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Abstract

The deployment of automated planning in safety critical sys-
tems has resulted in the need for the development of robust
automated planners that can (i) accurately model complex
systems under uncertainty, and (ii) provide formal guarantees
on the model they act on. In this paper, we introduce a ro-
bust automated planner that can represent such stochastic sys-
tems with metric specifications and constrained continuous-
time nonlinear dynamics over mixed (i.e., real and discrete
valued) concurrent action spaces. The planner uses inverse
transform sampling to model uncertainty, and has the capa-
bility of performing bi-objective optimization to first enforce
the constraints of the problem as best as possible, and sec-
ond optimize the metric of interest. Theoretically, we show
that the planner terminates in finite time and provides formal
guarantees on its solution. Experimentally, we demonstrate
the capability of the planner to robustly control four complex
physical systems under uncertainty.

Introduction
Automated planning formally reasons about the selection,
timing and duration of actions to reach desired states of the
world as best as possible by representing the dynamics of
the world using a model (Nau, Ghallab, and Traverso 2004).
It has significantly improved the ability of autonomous sys-
tems to solve challenging tasks such as, smart grid con-
trol (Thiébaux et al. 2013), traffic control (McCluskey and
Vallati 2017), Heating, Ventilation and Air Conditioning
(HVAC) control (Say et al. 2017), and Unmanned Aerial Ve-
hicles (UAV) control (Ramirez et al. 2018). The deployment
of automated planning in such safety critical systems re-
sulted in the need for the development of robust automated
planners that can (i) accurately model complex systems un-
der uncertainty, and (ii) provide formal guarantees on the
model they act on. In this paper, we will introduce an au-
tomated planner that can robustly plan in complex domains
with constrained continuous-time nonlinear dynamics that
require metric optimization over mixed (i.e., real and dis-
crete valued) concurrent action spaces under uncertainty.

We will begin with the definition of the stochastic met-
ric hybrid planning problem by building up on the existing
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deterministic metric hybrid planning problem (Say and San-
ner 2018, 2019) from the literature which readily formalizes
all aspects of the complex planning problems we will con-
sider in this paper except the uncertainty. Specifically, our
definition will be in the form of a bi-objective optimiza-
tion problem; which will allow us to first enforce the con-
straints of the problem as best as possible, and second opti-
mize the metric of interest (i.e., total reward accumulated).
This is in contrast to other important risk-sensitive auto-
mated decision making systems that either model the effects
of constraint violations into the reward function and view the
unconstrained optimization problem from a distributional
perspective (Bellemare, Dabney, and Munos 2017; Dabney
et al. 2018; Yang et al. 2019; Patton et al. 2022), or assume a
priori knowledge on maximum allowed constraint violation
and model the problem as a single objective constrained op-
timization problem (Li and Williams 2008; Guo and Song
2011; Trevizan, Thiébaux, and Haslum 2017; Yang et al.
2020; Liu et al. 2021; Simão, Jansen, and Spaan 2021). No-
tably, multi-objective optimization has been previously stud-
ied for robust automated decision making (Lacerda, Parker,
and Hawes 2015; Geisser et al. 2022) under formalisms that
are built up on finite set of atomic propositions (i.e., Linear
Temporal Logic (Pnueli 1977) and STRIPS planning (Fikes
and Nilsson 1971)). We remark that these important works
are fundamentally restricted to model problems with discrete
action spaces and therefore are not suitable to model plan-
ning problems with mixed concurrent action spaces that are
the focus of this paper.

We will then proceed with the introduction of an ef-
fective methodology for solving the stochastic metric hy-
brid planning problem. Our automated planner will per-
form anticipatory planning (Mercier and Van Hentenryck
2008) to model uncertainty (i.e., the first robustness criteria).
Specifically, it will use an effective determinization proce-
dure (Raghavan et al. 2017) based on inverse transform sam-
pling to randomly sample multiple futures, and solve them
collectively as one bi-objective optimization problem. In or-
der to solve the resulting bi-objective optimization problem
with interval constraints (i.e., used to model the constrained
continuous-time dynamics of the underlying planning prob-
lem), we will use constraint generation. Namely, we will
build on an existing automated planner (Say and Sanner
2019) that uses constraint generation to heuristically solve
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the deterministic version of our planning problem, and mod-
ify the planner such that it provides formal guarantees on
the model it acts on (i.e., the second robustness criteria).
Specifically, we will show that our modifications guaran-
tee that the planner terminates in finite number of constraint
generation iterations and provides guarantees on its solution.
Moreover we will present the results of our detailed com-
putational experiments to test the effectiveness of using the
planner to robustly control four complex physical systems
under uncertainty. Namely, we will model each continuous-
time control problem as a stochastic metric hybrid planning
problem using the solution equations of the underlying ordi-
nary differential equations, and solve the resulting planning
problem with the planner. We will conclude our paper with
a discussion of our contributions in relation to the literature
for the purpose of starting new areas for future work.

