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Abstract
In Multi-Agent Path Finding (MAPF), we are asked to plan
collision-free paths for teams of moving agents. Among the
leading methods for optimal MAPF is Conflict-Based Search
(CBS), an algorithmic family which has received intense at-
tention in recent years and for which large advancements in
efficiency and effectiveness have been reported. Yet all of the
recent CBS gains come from reasoning over pairs of agents
only. In this paper, we show how to further improve CBS
by reasoning about more than two agents at the same time.
Our new cluster reasoning techniques allow us to generate
stronger bounds for CBS and to identify more bypasses (al-
ternative cost-equivalent paths), which reduce the number of
nodes in the CBS conflict tree.

Introduction
Multi-Agent Path Finding (MAPF) is a combinatorial prob-
lem that asks us to find coordinated and collision-free plans
for a team of moving agents. It is NP-Hard to find opti-
mal MAPF solutions (Yu and LaValle 2013) under a vari-
ety of objective functions, such as sum-of-(individual)-costs.
Yet effective solutions to MAPF problems are necessary
for a variety of real-world applications, such as automated
warehousing (Wurman, D’Andrea, and Mountz 2008), drone
swarm coordination (Hönig et al. 2018), and team navigation
in computer games (Silver 2005).

Among the state-of-the-art optimal algorithms for MAPF,
Conflict-Based Search (CBS) (Sharon et al. 2012) is a best-
first search algorithm that routes each agent independently
and then resolves conflicts afterwards. In recent years, there
have been massive advancements in the efficiency and scala-
bility of CBS. These gains have been achieved by: (a) taking
into account symmetries that result in the conflicts between
two agents (Li et al. 2021; Zhang et al. 2022); (b) generating
complex admissible heuristics (Felner et al. 2018; Li et al.
2019); and (c) introducing bypasses (Boyarski et al. 2015a)
to reduce the number of subproblems that CBS must tackle.
Yet, even on modest size problems with dozens of agents,
CBS timeout failures are not uncommon.

Thus far, CBS only reasons about incompatibility be-
tween at most two agents at a time. It lazily detects conflicts
between pairs of agents, resolves those conflicts by adding
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pairwise constraints, and generates heuristics by combin-
ing information about the interactions of pairs of agents.
Other optimal MAPF algorithms, such as ICTS (Sharon
et al. 2013), can detect incompatibility between more than
two agents. But ICTS has limited scalability compared to
CBS because of its large computational overheads. Recently,
Mogali, van Hoeve, and Smith (2020) proposed three-agent
heuristics for improving the performance of CBS. But their
approach is limited to reasoning only at the root node. In this
paper, we extend CBS heuristics, applicable at every node, to
more than two agents. We do this by exploiting mutex prop-
agation (Zhang et al. 2022), a successful pairwise reason-
ing technique, which we extend to clusters of more than two
agents. We derive stronger bounds for CBS and also gener-
ate new kinds of bypasses, where the assigned paths of some
agents are replaced to reduce the number of conflicts. Exper-
iments show substantial improvements for CBS, especially
on dense maps.

Preliminaries
Following Stern et al. (2019), a MAPF instance consists
of (i) an input grid map, where each cell connects to only
orthogonal neighbours, and (ii) a set of k agents A =
{a1, . . . , ak}. We represent the grid map as an undirected
and unweighted graph G = (V,E) with nodes V and edges
E ⊆ V × V . Each agent ai ∈ A has a unique source
(si ∈ V ) and goal (gi ∈ V ). Time is discretised into
unit-sized timesteps, and, at each timestep, agents are al-
lowed to move to an adjacent vertex or else wait at their
current location. A path of agent ai is a sequence of ver-
tices p = ⟨si, . . . , gi⟩, indicating the location of ai at each
timestep. An agent has reached its goal if it permanently
waits at its goal location and never has to move off to make
way for another agent. The cost of a path p is the number
of timesteps (i.e., |p| − 1) required for an agent to reach
the goal location from its source (ignoring wait-costs after
reaching). The paths of two agents ai and aj can conflict in
two ways: (i) a vertex conflict ⟨ai, aj , v, t⟩ when agent ai
and aj reach the same vertex v ∈ V at the same timestep
t, and (ii) an edge conflict ⟨ai, aj , u, v, t⟩ when two agents
ai and aj traverse the same edge (u, v) ∈ E from the op-
posite directions at the same timestep t. A solution is a set
of conflict-free paths, one for each agent. Our objective is to
find an optimal solution that minimises the sum of the indi-

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

384



vidual costs (SIC) of the paths.

