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Abstract

One of the main challenges of domain-independent numeric
planning is the complexity of the search problem. The ex-
ploitation of structural symmetries in a search problem can
constitute an effective method of pruning search branches
that may lead to exponential improvements in performance.
For over a decade, symmetry breaking techniques have been
successfully used within both optimal and satisficing classi-
cal planning. In this work, we show that symmetry detection
methods applied in classical planning, with some effort, can
be modified to detect symmetries in linear numeric planning.
The detected symmetry group, thereafter, can be used almost
directly in the A*-based symmetry breaking algorithms such
as DKS and Orbit Space Search. We empirically validate that
symmetry pruning can yield a substantial reduction in the
search effort, even if algorithms are equipped with a strong
heuristic, such as LM-cut.

Introduction

Deterministic planning is the problem of finding a sequence
of actions that brings the actor from a given state to some de-
sired state. While the formalisms to describe this paradigm
may vary, where richer models can capture finer aspects, and
thus, represent the problem with higher fidelity. For exam-
ple, in classical planning, the variables of the problem are
restricted to finite domains, whereas the numeric variant of
planning encompasses both continuous and finite variable
ranges. Satisficing planners that can manage numeric flu-
ents were designed at the beginning of the century (Hoff-
mann 2003), yet, it seems that the progress was slowed due
to the theoretical undecidability of even simplest numeric
formalisms (Helmert 2002). In recent years, however, there
seems to have been a surge of interest in planning with
numeric fluents, resulting in the development of multiple
heuristics for both optimal and satisficing settings (Aldinger
and Nebel 2017; Scala et al. 2016, 2017; Piacentini et al.
2018; Scala et al. 2020; Kuroiwa et al. 2022). Unfortunately,
having a good heuristic is not enough to assemble an effi-
cient planner, e.g., A* can expand an exponential number
of states even when equipped with an almost perfect heuris-
tic (Helmert and Roger 2008).
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Partially to account for this deficit, pruning methods
were developed for classical planning (Fox and Long 2002;
Coles and Coles 2010; Nissim, Apsel, and Brafman 2012;
Wehrle and Helmert 2012; Holte and Burch 2014), and in
the past decade, the use of symmetry-based pruning meth-
ods has shown its potential within the context of forward
search (Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2013; Wehrle et al. 2015; Gnad et al.
2017). In particular, symmetry reduction methods such as
DKS and Orbit Space Search (OSS) were effectively applied
in a wide range of classical planning domains, often sub-
stantially reducing the expanded state-space size, with a sig-
nificant increase in planning performance (Domshlak, Katz,
and Shleyfman 2012, 2015). In classical planning, symme-
try reduction methods compute equivalence classes of states
and states are aggregated based on a precomputed symme-
try group. The search exploits these classes by replacing all
states in this class with some representative state. Domshlak
et al. (2012) have shown that given a “path” where each state
is replaced by a representative state, one may efficiently re-
construct a corresponding path in the original state space.
Hence, the expanded search tree must contain at most one
representative of each class at all times.

In this work, we show that the graph-based symmetry de-
tection method proposed by Pochter et al. (2011) can be
adapted for the numeric setting. We extend the notion of
structural symmetries proposed by Shleyfman et al. (2015)
to account for linear numeric formulas and demonstrate
the equivalence of the obtained symmetries. We also es-
tablished that computing these numeric symmetries is not
harder than computing the symmetries for classical plan-
ning. By grounding these symmetries to the state space level,
we enable the use of both DKS and OSS practically as is.
Finally, our experimental evaluation demonstrates that in
presence of symmetries in the planning task, the symme-
try breaking algorithms compete favorably with A*, even if
equipped with a strong heuristic such as numeric LM-cut.

Preliminaries

We consider a fragment of numeric planning restricted to
the FDR formalism (Bickstrom and Klein 1991; Backstrom
and Nebel 1995; Helmert 2009) with the addition of numeric
state variables called linear numeric planning. In this for-
malism, conditions and effects on numeric variables are re-



stricted to linear formulas. Formally, a linear task (LT) is de-
fined as a 4-tuple IT = (V, A, s1, G), where V = V, UV,
with V), is being a finite set of propositional variables, where
each propositional variable v € V), is associated with a finite
domain D(v), and V, is a set of numeric variables. Numeric
variables v € V,, have rational values, i.e., D(v) = Q. If
IT does not have any numeric variables (V,, = ()), we have
a classical (FDR) planning task Ilpppr. Assignment of a
valid value d to a variable v € V is called a fact and de-
noted by (v, d). For a subset of variables V' C V we define
its joint domain to be D[V] = x,ecyD(v). The state space
is S = D[V]. A state s € S is a full assignment over all vari-
ables, and can be seen as a tuple (s,, s, ), where s, € D[V,]
and s, € D[V, ]. sy is a state. Note that s, s, and s,, may
be presented via vector representation, or as a set of facts
s = s, U s,. In the latter case, there are no two facts that
involve the same variable, and |s| = |V|. The value of a
variable v in s is given by s[v] = d, and is equivalent to
(v,d) € s. A partial state is a subset s”* C s of some s € S.

A linear expression & has the form§ = 3, wv + wg,

where V C V,,, with Vo € V,w$ € Q, and w§ € Q. The
value of £ in a state s is given by the expression s[¢]
> ey whslv] + w§. We assume that there is always a vari-
able vg € V, s.t. s[vg] = 1 for each state s. This assumption
allows a more convenient expression £ = > i wiv. We
assume that there are no redundant factors in the condition
representation, i.e., for all v € V it holds wg = 0. Z is the set
of all linear expressions in II. The set of all constants that ap-
pear in £ is denoted by nums(§), and the set of all variables
that appear in ¢ is denoted by vars(€). By vars(sP*) C V
we denote the variables assigned in a partial state sP?.