Background
We begin by presenting the definition of the deterministic
metric hybrid planning problem Π, an effective methodol-
ogy for solving Π and a determinization procedure that will
allow us to sample stochastic planning problems as parame-
terized Π.

Deterministic Metric Hybrid Planning Problem
A deterministic metric hybrid planning problem (Say and
Sanner 2019) is a tuple Π = ⟨S,A,∆, C, T, V,G,R,H⟩
where

• S = {s1, . . . , sn} is the set of factored state variables
with bounded domains Ds1 , . . . , Dsn for positive integer
n ∈ Z+,

• A = {a1, . . . , am} is the set of concurrent action vari-
ables with bounded domains Da1

, . . . , Dam
for positive

integer m ∈ Z+,
• ∆ ∈ [ϵ,M ] is the duration of a step for positive real num-

bers ϵ ∈ R+ and M ∈ R+ where ϵ ≤ M ,
• C :

∏n
i=1 Dsi ×

∏m
i=1 Dai

× [ϵ,M ] → R is the de-
terministic temporal constraint function that is used to
define the constraint C(st1, . . . , s

t
n, a

t
1, . . . , a

t
m,∆t) ≤ 0

for all steps t ∈ {1, . . . ,H},
• T :

∏n
i=1 Dsi ×

∏m
i=1 Dai

× [ϵ,M ] →
∏n

i=1 Dsi is the
deterministic state transition function,

• V is a tuple of constants ⟨V1, . . . , Vn⟩ ∈
∏n

i=1 Dsi de-
noting the initial values of all state variables,

• G :
∏n

i=1 Dsi → R is the deterministic goal
state function that is used to define the constraint
G(sH+1

1 , . . . , sH+1
n ) ≤ 0,

• R :
∏n

i=1 Dsi ×
∏m

i=1 Dai
× [ϵ,M ] → R is the deter-

ministic reward function, and
• H ∈ Z+ is the planning horizon.

A solution to Π is a tuple of values ⟨āt1, . . . , ātm⟩ ∈∏m
i=1 Dai

for all action variables A and a value ∆̄t ∈
[ϵ,M ] for all steps t ∈ {1, . . . ,H} (and a tuple of values
⟨s̄t1, . . . , s̄tn⟩ ∈

∏n
i=1 Dsi for all state variables S and steps

t ∈ {1, . . . ,H + 1}) if and only if the following conditions
hold:

1. Vi = s̄1i for all i ∈ {1, . . . , n},

2. T (s̄t1, . . . , s̄
t
n, ā

t
1, . . . , ā

t
m, ∆̄t) = ⟨s̄t+1

1 , . . . , s̄t+1
n ⟩ for

steps t ∈ {1, . . . ,H},

3. G(s̄H+1
1 , . . . , s̄H+1

n ) ≤ 0, and
4. C(s̄t1, . . . , s̄

t
n, ā

t
1, . . . , ā

t
m, xt) ≤ 0 for steps t ∈

{1, . . . ,H} and for all values of xt ∈ [0, ∆̄t].

Similarly, an optimal solution to Π is a solution that max-
imizes the reward function R over the planning horizon H
such that:

max
a1
1,...,a

H
m

∆1,...,∆H

H∑
t=1

R(st1, . . . , s
t
n, a

t
1, . . . , a

t
m,∆t)

Next, we will present an effective methodology for solv-
ing Π.