Conflict-Based Search (CBS)
Conflict-Based Search (CBS) (Sharon et al. 2012) is a state-
of-the-art optimal algorithm for solving MAPF. CBS runs a
two-level search. The high level of CBS focuses on a pair
of agents that have at least one conflict with each other and
resolves the conflict by adding constraints. This process in-
volves building a binary tree called Constraint Tree (CT).
Each high-level CBS node N is a CT node, which contains:

• a set of constraints N.constraints , in which each con-
straint ⟨ai, v, t⟩ (resp. ⟨ai, u, v, t⟩) prohibits agent ai
from visiting vertex v (resp. edge (u, v)) at timestep t;

• a set of paths N.P (one for each agent), in which each
path N.P(ai) is a cost-minimal path for agent ai that sat-
isfies N.constraints without considering other agents;

• a set of conflicts N.conflicts , where each conflict
is either a vertex (⟨ai, aj , v, t⟩) or an edge conflict
(⟨ai, aj , u, v, t⟩) between N.P(ai) and N.P(aj); and

• a cost N.cost , which is the SIC of N.P .

To find a conflict-free solution that minimises the SIC, CBS
searches in a best-first-search manner and maintains a queue
to prioritise the CT nodes using their costs N.cost . Initially,
the priority queue contains a root CT node with an empty
set of constraints, and each path p ∈ N.P is an optimal
path while ignoring other agents. Whenever CBS expands
a CT node N , it selects a conflict between ai and aj from
N.conflicts and resolves it by splitting N into two child CT
nodes. In each of the child CT nodes, CBS adds an additional
constraint that prohibits one of the agents from visiting the
contested vertex or edge at timestep t. Since the path of ai
(or aj) no longer satisfies the constraints of the child CT
node, CBS calls a low-level solver to replan the path by us-
ing a time-space A* search (Silver 2005). Once replanned,
the conflicts of the child CT node are updated, and all other
paths in P remain the same. The search continues by insert-
ing the child CT nodes to the queue and terminates when it
expands a CT node N that has no conflicts (i.e., N.conflicts
= ∅). The current N.P is a cost-minimal solution as CBS
guarantees to explore both ways of resolving each conflict.

Bypassing Conflicts: Boyarski et al. (2015b) improved
the search to bypass conflicts by modifying the path of one of
the agents involved in the chosen conflict. Given a CT node
N and its constraints N.constraints , a path pi is a valid by-
pass for agent ai, iff (i) pi has the same source and goal of
ai; (ii) pi is a cost-equivalent path of N.P(ai) which satis-
fies N.constraints ; and (iii) replacing N.P(ai) with pi re-
duces the total number of conflicts (i.e.,|N.conflicts |) of N .
CBS finds bypasses when generating child CT nodes. Re-
call that CBS selects a conflict between two agents ai and
aj , and each child CT node replans a path pi (resp. pj) for
agent ai (resp. aj) to resolve the conflict. If the replanned
path pi (or pj) is a valid bypass, we replace the path of ai
(i.e., N.P(ai)) with pi and remove the generated child CT
nodes without splitting N . Identifying a bypass can resolve
a conflict without branching, which reduces the size of CT.

High-Level Heuristic (WDG): So far, CBS prioritises
the CT nodes using N.cost . However, like many other A*
searches, the performance of CBS can be significantly im-
proved by using an admissible heuristic h, which prioritises
CT nodes based on f = N.cost + h. The first high-level
heuristic of CBS is introduced by Felner et al. (2018) which
focused on the pairs of agents with cardinal conflicts (i.e.,
resolving such conflicts must increase the costs of child CT
nodes). Later, Li et al. (2019) improved and extended this
heuristic considering all pairs of agents that are in conflict.
Among many heuristics proposed in (Li et al. 2019), we ex-
plain the leading heuristic, Weighted Pairwise Dependence
Graph (WDG) heuristic.

In order to compute the heuristic for a CT node N , WDG
considers all pairs of agents that are currently in conflict.
For each such pair of agents (ai, aj), WDG takes the paths
and constraints of ai and aj in a CT node N and runs a
sub-CBS search to solve them as a sub-instance. Completely
solving the sub-instance may be costly and easily dominates
runtime. Therefore, each sub-CBS solver is set to a node
limit L, which only allows the solver to expand at most L
CT nodes. When the sub-CBS search concludes, it is easy to
see that the increase of the minimal f -value in the open list
∆ij is a valid lower bound for agent pairs (ai, aj). To further
consider the intersection of pairs of agents, WDG builds a
weighted pairwise dependency graph GD = (VD, ED,WD)
for these agent pairs whose ∆ij > 0. Each vertex vi ∈ VD

indexes an agent ai, each edge (vi, vj) ∈ ED corresponds to
an agent pair (ai, aj), and WD : E →D is a weight function
that maps each edge (vi, vj) ∈ ED to ∆ij ∈ D as edge
weight. The graph GD is used to create an integer program
to minimise

∑
i xi subject to ∧ijxi+xj ≥ ∆ij , where each

xi represents the increase in length of the current path for
agent ai. The optimal value of this integer program is an
admissible heuristic for CT node N . Although computing
WDG requires building GD for each node expanded, most
of the edges in GD can be inherited from the parent CT node.