Conditions can be either propositional or numeric. A
propositional condition v is a partial state over the variables
vars(¢) C V,. We say that ¢ is satisfied by s, s = ¥, if
1 C sp. A numeric condition ¢ has the form & > 0, where
¢ is a linear expression and > € {>,>}. We say that ¢ is
satisfied by s if £[s] >0 holds. The set of conditions W is sat-
isfied by s, if for each ¢ € W it holds that s |= 1. The goal
condition G = G, UG, is a union over sets of propositional
and numeric conditions, respectively.

Action a = (pre(a), eff(a), cost(a)) € A has precondi-
tions pre(a) = pre,(a) Upre, (a), effects eff (a) = eff,(a) U
eff,,(a), and cost cost(a) € R%F. pre,(a) is a partial state
over propositional variables and pre,,(a) is a set of linear
numeric conditions. The set of all numeric conditions is de-
noted by ¥, i.e., U,, = G, U, 4 Pre,, (). ais applicable
to s if s |= pre(a). Similarly, the propositional effect eff,(a)
is a partial state on a subset of V,,. The effect eff ,(a) is a set
of numeric effects of the form (v += &), where v € V,, and
& € =. The assignment effect v := £ and subtractive effect
v —= £ are normalized to the additive forms v += £ — v
and v += —¢, and any action has at most one effect on
a given numeric variable. The result of applying a in s is
denoted by s[a] = s, U sj,, where the resulting state is de-
fined as s, [v] = eff ,(a)[v] for v € vars(eff,(a)), s[a] [v]
s[v] + &[s] if (v += &) € eff,,(a), and s[a][v] = s[v] other-
wise. A(s) is the set of all actions applicable to s.
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An s-plan is a finite action sequence 7 that can be applied
successively in s and results in a goal state s, = G. A plan
for II is an sy-plan. The cost of an s-plan 7 is the sum of
all its action costs and an optimal s-plan has minimal cost
among all possible s-plans.

A state transition graph is alabeled digraph Tr; = (S, E),
whose vertices S are the states of II, the set of labeled arcs
E = {(s,s]a];a) | s € S,a € A(s)} is induced by the
actions of II, where cost(s, s[a]l;a) = cost(a). A plan for
IT is equivalent to a path from s; to some s, in 7.

Structural Symmetries

This subsection defines the notion of structural symmetries
(Shleyfman et al. 2015), which captures previously proposed
concepts of symmetries in classical planning. In short, struc-
tural symmetries relabel a given planning task. Variables
are mapped to variables, values to values (preserving the
(var,val) structure), and actions are mapped to actions. In
this work, we follow the definition of structural symmetries
for FDR planning tasks as defined by Wehrle et al. (2015).
For a planning task IIppr = (V, A, I, G), let P be the set
of facts of II, and let P, := {{(v,d) | d € D(v)} | v € V}
be the set of sets of facts attributed to each variable in V. We
say that a permutation 0 : P U A — P U A is a structural
symmetry if the following holds:

1. O’(Py) = Pv,

2. 0(A) = A, and, for all a € A, o(pre(a)) = pre(c(a)),
o(eff(a)) = eff(o(a)), and cost(o(a)) = cost(a).

3. 0(G) =G.

We define the application of o to a set X by o(X) :
{o(z) | x € X}, where o is applied recursively up to
the level of action labels and facts. This recursive defini-
tion allows us to distinguish between domain values of dif-
ferent variables, i.e., since o is a permutation of Py, each
set of facts {(v,d) | d € D(v)}, that is associated with
a given variable v € )V is mapped to a set of facts that
is associated with some variable v/ € V. Thus, we can
write o(v) = v and o(D(v)) = D(v'). This slight abuse
of notation allows us to define each ¢ as a permutation
over the set V U AU (|,cy, D(v)), where o(V) = V and
o(D(v)) D(o(v)). Note that we use a disjoint union
here,! since each value d € D(v) is actually given by the
ordered pair (v, d), and therefore it cannot be that d € D(v),
d € D),andd =d ifv #'.

Using this notation, we can apply o to a partial state s.
Since s can be represented as a set of facts, applying o to s
results in a partial state s, s.t. for all facts (v, d) € s it holds
that o((v,d)) = (o(v),0(d)) € o(s).

The set of all structural symmetries of an FDR task is
a finite set of bijections, thus, it is closed under composi-
tion (Herstein 1975). Therefore, structural symmetries form
a group over the task IIppg, denoted by Aut(Ilppr).

Symmetries and Problem Description Graphs

The problem description graph (PDG) was introduced by
Pochter et al. (2011), and later reformulated by Domshlak

"Example of disjoint union: {5} U {5} = {(5,0), (5, 1)}.



et al. (2012) and Shleyfman et al. (2015).

Definition 1. Let I1ppg be a FDR planning task. The prob-
lem description graph PDGry is the colored digraph
(N, E, col) with nodes

N =NyU U Np(y) UNa
veY

where Ny = {n, | v € V}, Np(,) = {n¢ | d € D(v)}, and
Ny = {n, | a € A}; node colors

FDR

0 ifn € Ny,
1 ifn:=ndec | Np(wy, (v,d) € G,
C0|<n) = 2 ifn:= ng S ”DV Np(vy, (v,d) ¢ G,
3+ cost(a) ifn:=nq € ﬁ:
and edges

E=|JE" Ul EruES,
veV acA
where E° = {(n,,n?) l d € D(v)}, EP® = {(n,,n?) |
(v,d) € pre(a)}, and E" = {(n%,n,) | (v,d) € eff(a)}}.

