that planning strategies are highly variable across individ-
uals: some participants seem to compute a complete path to

the goal, while others seem to focus only on the next few
steps. Future versions of our agent model could therefore
include adjustable parameters that reflect individual differ-
ences in planning strategies, and the values for these param-
eters could be inferred on a per-participant basis.

Third, our current analyses assume that decision cost for
a move (i.e. the total effort required to select the move) is
proportional to the observed time for that move. This as-
sumption holds if an agent is memoryless, and must carry
out a fresh search on each move without using any informa-
tion computed on previous moves. In reality, however, deci-
sion costs may be amortized over multiple moves, because
humans and other memory-based agents may reuse infor-
mation (such as search trees) computed on previous moves
(Krusche et al. 2018; Van Opheusden et al. 2017). Future
models can therefore consider ways to use observed plan-
ning times to infer the total decision cost associated with
each move. One possible approach is to model the total de-
cision cost for a given move as a discounted accumulated
sum that incorporates some fraction of the observed times
recorded for previous moves.

Finally, although timing information is often informative
about the goals of an actor, this relationship may not hold
in contexts in which actors use strategies other than for-
ward search to make decisions. In some scenarios, especially
when people are dealing with familiar situations, they might
act immediately in a reflex way without thinking or reason-
ing (Kuperwajs, Van Opheusden, and Ma 2019). Whether
or not actors carry out forward search could potentially be
inferred on the basis of timing information. Future exten-
sions of our model could therefore adopt a hierarchical ap-
proach that supports two inferential phases: the first phase
aims to identify moves for which an actor has relied on for-
ward search, and the second phase uses only these moves to
infer the goal pursued by the actor.

Conclusion
Goal recognition is an important problem for both AI and
cognitive science researchers. Most work in this area con-
siders action sequences only, but we showed that humans
are sensitive to timing information and introduced a goal
recognition framework that can take timing information into
account. To develop and evaluate this framework we intro-
duced an agent model with a response-time mechanism in-
spired by the evidence accumulation literature in cognitive
science. Our results suggest that incorporating an accurate
model of timing is a promising way to improve the perfor-
mance of goal recognition algorithms, and that our agent
model captures human planning closely enough to support
useful inferences about the goals pursued by human actors.
Because timing information is easy to acquire and generally
observable, exploiting this information can potentially pro-
vide payoffs across many different settings.
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