Though fast and effective, WDG as well as other exist-
ing heuristics (Felner et al. 2018; Boyarski et al. 2021) (ex-
cept for the one introduced below) compute the heuristics
only by considering the pairs of agents that are in conflict.
Recently, Mogali, van Hoeve, and Smith (2020) proposed
a Lagrangian-Relax-and-cut-based (LR) heuristic that rea-
sons about conflicts among groups of three agents. It shows
promise that reasoning beyond pairs of agents can generate
better heuristics. However, due to the large runtime over-
head of the LR heuristic, (i) they apply the LR heuristic only
at the root CT node, (ii) they have to limit the maximum
cost of the paths, and (iii) the overall speedup is very limited
(e.g., within the given runtime limit, they do not solve more
instances than the existing algorithm).

MDDs and Mutex Propagation
A Multi-value Decision Diagram (MDD) (Sharon et al.
2013) MDD i for an agent ai in a CT node N is a Directed
Acyclic Graph (DAG) which compactly stores all cost-
minimal paths that satisfy the constraints N.constraints .
Let us assume the cost of N.P(ai) is li, the MDD i has
li + 1 levels. For each level t, MDD i contains nodes that
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correspond to all possible locations of agent ai at timestep
t when agent ai follows a path of cost li that satisfies
N.constraints . The source and goal nodes are single nodes,
indicating that agent ai occupies the vertex si and gi at
timestep 0 and li, respectively. Building MDD i for an
agent ai is simple. We run a breadth-first search from the
source si to explore the nodes that satisfy the constraints
N.constraints within cost li. Once the search is finished,
MDD i only records the partial DAG that reaches goal gi.
This auxiliary data structure has been widely used to im-
prove the CBS search, e.g., prioritising conflicts (Boyarski
et al. 2015b) and symmetry reasoning (Li et al. 2021).
Example 1. Figure 1b shows MDDs of three agents, where
we assume the constraints N.constraints = ∅. MDD1,
MDD2 and MDD3 correspond to the cost-minimal paths
for each agent, with costs of 4, 6 and 4, respectively.

Mutex1 propagation is a popular technique used in AI
planning, such as planning graph (Blum and Furst 1997),
state-space planner (Nguyen and Kambhampati 2000), and
improving SAT-based planner (Kautz and Selman 1996).
Recently, Zhang et al. (2022); Surynek et al. (2020) extended
mutex propagation to identify and resolve pairwise sym-
metries for MAPF problems. Like many constraint prop-
agation techniques, mutex propagation finds incompatible
nodes between the MDDs of two agents. Given MDDs for
two agents, mutex propagation finds two types of mutexes:
• Initial mutexes: a pair of MDD nodes/edges is an initial

mutex iff these two MDD nodes/edges correspond to a
vertex/edge conflict at the same level t.

• Propagated mutexes: a pair of MDD nodes (resp. edges)
is a propagated mutex iff they are at the same level t and
all pairs of their parent MDD edges (resp. nodes) are ei-
ther initial mutex or propagated mutex.

A pair of MDD nodes is mutex if either initial or prop-
agated mutex. In general, the initial mutexes are detected
first and then propagated through MDD to find the propa-
gated mutexes. Many existing algorithms (Mackworth 1977;
Zhang et al. 2022) can detect mutexes between MDDs. We
omit the details of such algorithms.
Property 1. Iff two nodes from different MDDs at the same
level are mutex, there exists no pair of conflict-free paths that
traverse through the two nodes and reach their goal loca-
tions on their individual minimum cost (Zhang et al. 2022).

Example 2. Figure 1b shows an example of mutex propaga-
tion of MDD2 with MDD1 and MDD3.

Our Approach
While the best heuristic for CBS is quite sophisticated, it
only ever reasons about the interactions of pairs of agents. In
this work, we detect and make use of interactions between
three or more agents to improve heuristics and find bypasses.
Definition 1 (Conflict Cluster). Given a CT node N , a con-
flict cluster C is a set of agents such that, considering ev-
ery agent a ∈ C with a set of cost-minimal paths that sat-

1Mutex is a short term for mutual exclusion.
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Figure 1: (a) A MAPF instance with three agents. (b) Exam-
ples of MDDs for three agents and the results of mutex prop-
agation between agent a2 with agent a1 and a3. The initial
and propagated mutexes are shown in dashed blue arcs and
solid red arcs, respectively. The incompatible nodes between
a2 and a1 (resp. a3) are coloured in blue (resp. orange). All
paths of a2 have incompatible nodes and thus must collide
with either a1 or a3.

isfy N.constraints , there exist no conflict-free assignments
of paths for these agents.

Example 3. Figure 1 shows a conflict cluster containing
three agents, where the current paths (shown in solid lines)
of a2 and a3 collide at C3. Although switching a2 to another
cost-minimal path (e.g., the path shown in the dashed line)
avoids the conflict with a3, it conflicts with another agent a1.
In fact, there exists at least one conflict between two or more
agents no matter what cost-minimal paths the agents choose.
Thus, the optimal solution requires at least one agent to wait
for at least 1 timestep.