Pochter et al. observed that PDG symmetry is a sym-
metry of 7yp that is induced by a graph automorphism
of the PDG of IIrpgr.?> In what follows, we denote by
Aut(PDG(Ilppgr)) the automorphism group of the PDG
of the task Il ppr. Shleyfman et al. (2015), in turn showed
that every structural symmetry of IIppp corresponds to a
PDG symmetry in the sense that they induce the same tran-
sition graph symmetry, i.e., the groups Aut(PDG(Ilppgr))
and Aut(Ilppp) are isomorphic.

Group homomorphism f is a function between two groups
f: T — I that respects the group operations. i.e., given
o,0’ € T'itholds f(ooc’) = f(o)of(o'). somorphism is a
bijective (one-to-one and onto) homomorphism. The inverse
of an isomorphsim is also an isomorphism.

Symmetries of the State Transition Graph
A symmetry of a transition graph 71 = (S, E') with actions
A is a permutation o of S U .4 mapping states to states and
actions to actions s.t.
- (s,8;a) € Eiff (o6(s),0(s');0(a)) € E,
— cost(o(a)) = cost(a), and
— sis a goal state iff o(s) is a goal state
for all states s, s’ and actions a. Symmetries are also
called (goal-stable) automorphisms. They are closed under
composition and inverse, forming the automorphism group
Aut(Tr) of the transition graph. Each subgroup I of sym-
metries induces an equivalence relation ~r on states S:
s ~p s iff o(s) = &' for some o € T'. States in the same
equivalence class are called symmetric.

The following (immediate) result is the formal basis for
exploiting symmetries for planning.
Theorem 1. Let I1 be a planning task, let s be one of its
states, let w be a sequence of actions of 11, and let o be a
symmetry of Tri. Then m is a plan for s iff o(w) is a plan for
o(s), and the two plans have the same cost.

>The formal proof can be found in Shleyfman (2020).
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Note that the definition of symmetries of a state transition
graph depends only on the notion of actions applicable to
states, s’ = s[a], and the notion of goal state, thus it fits
multiple formalisms that support this dynamic. Particularly,
this definition matches not only the transition graph induced
by an FDR task but also the one induced by an LT.

A color preserving graph automorphism of PDGry,.
induces a symmetry of 7, ,,. Moreover, the group
Aut(PDG(Mlgpgr)) is isomorphic to Aut(Ilppr) and in-
duces a subgroup of Aut(7Tr,,,). Which in turn defines an
equivalence relation over the states S of IIppg. In the fol-
lowing section we define a numeric version of PDG and
structural symmetries that obey the same relation, i.e., in-
duce a symmetry group of the state transition graph.

Symmetries in Numeric Domains

Shleyfman and Jonnson (2021) show that determining
whether two states are symmetric in a transition system in-
duced by an FDR planning task is PSPACE-hard. This result
automatically grants PSPACE-hardness for the same prob-
lem in LT, since it, trivially, contains the FDR formalism.
More troublesome is the fact that the presence of numeric
fluents makes the search space infinite, which may lead to a
lot of unpleasant properties of its symmetry group. L.e., the
group of all permutations of a countable set contains an un-
countable number of symmetries, infinitely many of which
have an infinite order.

Since identifying the whole symmetry group of the transi-
tion task is infeasible, we would like to obtain a manageable
subgroup and use it for symmetry breaking in the search over
the state space. To this end, we extend the Structural Sym-
metries and the PDG by numeric fluents. Then, we show
that Numeric Structural Symmetries (NSS) can be mapped
into symmetries of the state transition graph (Thm. 2), and
that the symmetry group of the numeric version of PDG is
isomorphic to the NSS group of the task (Thm. 3). For the
flowchart of the proof of the grounding process see Figure 1.

We exploit the grounded, effectively computed subgroup
' of Aut(Trr) by plugging it into the symmetry breaking
searches DKS (Domshlak, Katz, and Shleyfman 2012) and
OSS (Domshlak, Katz, and Shleyfman 2015).

Let us give here a motivational example. Suppose we have
a planning task where homogeneous trucks deliver various
cargo across a city, where the city map is represented via di-
graph. A truck T in this task is represented with three vari-
ables: loc(T") the locations of the truck (finite domain vari-
able), fuel(T') the amount of fuel in the truck, and load(T")
the current load of the truck (both numeric variables). Since
the trucks are homogeneous, we would like to have a sym-
metry o to capture this information, i.e., given two trucks
T4y and T, a map that replaces only the labels of the trucks
should induce an automorphism of the transition graph. In
what follow we would like to capture this behavior. Instead
of saying that 7 is symmetric to 75, we want a bijection that
switches between the variables associated with 77 and 75, as
follows: o(loc(Ty)) = loc(Tz), o(fuel(Ty)) = fuel(Tz),
o(load(Ty)) = load(Ts), and vice versa.



Aut(NPDGr)

Effective
Group I'tp

Aut(Tr)

Figure 1: Schematic representation of detection and ground-
ing of Numeric Structural Symmetries (NSS) for linear nu-
meric planning. Thm. 3 shows that the symmetry group of
N P DGy and the group of NSS are the same. Thm. 2 shows
that there is a natural injection from NSS to the symmetry
group of the transition system induced by II.