The critically important feature of conflict clusters is that,
if a CT node N has a conflict cluster C, then the SIC of
any collision-free paths that satisfies N.constraints is guar-
anteed to be larger than the cost of N because some pair
of agents in C must conflict, i.e., the cost must increase by
at least 1. However, the WDG heuristic fails to capture this
case, since conflict-free paths exist for any pair of agents
while ignoring the other agents.

Computing Heuristics and Bypasses
Our approach iteratively detects the conflict clusters for a
CT node N . Whenever our algorithm finds a conflict clus-
ter, we increment the heuristic value by one and exclude the
agents in this cluster to ensure the clusters detected are in-
dependent of each other. As a byproduct, our approach may
also explore a bypass, a cost-equivalent path that satisfies the
constraints N.constraints and reduces the total number of
conflicts N.conflicts . Here, we explain the high-level idea
of computing an admissible heuristic by integrating the best
pairwise heuristic WDG and the heuristic value of conflict
clusters found, as well as adapting the bypasses based on
the CBS framework. The details of detecting conflict clus-
ters and bypasses will be explained later.
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Algorithm 1: Compute Heuristic and Bypass
Input: N : a current CT node of CBS.
Output: Heuristic value h for a CT node.

1 hp,EAp ← COMPUTEWDGHEURISTIC(N);
2 hc,EAc ← INHERITCLUSTERFROMPARENT(N);
3 EA← EAp ∪ EAc ;
4 SG ← BUILDCONFLICTSTATEGRAPH(N);
5 while am←GETMAXCONFLICTAGENT(SG,EA) do
6 R← FINDCLUSTERORBYPASS(am,EA, N);
7 if R ≡ ConflictCluster(C) then
8 APPENDCLUSTER(N , C);
9 EA← EA ∪ C;

10 hc ++;
11 else if R ≡ Bypass(pm) then
12 UPDATEPATHANDCONFLICT(N, am, pm);
13 UPDATECONFLICTSTATEGRAPH(N,SG);
14 return h← hp + hc;

The pseudo-code of our approach for computing an im-
proved heuristic or bypass is shown in Algorithm 1. Similar
to CBS, given a CT node N , our algorithm first computes
the WDG heuristic following (Li et al. 2019) and returns the
pairwise heuristic value hp and a set of agents EAp con-
sidered in WDG (i.e., agents in the dependency graph GD)
(line 1). Our algorithm uses N.clusters to store a set of con-
flict clusters detected in N . Before detecting the new con-
flict clusters, our algorithm inherits the conflict clusters EAc

from the parent CT node of N and their heuristic value hc

(explained later in the section) in order to avoid recomputa-
tion (line 2). Both EAp and EAc are appended to a set EA,
which maintains the set of excluded agents (line 3). This is
to ensure that the clusters detected are independent of each
other and with the agents used in the WDG heuristic.

The algorithm then begins to compute our cluster heuris-
tic and bypass by building a conflict state graph SG (line 4).
This graph is a simple undirected graph that maintains an
edge between every pair of conflicting agents in N . We use
this graph to efficiently track the conflicts in the current plan
N.P . The algorithm then calls GETMAXCONFLICTAGENT
which iteratively accesses the agents in SG that have not
been excluded and returns the agent am (line 5) that has
the maximum number of conflicts with other non-excluded
agents ai (i.e., ai ̸∈ EA). We choose the agent am with
the maximum number of conflicts because such an agent
is more likely to find a smaller conflict cluster, thus po-
tentially leading to a better heuristic value. The function
GETMAXCONFLICTAGENT does not consider an agent that
was returned earlier and returns null when all agents are ei-
ther excluded or were returned earlier (in which case the
while loop terminates). The algorithm then calls the func-
tion FINDCLUSTERORBYPASS (to be detailed later) which
returns either a detected conflict cluster involving am or a
bypass for agent am (line 6). Based on the returned result R,
the algorithm proceeds as follows.

• If R is a conflict cluster (line 7-10), the algorithm ap-
pends the conflict cluster C to N.clusters . All agents in
C are marked as excluded agents, and the cluster heuris-
tic hc is increased by one, because resolving the conflict

in a cluster must increase SIC by at least one (see Defini-
tion 1 and the following example).

• If R is a bypass (line 11-13), the algorithm takes the by-
pass path pm and updates N by changing the path of am
to pm. The conflicts of the old path are also removed
and replaced with new conflicts of pm. The conflict state
graph SG is also updated accordingly.

When the while loop terminates, the algorithm returns the
heuristic value (i.e., hp + hc). Note that our algorithm could
work without applying WDG heuristic, hp. However, WDG
is a relatively cheap yet effective heuristic and helps improve
the performance overall.