Numeric Structural Symmetries

For an LT IT = (V, A, I, G). We say that a permutation o
over VU AU (l—luev D(v)
metry (NSS) if the following five conditions hold:

) is a numeric structural sym-

1. O'(Vp) = Vp, U(Vn> =Vh,
2. forallv € V,, o(D(v)) = D(c(v)),
3. 0(A) = A

We define an application of o to a partial state sP* over
the propositional variables vars(sP!), as o(sPt)[o(v)] =
o(sP*[v]) for all v € vars(sP"). Note that by points 1 and 2
the result of this application, o(sP!), is also a partial state.

Leté = ) oy wSv be a linear formula over the vari-
ables V' C V,,. We define the application of o to £ to be
o(&) = > ,ev wio(v). The application of o to condition
E>0is deﬁned as o (&) > 0. The application of ¢ to numeric
effect v += & € eff,,(a) is written as o (v) += o (), where
v € V,. Using this notation we establish the following con-
ditions on o.

4. forall a € A, o(pre,(a)) = pre, (c(a)),
pre,(0(a)), o(effy(a)) = effy(a(a)),
eff,,(o(a)), and cost(o(a)) = cost(a).

5. 0(Gy) = Gy and 0(Gp) = G).

An immediate consequence of this definition is that for any

structural symmetry o, it holds that o(Z) = =.

Note also that that for two structural symmetries o1, o9
the composition o1 o g5 is also a structural symmetry.

a(pre,(a)) =
o(eff,(a)) =

* This is straightforward for properties 1, 3, and 5: o1 o
O'Q(X) = Ul(UQ(X)) 0'1(X) X where X €
{Vna Vpa -A7 G'm Gp}

e Property 4 holds for each a € A since for each
h € {pre,,pre,, eff,, eff,, } we have oy o oo(h(a)) =

o1(02(h(a))) = o1(h(oz(a))) = h(oi(o2(a)))
h(o1 o o2(a)). By replacing a by v € V, and h by D,
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we get property 2. The check for cost is trivial and re-
peats the previous point.

A well-known result in group theory (Herstein 1975) states
that a finite set closed under a set of bijective self-maps
forms a group. We denote the group of all structural sym-
metries as Aut(II), which leads us to the observation below.

Theorem 2. There is a natural injection from Aut(II) to
Aut(Tn), i.e., for each o € Aut(Il) there is a unique & €
Aut (7).

Proof. Let Tip = (S, E) be a transition system induced by
aLTII = (V, A, s1,G), and let 0 € Aut(II) be a struc-
tural symmetry. For a state s = s, U s, € S we define the
application of 6 to s as (s, U sp,) = 6(sp) UG (s, ), where

5(sp) ={o({v,dv)) | (v, dv) € 5p} =
{{o(v),0(dv)) | (v, dv) € 5p},

G(sn) = {{o(v),qv) | (v,qv) € sn} and 6(a) = o(a) for
a € A. By properties 1-3, we have that & is a permutation
over S U A, and the map o +— & is injective.

Let (s,s';a) € E, and let o be a structural symmetry.
We aim to show that (5(s),d(s");&(a)) € E. Let us de-
couple the states s and s’ to their propositional and nu-
meric components s, U s, and s;, U s, respectively. The
proof of the propositional part was already done by Shleyf-
man et al. (2020), but we present it here for the sake of
completeness. By definition of & we have &(s), = o(s,).
Let v be a partial assignment over the propositional vari-
ables s.t. s, = 1; set wise it can be written as ¢ C s,
By applying o to both sides we have o(s,) = o (), thus
G(s) = o(v). This claim grants us: s |= pre,(a) implies
that 5(s) = pre,(5(a)), and s" |= eff,(a) implies that
5(s") = eff,(6(a)). Since o is a permutation over V,,, its ap-
plication to the unaffected variables V, \ vars(eff,(a)) can
be written as V), \ vars(eff,(&(a))), and since s'[v] = s[v]
for each v € V, \ vars(eff,(a)) we have that 6(s’)[v] =
5(s)[v] for each v € V, \ vars(eff,(5(a))), resulting in
(s)[e(a)], =a(s), Note that the fact that for any partial

assignment 1, it holds s, =9 <= &(s), = o(¢) which
directly implies that s, = G, <~ 6(3),, ): -
We aim to show that (s )[[o( Vn =06(s)n. Letyp € U,

be a numeric condition ) : ev - w¥ > 0s.t s, = .
By definition of & we have s[v] = &(s)[o(v)], thus

Z s[v] - w? = Z 5(s)[o(v)] - w? > 0 implies that
veV veV

sn =Y <= G(s)n = o(¥).

This statement combined with the previous paragraph has
two immediate consequences:

. sEG = &()j:G and

2. 5 | pre(a) <= a(s) - pre(o(a)

Now, to show that (5(s),5(s"); d(a)) € E, it is enough en-
sure that for any v € V), it holds that s'[v] = &(s’)[o(v)].
Here we have two cases, either v is affected by eff, (a)
or not. If v is not affected, i.e., v ¢ wvars(eff,(a)), then
since ¢ is a permutation it holds that o(v) is not affected
by eff,,(o(a)), i.e., o(v) ¢ vars(eff,(c(a))). Thus, s'[v]



slv] = a(s)[o(v)] = &(s')[o(v)]. Otherwise, let v += ¢
be the numeric effect of @ on v. Let £ = Y, w§v. By
definition we have that o(v) += (&) € eff,,(c(a)). Thus,

s'lo] = slo] + ) wis['] = 5(s)[o(v)]+
v' eV
> wia(s)lo(W)] =6 (s)o(v)],
v'eV
since s[v] = 6(s)[o(v)] for each v € V,, by definition of &.

Hence, we have that ¢ is a symmetry of the transition
graph 7y, since it satisfies the following three requirements:
- (s,8;a) € Eiff (6(s),5(s');0(a)) € E,

— cost(6(a)) = cost(o(a)) = cost(a), and

— sis a goal state iff 5(s) is a goal state. O

This result establishes that structural symmetries induce
transition graph symmetries. Next, we show how to compute
these symmetries using a variation of the problem descrip-
tion graph modified for numerical planning.

Numeric Problem Description Graph

Usually, the state transition graph 71y of a planning task IT is
too large for explicit representation. Thus, we must deduce
its symmetries from a compact description.

Pochter et al. introduced a way for inferring a subgroup of
symmetries of the transition system of II using the problem
description graph (PDG). Using PDG one can compute this
subgroup using off-the-shelf tools for discovering the full
automorphism group of a given colored graph, such as bliss
(Junttila and Kaski 2007). Later, Domshlak et al. (2012)
modified the definition, mainly to add support action costs.

In contrast to the propositional FDR, the transition sys-
tem defined by its numeric counterpart may be infinite. We
group numeric elements of conditions and effects into a set
of linear formulas. Recall, that = denotes the set of all linear
formulas that appear in II (both in conditions and in effects).
For each v € V,,, we define W(v) = {w§ € Q | I € = :
w§ € nums(€)}, the set of all numeric coefficients associ-
ated with v. Let Cyy be the set of unique costs of actions and
constants in numeric variables in the task II, i.e.,

Cni = {cost(a) |a € A} U | ] W(v)

vEV,

We define a function ord : Cp — [|Crl|] to be an order-
preserving enumeration of elements in Cyy, i.e., for ¢1,co €
Cry holds that ¢; < ¢ implies that ord(c;) < ord(cz). The
properties of the function ord that we are interested in are

1. for c1, ¢ € Cryitholds ¢; = ¢y iff ord(c1) = ord(c2),

2. for each ¢ € Cyy it holds that ord(c) < |Cry].

This function allows us to distinguish between the task con-
stants while operating with a reasonable number of colors.
Definition 2. Let IT = (V, A, s;, G) be a LT. The numeric
problem description graph (NPDGyy) of 11 is the colored
digraph (N, E, col) with nodes (e.g., Figure 2)

N = va UNy UN4UN=U {ng} U U ND(v)v where
veEV
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Ny, ={n, | v eV} forxz e {pn}
Ng={n,|aeA}
VUGV;ﬂND(w):{”Z|dep(v)}:
Vv € Vy, : Np(yy = {ng, | w € W(v)},
Ny, :{n§|¢-g>06xp } and
N+—{n | eE,ae A:v+=¢ ceff,(a)},
with Nz = Ny, U Ny, edges

E=Fy, UEy, UE=zUEAU Eg, where

By, = Uyey, {(n0,n3) | d € D(v)},
By, =Uyey, {(no,13) [ w e W(v)},

Bz =U,enA(nlene) [ v € Vo, wi € nums(&)},
eff

Faz U ( pren | P peff Ungfn), with
acA
EPren ={(ng,ma) |1 €20 € pre,(a)},
EPer ={(nf,ng) | (v,d) € Prep(a)},
Esffn ={(ng,n ) (ng7nv) |v+=¢ €effy(a)},
Egfe = {(na,nd> [ {v,d) € effy(a)},

Eg ={(ng,ng) | £20 € Gu}U{(nd,ng) | (v.d) € Gy},
and node colors

ord(cost(a)) ifn:=mng, € Na,

ord(w) ifn:=ny € U,cp, Now),
col(n) = ¢ |Cu| + rel(f) ifn:= ”2 € Nz,

|CH|+4 ifn :=ng,

0 otherwise,

where rel : {> > +} — [3] is a bijection.?
Theorem 3. Aut(NPDGr) and Aut(I1) are isomorphic.

Proof Sketch: Let II be a numeric planning task, with the
corresponding NPDGy; = (N, E, col). We aim to show that
there is a bijective map f : Aut(NPDGp) — Aut(II).

Let f(a) ="' oa ol € Aut(I), where the map

|_| D(v)

vEV)

[:YVUAU — N

is given by a bijection l( ) +— my, with a slight abuse of
notation /((v,d)) = nJ. Note that f is a homomorphism,
ie., f(@)o f(8) =1V oaolol ool = f(aof).

We need to show that f is well-defined, injective, and
surjective. f is well-defined if f(a) € Aut(Il), ie.,
f(a) is an NSS. Since a« € Aut(NPDGy) is color-,
edge- and degree-preserving we have that the vertex sets
Ny,.Ny,.Na, Nu,.Ny. Upey, No(w)> Upey, No(v). and
{n¢} are all preserved under «. The properties 1-5 hold due
to the structure of the NPDGryy.

For the injectivity of f, it is enough to show that f(«) =
idry implies o = idNPDGH' Thus, assume that there is n €

3We use the notation n := nY to indicate the type of the graph
node in question.