Inherit Clusters from Parent Node Since CBS only con-
strains a portion of agents (mostly one agent only) when
generating child CT nodes, the incompatibility among other
agents, excluding constrained agents, is not changed. Hence,
we inherit the information (similar to the WDG heuristic)
to avoid recomputation. To inherit a conflict cluster C from
parent CT node Pr (at line 2), we need to ensure two condi-
tions: (i) the path cost of every agent ai ∈ C of the current
CT node N and its parent CT node are exactly the same
(i.e., |N.P(ai)| = |Pr.P(ai)|) and (ii) every agent ai ∈ C
is a non-excluded agent (i.e., ai ̸∈ EA). To ensure (i) and
(ii), we iteratively scan through Pr.clusters and filter out
the clusters if |N.P(ai)| ̸= |Pr.P(ai)| or ai ∈ EA. For each
inherited cluster, we mark these agents as excluded and in-
crease the cluster heuristic hc by one (line 2).

Theorem 1. Given a CT node N , the heuristic h = hp +hc

computed by Algorithm 1 is admissible.

Proof. The pairwise heuristic hp is computed by consider-
ing a subset of agents Ap ⊆ A, and hp is an admissible
heuristic of CT node N as shown by Li et al. (2019). Al-
gorithm 1 excludes these agents and computes the cluster
heuristic hc by detecting the conflict clusters from agents
Ac = A \ Ap, thus hp and hc are disjoint. By Definition 1,
each conflict cluster must increase the cost of CT node N
by at least one. Thus, hc is also admissible as each conflict
cluster C ∈ Ac detected is independent of other clusters.
Therefore, h = hp + hc is an admissible heuristic.

Finding Conflict Cluster or Bypass
To find a conflict cluster or bypass for an agent am, one can
incrementally join the MDD of am with other non-excluded
agent ac (i.e., ac ̸∈ EA) and remove MDD nodes if there
is a pair of agents in conflict. We find a conflict cluster if
the joint MDD contains no feasible paths for each agent to
reach its goal. Alternatively, we may explore a bypass of am
from these feasible paths in the joint MDD. However, this
naive approach has two drawbacks: (i) joining the MDDs
exponentially increases the size of the joint MDD; and (ii)
exhaustively checking all non-excluded agents may be time-
consuming. In this work, we consider a more sophisticated
algorithm to identify the cluster and bypass using mutex
propagation. The key idea is to find incompatible nodes be-
tween a pair of MDDs.
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Algorithm 2: Find Cluster or Bypass
Input: am: a selected agent, EA: excluded agents, N : a

current CT node.
Output: a conflict cluster C or a bypass pm for agent am

Initialisation: C ← {am}; PA← ∅
1 pm← GETPATH(am, N);
2 MDDm← GETMDD(am, N);
3 CA← GETCONFLICTAGENTS(am, pm, N,EA);
4 for each ac ∈ CA \ PA do
5 PA← PA ∪ {ac};
6 MDDc← GETMDD(ac, N);
7 M ← MUTEXPROPAGATION(MDDm,MDDc);
8 if M ̸= ∅ then
9 C ← C ∪ {ac};

10 DELETENODES(MDDm,M);
11 if MDDm = ∅ then
12 return conflict cluster C ;
13 if pm ̸∈MDDm then
14 pm←GETMINCONFLICTPATH(MDDm);
15 goto line 3;
16 return |CA| reduced ? Bypass(pm) : null;

Definition 2 (Incompatible Node). Given a pair of MDDs
MDD i and MDDj for agents ai and aj , a MDD node ni

at level t from MDD i is incompatible with MDDj iff ni is
mutex with all MDD nodes at level t from MDDj .

According to Property 1, if an MDD node ni from MDD i

is incompatible with MDDj , all possible cost-minimised
paths of ai using ni have conflicts with all cost-minimised
paths of aj . Our algorithm maintains a path pm for am and
uses it as guidance to detect a conflict cluster or bypass, by
incrementally removing nodes of MDDm that are incompat-
ible with the MDDs of the agents whose paths conflict with
pm. Next, we explain the details of our algorithm.

Algorithm 1 calls the function FINDCLUSTERORBY-
PASS to find a conflict cluster or bypass for input agent
am. The pseudo-code of this algorithm is shown in Algo-
rithm 2. To begin, the algorithm initialises the conflict clus-
ter C to contain the agent am and initialises the processed
agents PA to be empty. It retrieves the current path pm of am
(line 1). The MDD of am, denoted as MDDm, is then built
which satisfies all constraints in N (line 2). The algorithm
then calls GETCONFLICTAGENTS, which considers all non-
excluded agents in N and returns the set of non-excluded
agents CA that conflict with am (line 3).

In each iteration, the algorithm iteratively accesses the
agents in CA that have not been processed before. For each
such agent ac ∈ CA\PA, we build the MDD of ac, denoted
as MDDc (line 6). The algorithm performs mutex propaga-
tion between the MDDm and MDDc and returns the in-
compatible nodes M of MDDm which are mutex with ev-
ery MDD node of MDDc in the same level (line 7). If M is
not empty, we append the agent ac into the conflict cluster
C (line 9) and recursively delete every incompatible node
n ∈ M (and the connected edges) from MDDm (line 10).
After deleting the incompatible nodes of MDDm, it is pos-
sible that MDDm becomes empty or the current path pm is
not valid in MDDm as some of the nodes have been deleted.

We handle each case as follows.

• If the MDDm is empty, this implies that C is a conflict
cluster which is returned (line 11-12).

• If the pm ̸∈ MDDm, the algorithm finds an alterna-
tive path from MDDm that has the minimal number of
conflicts with the other agents (lines 13 and 14). Since
path pm is updated, there may be new agents that are
in conflict with this new path. So, the algorithm goes to
line 3 and re-computes CA. Since CA is changed, the
algorithm continues to iteratively process the agents in
CA \ PA (line 4 onwards).

When the algorithm has processed all agents in CA\PA, it
terminates (line 16) by returning the bypass pm if this bypass
has fewer conflicts than the original path N.P(am). Other-
wise, it returns null, indicating that no cluster or bypass is
detected. The bypass pm returned by Algorithm 2 is an al-
ternative path retrieved from MDDm, which avoids travers-
ing through incompatible nodes. Since the MDDm satisfies
every constraint on am and has the same cost as N.P(am),
pm is a valid bypass.

To find the minimum-conflict path (line 14) and update
the conflict agents (line 3), we must repeatedly detect con-
flicts between am and other agents, which can be time-
consuming. Therefore, we use a labelling method that labels
the conflict agents on each node and edge of MDDm. Every
time the algorithm extracts the path, we run a breadth-first
search from source to goal of MDDm and compute the min-
imum number of conflicts and its predecessor on each node
visited. The minimum-conflict path and its conflict agents
can be easily retrieved from a backward extraction follow-
ing the predecessor node. Note that we only label MDDm

in Algorithm 2 once (when the algorithm reaches line 14 for
the first time).

Theorem 2. The cluster C returned by Algorithm 2 is a con-
flict cluster, according to Definition 1.

Proof. Mutex propagation of MDDc and MDDm removes
from MDDm only the nodes which are incompatible with
all paths in MDDc. So unless the agent ac increases its path
length, the paths removed for am from MDDm must conflict
with ac. If MDDm becomes empty, then clearly all paths of
the current path length of am must conflict with some other
agents in the cluster. Hence, at least one agent in the cluster
must increase its path length by one to avoid conflicts.

Example 4. Consider the example from Figure 1. Assume
the paths in N.P for a1, a2 and a3 are the solid blue, green
and orange lines in Figure 1a, respectively. Algorithm 2
starts with am = a2 and initialises C = {a2}. The algo-
rithm finds the set of conflicting agents CA = {a3} because
a2 and a3 conflict. It then processes a3 and performs mutex
propagation between MDD2 and MDD3. The incompatible
nodes (e.g., coloured orange in Figure 1b) of MDD2 are re-
moved and a3 is appended to C. Since the path of a2 no
longer exists in MDD2, the algorithm then updates its path
in N.P to be the minimal conflicts path (e.g., the dashed
green line). This new path collides with a1. The algorithm
returns to line 3 and finds conflicting agents CA = {a1}.
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Agent a1 is processed and appended to C. MDD2 becomes
empty after removing incompatible nodes (e.g., coloured
blue in Figure 1b) from MDD2. The algorithm returns the
conflict cluster C = {a1, a2, a3}.

Optimisation
In this section, we introduce optimisation techniques that
improve the cluster heuristic hc and speed up our algorithm.

Solving the Cluster Recall that Algorithm 1 increases the
cluster heuristic hc by one (line 10) whenever it detects a
conflict cluster C. However, to get a better heuristic value,
we can solve the cluster as a sub-instance to improve the
lower bound of C. Therefore, we take the paths and con-
straints of agent ai ∈ C from the current CT node N , and
run a sub-CBS search to solve C. To restrict the computation
cost of this optimisation, when solving a cluster, we also set
a limit L on the number of CT nodes expanded by the sub-
CBS. By default, we use the same setting (i.e., L = 10) as
used in WDG heuristic (Li et al. 2019). Let ∆C be the in-
crease of the minimal f -value in the open list after running
sub-CBS for this cluster. We increment the heuristic by ∆C

(i.e., Algorithm 1 line 10 : hc += ∆C). It is easy to see that
the correctness of Theorem 1 is preserved.

Memoisation The algorithms have two operations that can
be repetitively performed in the same or different branches
of a CT tree: (i) computing heuristic for the same conflict
clusters using sub-CBS described above; and (ii) performing
the mutex propagation between the same pair of MDDs (Al-
gorithm 2 - line 7). We say that two conflict clusters (resp.
MDDs) are the same if the two clusters (resp. MDDs) have
the same agents with exactly the same constraints for each
agent. In order to speed up the search, we apply memoisa-
tion by maintaining a centralised database in CBS. To avoid
(i), we simply maintain a hash table to cache the increased
cost ∆C of a conflict cluster C by hashing all constraints
∈ N.constraints of agents in C as a key. However, avoid-
ing (ii) needs some modifications detailed below.