NPDGy; @

Y

#*

Figure 2: Toy example of a NPDGyy graph of a task II, with the variable V,, = {v,} and V,, = {z,y}, actions A = {a1,as},
and the goal condition G = {3y > 7}. The actions a; and ay have the following form pre(a;) = {(v, = F)}, pre(az) =
{vp, T,z > 3,y < 0}, eff(ar) = {(vp, T)}, eff(az) = {{vp, F),y += 2z + 3}, and cost(a1) = cost(az) = 1. The initial
state is not given, since it is not involved in the construction of NPDG

N s.t. a(n) # n, and use the color- and edge-preservation

properties of the authomorphism « to show contradiction.
To show that f is surjective, we needs to prove that

f~1(o) € Aut(NPDGp), for any NSS o. Define the map:

Mo (z) ifn=n, € Nyp UNy, UNg4

No((wdy) fn=ng=nwa €Uy,
F7Ho)m) = nd™ it =nl € Uy,

ni(g) ifn = nz € Nz,

ng ifn =ng.

The extended function f~1(o) is well-defined. By definition
o is a permutation on variables, actions, and o({v,d)) €
D(o(v)). Furthermore, the NSS preserves linear conditions
and effects. By construction, f~! is a homomorphism. Thus,
all is left is to show that o := f~1(o) is a color-preserving
automorphism. The full details of the proof can be found in
the Supplementary Materials (Shleyfman et al. 2023). O

To summarise, we proved that the groups Aut(NPDGyy)
and Aut(IT) are isomorphic, i.e., structurally identical, and
that there is an injection that maps these groups into I'r;; —
a subgroup of Aut(7r). The generators of I'fy are used by
DKS and OSS for symmetry breaking. The generators of
Aut(NPDGryy ) allow us compute the generators of I'yy in lin-
ear time. Next, we discuss the computational complexity of
computing the generators of Aut(NPDGry).

Computational Complexity

The graph isomorphism (GI) decision problem gets as in-
put two finite graphs and determines if these graphs are iso-
morphic. This problem is neither known to be NP-complete
nor tractable. Since many related problems appeared to
be polynomial-time equivalent to the GI problem (Mathon
1979), it gave its name to a complexity class. As usual for
complexity classes within the polynomial-time hierarchy,
a problem X is called GI-hard if there is a polynomial-
time reduction from GI to X. A problem X lies in GI if
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it can be reduced to the GI problem. X is GI-complete, i.e.,
polynomial-time equivalent, if it both lies in GI and GI-hard.
Shleyfman (2019) showed that computing the generators
for the groups of structural symmetries and the automor-
phisms of PDG is GI-hard. Since numeric planning con-
tains FDR in the trivial case when V,, = (), and in this
case NPDG and PDG are equivalent, computing the auto-
morphism group of NPDG and NSS is also GI-hard.

Shleyfman and Jonsson (2021) proved that computing the
generators for the automorphism group of a colored digraph
is GI-complete. Since NPDQG is a colored graph, the prob-
lem of computing generators of its automorphism group lies
in GI. Thus, we have that the computation of generators of
NPDG and NSS is GI-complete. Note that the linearity of
the tasks is required only to produce a canonical representa-
tion of the numeric formulas. A more generic formalism that
relies on a finite set of relations can be used instead of LT,
expanding the scope of symmetry breaking to beyond lin-
ear numeric planning. The construction of such a formalism
and its integration into the framework presented here is an
interesting direction for future work.

While the GI problem is suspected to have a quasi-
polynomial computational complexity (Babai 2016), there
are some off-the-shelf symmetry detection packages such as
bliss (Junttila and Kaski 2007) or Saucy (Darga, Sakallah,
and Markov 2008), that while being a worst-case exponen-
tial in time, perform well in practice. For the experimental
evaluation of the method proposed in this paper, we chose
bliss.

Forward Search and Symmetry Breaking

Having discovered a generating set of the group Aut(II),
the next step is to determine whether two states are sym-
metric or not. Unfortunately, this problem is NP-hard (Luks
1991). Pochter et al. suggested a heuristic approach that may
produce false negatives in an attempt to determine whether
two states are symmetric or not. They construct a procedural
mapping ¥ : § — S from states to states, that is imple-



mented via a heuristic local search in a space with states
being our planning task states S, actions corresponding to
the generators of Aut(II), and state evaluation being based
on a lexicographic ordering of S. Each local minimum in
this space defines a canonical state (CS), i.e., two states
s and s’ are symmetric if they have the same CS, that is
Y(s) = X(s'). When two symmetric states have different
CSs, the search does not discover the symmetry. For the nu-
meric case we construct X using the same lexicographic or-
der, where propositional variables precede the numeric ones.

Both A*-based symmetry breaking algorithms DKS and
OSS rely on this procedure to discover symmetrical states.
For further details see Domshalk et al. (2015).