Algorithm 2 takes the MDD of am and performs mu-
tex propagation with the MDDs of the conflicting agents
ac ∈ CA. In each iteration, the incompatible MDD nodes
of MDDm are removed which results in a smaller MDDm.
Therefore, we cannot cache the results of mutex propaga-
tion between MDDm and MDDc as MDDm changes after
each iteration. To overcome this issue, we propose to apply
a reusable version of mutex propagation. This reusable mu-
tex propagation does not consider the updated MDDm, but
only considers the original unmodified MDDm and MDDc

from the CT node N . Let us denote the unmodified MDDm

as MDD ′
m. The algorithm begins with MDDm of agent

am. Every time the algorithm performs mutex propagation
between am and ac, it performs the reusable mutex prop-
agation and returns the incompatible nodes of MDD ′

m to
MDD ′

c. We use this result to remove MDD nodes from
MDDm until MDDm becomes empty or there is no other
valid conflicting agent ac. Although this lazy strategy weak-
ens mutex propagation (i.e., the reusable mutex propagation
may be able to detect only a subset of incompatible nodes),
we can now cache the incompatible nodes between am and

ac based on the constraints of the two agents. In the experi-
ments, we show that the reusable mutex propagation almost
always leads to a speedup as it does not lose too much mutex
information and can reuse many mutex calculations.

Experiments
In this section, we compare our algorithm against the state-
of-the-art variation of CBS (Li et al. 2021) taken from the
repository2 of the authors. This algorithm applies all lead-
ing optimisation techniques including: (i) high-level heuris-
tics: weighted pairwise dependence graph (WDG) (Li et al.
2019); (ii) symmetry reasoning techniques: target reason-
ing, generalised rectangle and corridor reasoning (Li et al.
2021); and (iii) prioritising and bypassing conflicts (Bo-
yarski et al. 2015b,a). We use WDG to refer to this algo-
rithm. Our algorithm is built on top of WDG and, in addi-
tion, uses cluster heuristic and bypass (CHBP). It is shown
as WDG+CHBP in the experiments. We also compare the
algorithm when only cluster heuristic is used and the by-
pass is ignored (i.e., WDG+CH) or when only the bypass
returned by Algorithm 2 is used but the cluster heuristic is
ignored (shown as WDG+BP). We do not compare our al-
gorithm against the LR heuristic (Mogali, van Hoeve, and
Smith 2020) because it requires us to modify the definition
of MAPF by limiting the maximum cost of the paths.

Benchmarks We conduct experiments on four diverse
maps taken from the widely used 4-connected grid map
benchmarks3, described by Stern et al. (2019). These maps
cover different real-life scenarios.

• Random map (random-32-32-20): a 32×32 grid map
with 20% random blocked cells. The number of agents
on the map is set to 20, 30, ..., 70.

• Empty map (empty-32-32): an empty 32×32 grid map.
The number of agents in the map is set to 50, 70, ..., 150.

• Warehouse map (warehouse-10-20-10-2-1): a 161×63
grid map which simulates the warehouse environment
with 10×20 stacks. Each stack has 10×2 grids. The num-
ber of agents is set to 30, 50, ..., 130.

• Game map (den520d): a 256×257 grid map from a video
game. The number of agents is set to 40, 60, ..., 140.

The benchmark contains, for each map setting, two sets of
instances each containing 25 instances: the first set generates
agents with randomly selected start and goal locations; the
second set generates agents with an even mix of short and
long distances between their start and goal locations. We
run every instance for 1 minute and report the overall per-
formance. The instances that cannot be solved in 1 minute
by an algorithm are considered unsolved. All algorithms are
implemented in C++ and compiled with -O3 flag. We con-
duct all experiments on a Nectar research cloud with 128GB
of RAM running Ubuntu 18.04.4 LTS (Bionic Beaver). For
reproducibility, our implementation is available online.4

2https://github.com/Jiaoyang-Li/CBSH2-RTC
3https://movingai.com/benchmarks/mapf
4https://github.com/bshen95/CBSH2-RTC-CHBP
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Figure 2: Cactus plots for runtime in seconds (top row), scatter plots for runtime in seconds (middle row), and scatter plots for
CT node expansions (bottom row). If an approach fails to solve an instance in 60 seconds (i.e., unsolved instance), its runtime
in the figure is shown as 60 seconds and its number of node expansions is shown to be 105 (all solved instances have runtime
less than 60 and node expansions less than 105).

Runtime and CT Node Expansions
Top row in Figure 2 shows the cactus plots for runtime (sec)
of different algorithms. Using cluster heuristic and bypass
(WDG+CHBP) significantly improves the performance on
hard instances (note the log scale on the y-axis). While the
cluster heuristic (WDG+CH) leads to improvements over
WDG, bypassing alone (WDG+BP) does not help solve
hard instances. This is because CHBP mainly benefits from
increasing heuristic value whereas bypassing itself neither
considers heuristic value nor excludes the agents of detected
clusters which results in degraded performance.

The scatter plots in the middle row (Figure 2) show de-
tailed runtime comparisons versus the baseline WDG. The
three diagonal lines show the performance improvement
compared to WDG (1x, 5x or 10x), i.e., a point under the
diagonal line 5x indicates that our algorithm is more than
5 times faster than WDG on that instance. The scatter plots
show that our methods improve upon the baseline for most
of the instances and rarely show significantly worse runtime.
Importantly, our methods are able to solve many instances
that are unsolved by the baseline (the instances shown at 60

seconds on the x-axis). There are some instances which we
fail to solve but the baseline can solve (illustrated by the
points at 60 seconds on the y-axis). Note that the number
of such instances is much smaller than the instances that the
baseline cannot solve but our algorithm can solve. Overall
WDG, WDG+BP, WDG+CH and WDG+CHBP solve 875,
859, 896 and 937 instances, respectively.

The scatter plots on the bottom row in Figure 2 show de-
tailed comparisons of # CT node expansions of our algo-
rithms with WDG. Again, our methods almost always lead
to fewer CT node expansions.

Ablation Study on Optimisation Techniques
Figure 3 shows the scatter plots for the runtime of our fi-
nal algorithm (WDG+CHBP) versus two modified versions
of the algorithm without applying optimisation techniques.
The diagonal lines show how slow the two versions are com-
pared to our final algorithm WDG+CHBP, i.e., a point above
the diagonal 2x shows an instance where the algorithm is
more than 2 times slower than WDG+CHBP. Clearly, both
versions show worse performance than our final algorithm,
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Figure 3: Effect of optimisation techniques on runtime (sec) of our final algorithm (WDG+CHBP). No Solving is when the
optimisation to solve the cluster is not applied and No Memoisation is when the memoisation is not applied.
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Figure 4: ∆fmin=fmin(WDG+CHBP) − fmin(WDG). In-
stances solved by both WDG and WDG+CHBP are removed
as they have ∆fmin = 0. We show instances solved by
only WDG (blue), solved by only WDG+CHBP (red) and
unsolved by both (grey).

which demonstrates the effectiveness of our proposed op-
timisations. In addition, No Solving is significantly worse
than WDG+CHBP on many instances. This shows that solv-
ing the cluster is the most important enhancement as it sig-
nificantly increases the heuristic value for some of the clus-
ters detected. Although not as significant, memoisation also
plays an important role by avoiding repeatedly solve the
same clusters and perform mutex propagation between the
same pair of MDDs.

Effect of Heuristic Value and Insights
In Figure 4, we show ∆fmin=fmin(WDG+CHBP) −
fmin(WDG) where fmin(X) is the minimum f-value (f =
N.cost + h) in the open list when the algorithm X termi-
nates. ∆fmin shows the difference in heuristic values of the
two algorithms indicating how much the cluster heuristic
is able to improve the search progress compared to WDG.
Note that while it cannot make the heuristic worse at a CT
node, it does change the CBS search tree which may lead to
a smaller fmin for WDG+CHBP for some instances com-
pared to WDG. Figure 4 shows that ∆fmin is mostly posi-

Map
CBS Search Compute WDG Compute CHBP

Total(s) PH(ms) Total(s) PH(ms) Total(s) PH(ms)
Random 1094.39 0.54 1158.83 0.57 1452.25 0.71
Empty 1061.40 0.50 1342.00 0.63 2513.68 1.23

Warehouse 2826.13 18.53 932.69 6.12 1334.28 8.75
Game 2972.42 32.93 627.17 6.95 1084.17 12.01

Table 1: Performance breakdown of WDG+CHBP. We show
the total runtime (Total) and the average runtime per heuris-
tic calculated (PH) for each component in WDG+CHBP.

tive and there is typically a significant increase in fmin for
WDG+CHBP compared to WDG, especially on the empty
and warehouse maps. Also, note that WDG+CHBP solves
many instances that WDG cannot solve. On the other hand,
there are very few instances that only WDG can solve.

Table 1 shows the average runtime per heuristic calcu-
lated of the various components: CBS search, that is every-
thing else than heuristics and bypass calculation; Compute
WDG, the time to compute the WDG heuristic; and Com-
pute CHBP, the time to compute our heuristic and bypasses.
Clearly, the more complex heuristics are more expensive
on average than the WDG heuristic, but never more than 2
times more expensive. They take less time than the remain-
ing components on the larger maps. Overall of course the
computation cost of this heuristic almost always pays off in
terms of reduced high-level search.

Conclusion
In this work, we propose new techniques to compute heuris-
tics by reasoning incompatibility beyond two agents. Our
approach dynamically finds conflict clusters and bypasses
at the same time. We substantially improve CBS by solving
more instances in limited time and reducing the CT node ex-
pansion and runtime to solve problems. For instances with a
timeout failure, we push the lower-bound (i.e., fmin) to a
significantly higher value. We show that reasoning for con-
flict clusters is essential to solving larger MAPF problems.
Future works include capturing more complex clusters, in-
tegrating conflict cluster heuristics to the integer program of
the WDG heuristic, and designing strong methods to effi-
ciently resolve all conflicts in clusters.
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