Experimental Evaluation

We implement the symmetry detection method in Numeric
Fast Downward (NFD) (Aldinger and Nebel 2017). All ex-
periments are run on an Intel Xeon Gold 6148 processor
with a 30-minutes time limit and 4 GB memory limit us-
ing GNU parallel (Tange 2011). We evaluate A*, DKS,
and OSS using the blind heuristic, operator-counting heuris-
tic with LM-cut and state equations constraints, hﬂ\,/l'cm’ SEQ
(Kuroiwa et al. 2022), for SCT domains, which is a sub-
set of LT, and LM-cut heuristic adapted for LT planning,
h5M-ut (Kuroiwa, Shleyfman, and Beck 2022), for LT do-
mains. When computing a CS, the lexicographic order of
the variables follows the order used by NFD, where propo-
sitional variables are ordered according to the causal graph.
In NPDG, we normalize a linear formula ¢ by scaling co-
efficients so that |w§| = 1 where v is the first variable in
vars(€) in the lexicographic order. We only show instances
where symmetries are detected, since the overhead of detect-
ing no symmetries is usually less than 5 sec.
OSS vs. DKS One of the curious behaviors that can be spot-
ted in Table 1, is that O.S'S solves as many problems or more
as DK S in all domains. Which is not the case on the classi-
cal domains, where the algorithms performed on average on
par. We attribute this difference to the fact that DK S stores
both original and canonical states, while OS'S operates only
on CSs, and thus requires less memory. The states of DKS
are twice as large as those used by A* and OSS. This differ-
ence is amplified in the numeric setting, since numeric states
require significantly more memory.
Propositional vs. Numeric Symmetries Note that struc-
tural symmetries used for classical planning are not enough
to detect symmetries in numeric planning tasks. Consider a
logistics problem where trucks with capacity limits deliver
weighted packages to some given locations. Two trucks with
different capacities and no goal locations would be consid-
ered symmetric in terms of propositional symmetries, but
not in terms of numeric ones. Therefore, to measure the
relative impact of numeric symmetries, we construct two
NPDGs with different colorings. For numeric symmetries,
we use the standard NPDG defined above (NPDG™). To
detect strictly propositional symmetries, we fix all nodes in
Ny, by coloring each of them in a unique color (NPDG""P).
Almost everywhere the searches that use the full symme-
try group outperform the ones that use the propositional sub-

399

group. The interesting domains where this is not the case are
SAILING-SAT and TPP-METRIC. Both these domains have
no propositional symmetries. A preliminary study shows
that the overhead in these domains comes from the symme-
tries between different connected components of the transi-
tion graphs. Thus, DKS and OSS do not benefit from state
pruning, but still, have some overhead while determining
whether two states are symmetric or not.

New Domains Symmetries in classical planning vary be-
tween domains, and where the GRIPPER has a group that
is exponential in the number of balls in the rooms, the
BLOCKSWORLD domain has no symmetries at all due to an
order imposed on the blocks in the goal of a task. The large
increase in coverage shown by symmetry-breaking tech-
niques can be attributed to the vast variety of classical plan-
ning domains. That was partially a byproduct of the Inter-
national Planning Competitions (IPC) that were held during
the last three decades. In addition to domains in the numeric
tracks of IPC and previous work (Scala et al. 2020; Li et al.
2018; Leofante et al. 2020), we introduce six new domains.

As a sanity check, we performed some preliminary exper-
iments on the GRIPPER domain, where the balls have ho-
mogeneous weights and the gripper-robot has a maximum
load. The numeric approaches were consistent with the clas-
sical ones. From the 20 GRIPPER problems A*, DKS, OSS
equipped with blind heuristics solved 7, 20, 20, respectively.
The same algorithms equipped with numeric LM-cut solved
6, 20, 20, in the same order. These results are in line with
these reported by Domshlak et al. for classical planning.
These results are not included in Table 1, since the domain is
too simplistic. Instead, we introduce a new domain DELIV-
ERY, where multiple robots, equipped with multiple arms,
and a tray deliver objects on a map, represented by a digraph.

We introduce a DEPOTS-SYM domain, a variation of
the previously existing DEPOTS SCT domains, where the
weights of the packages and the capacities of the trucks
are “standardized” by replacing what seems to be arbitrar-
ily chosen numbers by some standard upper bounds. For
example, the packages were all given weights in the set
{4,6,8,10,12}, while the truck got capacities in the set
{10, 20,40}. This change allowed us to obtain a more sym-
metric domain while still having a meaningful numeric be-
havior. One may even argue that DEPOTS-SYM is closer to
reality than DEPOTS due to standardization.

CVREP is the capacitated vehicle routing problem studied
in operations research, where a set of n customers are vis-
ited by k vehicles with capacity ¢. In our PDDL domain, for
each vehicle x, we have a numeric variable [, representing
the load. An action visits customer j using vehicle x from
customer ¢ with cost ¢;; and increases [, by the demand d;,
which is applicable if [, +d; < q. We generate 20 instances
following the method used by Uchoa et al. (2017) using uni-
form distributions for coordinates and demands of customers
withn = 9,10,11,12,13 and r = 2, 3,4, 5, where r is a pa-
rameter to control k s.t. k >~ .

PETRINET is the reachability problem for Petri nets:
whether from the given initial configuration there exists a
sequence of valid execution steps that reaches the given fi-



A* DKS (NPDG"™P) DKS OSS (NPDGPP) 0SS

[ t. #gen.| c. t. #gen.| c. t. #gen.| c. t. #gen.| c. t. #gen.
SCT Blind
GARDENING (63) 63 4.0 1205997| 63 7.6 1205997 63 4.3 694083 63 4.0 1205997 63 2.3 694083
GARDENING-SAT (51) 10 61.0 12693663| 10 113.6 12546397| 11 72.3 7871534 10 60.8 12546397| 11 38.3 7897880
ROVER (19) 4 5.3 1773861 4 43 764752 4 42 764752 4 24 764752 4 2.4 764752
SAILING (20) 0 - -0 - -0 - -l 0 - -1 - -
CVRP (20) 8 25.8 6402903| 8 46.0 6402903| 9 9.2 1138274 8 25.9 6402903| 13 5.1 1138274
DELIVERY (20) 2 229 12032971 4 0.9 233222 4 0.6 144849 4 0.6 233222 6 0.3 145698
DEPOTS-SYM (20) 4 214 8907468| 4 19.8 4338217 5 12.4 2598405\ 5 11.7 4337185 5 6.9 2606740
PETRINETS (20) 2 522.4 49590610 2 1013.8 49590610 3 184.5 8703352| 2 523.0 49590610| 5 93.3 8703318
TOTAL (269) 93 - -| 95 - -1 99 - -| 96 - -1108 - -
Linear Blind
ROVER-METRIC (10) 4 7.3 2463299 4 6.6 1141856 4 6.5 1141856] 4 3.6 1141856 4 3.6 1141856
TPP-METRIC (40) 5 2.0 272368 5 3.8 272368 5 3.8 270475 5 1.9 272368 5 6.8 878884
ZENOTRAVEL-LINEAR (9)| 3  21.7 5548179 3 39.9 5470567| 3 43.5 5953172 3 22.0 5482235 3 22.7 5472508
BARMAN (15) 2 0.6 150255| 2 0.6 80910 3 0.2 20226 3 03 808721 4 0.1 20330
BARMAN-UNIT (15) 2 4.3 895338 2 42 478390, 3 0.7 64560 3 23 478353 3 03 64945
FO-COUNTERS-SYM (20)| 1 954 35812449| 1 168.9 35812449 2 32.3 6167774 1 100.7 35812449 4 16.2 6167774
TOTAL (125) 17 - - 17 - - 20 - -1 19 - -1 23 - -
SCT hligl-cul,SEQ
DEPOTS (6) 1 1093.1 1692368| 1 815.2 1364638 1 797.7 1364544| 1 800.2 1369977 1 812.1 1369977
GARDENING (63) 63 3.8 118204| 63 42 118202 63 2.5 72081 63 39 118200] 63 2.2 71940
GARDENING-SAT (51) 12 67.5 1922720] 12 75.8 1922708| 12 45.7 1189704| 12 66.0 1922678| 12 39.8 1189810
ROVER (19) 4 652 1671782 4 28.1 720103 4 27.7 720103, 4 258 720103 4 25.5 720103
SAILING (20) 20 04 2667| 20 04 2667| 20 04 2667| 20 04 2667 20 04 2854
SAILING-SAT (30) 7 0.5 3723 7 0.5 3723] 6 0.5 3723 7 0.5 3723] 6 0.5 3723
CVRP (20) 11 139.7 453570 11 140.5 454206| 14 24.2 71604 11 140.6 459676| 15 24.4 71951
DELIVERY (20) 2 0.1 200f 6 0.0 184, 6 0.0 184, 6 0.0 184 6 0.1 233
DEPOTS-SYM (20) 6 281.6 851717 6 202.4 781956 6 118.4 452598 6 258.4 1014985| 6 156.2 623928
PETRINETS (20) 8 512.4 9045923| 8 731.8 9047092 9 163.8 1945630| 8 508.5 9050844| 10 110.9 1931552
TOTAL (269) 134 - -1138 - -1141 - -1138 - -1143 - -
Linear p5Meut
FO-SAILING (16) 1 630.8 7734153] 1 676.4 7734153 O - - 16419 7734153] 1 587.9 7439946
ROVER-METRIC (10) 6 38.7 754115 6 3477 687783 6 32.5 682699 6 30.7 678101 6 30.5 704527
TPP-METRIC (40) 5 7.2 78121 5 11.3 84035 5 122 83804 5 11.3 83959| 5 29.6 204424
ZENOTRAVEL-LINEAR (9)| 8 1744 193432] 8 126.7 140621| 8 124.8 140584 8 128.1 147781 8 131.3 147159
BARMAN (15) 2 2.1 138859 2 1.3 748231 3 03 19247 3 1.1 74786 4 0.3 19340
BARMAN-UNIT (15) 2 165.7 40962 2 1225 227661 2 0.7 11198| 2 1233 22696 2 0.6 11342
FO-COUNTERS-SYM (20)| 6 60.9 4375453| 6 112.2 4375453 9 6.8 717955| 6 654 4375453 11 4.4 717955
TOTAL (125) 30 - -1 30 - -1 33 - -1 31 - -1 37 - -

Table 1: ‘c.’ is coverage, ‘t.” is time, and ‘#gen’ is the number of generated states. For ‘t.” and ‘#gen.’, we took the average over

instances solved by all search algorithms except for h5M-cut

nal configuration. This problem is known to be exponential.

For LT, we introduce a linear numeric version of the BAR-
MAN domain. This domain comes with unit-cost actions, and
actions that have costs only if a drink was poured from the
dispenser. Interestingly, since the BARMAN domain has a lot
of delete-effects, on the unit-cost version of the domain the
blind version of OSS outperforms all other configurations.

FO-COUNTERS-SYM is a variant of FO-COUNTERS (Li
et al. 2018) in LT. Numeric variables z; and r; for i € [n]
are initialized with zero, and an action increases/decreases
r; by 1 or increases/decreases x; by r;. While the goal con-
dition is ¢; + 1 < x;41 for i € [n] in the original domain,
we use Z;L:l x; > m in FO-COUNTERS-SYM to introduce
symmetry. We generate 20 instances with n = 3,4, 5,6 and
m = 200, 300, 400, 500, 600.
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in FO-SAILING, where only one method solves no instance.

Conclusion

In this paper, we extended the notions of structural sym-
metries and problem description graphs from classical to
numeric linear planning. This extension allowed us to use
symmetry-breaking forward search techniques in the nu-
meric setting. Our experiments demonstrate that these tech-
niques outperform the state-of-the-art both in terms of ex-
panded nodes and coverage. In the future, one may consider
looking for groups that are larger than structural symmetries.
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