Deterministic Metric Hybrid Planning with
Mathematical Optimization
SCIPPlan (Say and Sanner 2019) is an automated planner
that is based on mathematical optimization for solving Π.
The model that describes the optimal solution of Π is pro-
vided below.

max
a1
1,...,a

H
m

∆1,...,∆H

H∑
t=1

R(st1, . . . , s
t
n, a

t
1, . . . , a

t
m,∆t) (1)

Vi = s1i ∀i∈{1,...,n} (2)

st+1
i = Ti(s

t
1, . . . ,∆

t) ∀i∈{1,...,n},t∈{1,...,H} (3)

C(st1, . . . , c
t∆t) ≤ 0 ∀ct∈[0,1],t∈{1,...,H} (4)

G(sH+1
1 , . . . , sH+1

n ) ≤ 0 (5)

sti ∈ Dsi ∀i∈{1,...,n},t∈{1,...,H+1} (6)

ati ∈ Dai
∀i∈{1,...,m},t∈{1,...,H} (7)

ϵ ≤ ∆t ≤ M ∀t∈{1,...,H} (8)

SCIPPlan uses a constraint generation framework that is
outlined in Algorithm 1 to solve this model, since solving
a model with interval constraints such as constraint (4) is
theoretically complex and computationally challenging in
general (Floudas and Pardalos 2009). Before the constraint
generation begins, SCIPPlan relaxes constraint (4) with one
constraint for each end of the interval (i.e., for ct ∈ {0, 1}).
Given this setup, SCIPPlan iteratively performs the follow-
ing operations. SCIPPlan solves the (nonlinear) model using
a spatial branch-and-bound algorithm (i.e., line 2). SCIPPlan
terminates if the model is infeasible at any iteration (i.e.,
lines 3-4). If an optimal solution to the model is found (i.e.,
line 5), SCIPPlan heuristically checks1 whether this solution
also satisfies condition 4 or not. SCIPPlan terminates with a

1SCIPPlan heuristically checks condition 4 by simulating func-
tion C with ϵ increments of duration within the interval (0, ∆̄t) for
values āt

i , s̄
t
i and ∆̄t over steps t ∈ {1, . . . , H}. SCIPPlan then

returns the coefficient ct that correspond to the middle point of the
first detected constraint violation.
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solution if condition 4 is also satisfied (i.e., line 7). Other-
wise, SCIPPlan generates a new constraint that violates con-
dition 4 by the means of adding constraint (4) with a new
value of ct ∈ (0, 1) to the model (i.e., in line 9). This proce-
dure is repeated until either a solution is found or the model
becomes infeasible.

Algorithm 1: SCIPPlan (Say and Sanner 2019)
1: while True do
2: Solve the model
3: if the model is infeasible then
4: return infeasibility
5: else
6: if values āt

1, . . . , ∆̄
H also satisfy condition 4 then

7: return āt
1, . . . , ∆̄

H as the solution for Π
8: else
9: Generate constraint (4) with a new ct ∈ (0, 1)

While SCIPPlan has been shown to work well experimen-
tally, it remained an open research question whether SCIP-
Plan (i) terminates in finite number of constraint generation
iterations, and/or (ii) provides any guarantees upon its ter-
mination. In this paper, we will show that under the mild
assumption that function C is Lipschitz continuous, a mod-
ification of SCIPPlan that verifies condition 4 by solving a
decision problem terminates in finite number of iterations,
and either proves the infeasibility of Π or guarantees that the
returned solution is a solution to Π within some maximum
tolerance for constraint violation.

Next, we will present a determinization procedure that
leverages inverse transform sampling to randomly sample
values of random variables where the distribution of each
variable is known and belongs to the location-scale family.

Determinization via Inverse Transform Sampling
In this paper, we will solve stochastic metric hybrid planning
problems that will have random expressions which are func-
tions of decision variables sti, a

t
i, ∆

t and random variables
X t

i such as:
st1 + at1∆

t +∆tX t
1

where the random variable X t
1 ∼ Z1 is assumed to

come from some known distribution Z1 which belongs
to the location-scale family. The determinization proce-
dure (Raghavan et al. 2017) uses inverse transform sampling
to determinize such random expressions where the resulting
deterministic expression remains a function of decision vari-
ables sti, a

t
i and ∆t.

Given a stochastic expression with continuous2 random
variables X t

i ∼ Zi and known distributions Zi with location
µi and scale σi > 0 parameters, the determinization proce-
dure first samples ui from the uniform distribution U(0, 1).
Given ui, it encodes the sampled expression by symboli-
cally substituting each occurance of X t

i with µi+σiF−1
Zi

(ui)

where F−1
Zi

denotes the quantile function of the standard-
ized form of distribution Zi. For example, the normally dis-

2A similar determinization procedure exists for discrete random
variables (Raghavan et al. 2017).

tributed random variable X t
1 ∼ N (µ1, σ

2
1) would be sam-

pled as µ1 + σ1F−1
Z (0.1) for u1 = 0.1.

In the next two sections, we will present the first two con-
tributions of this paper, namely: (i) the formalization of the
stochastic metric hybrid planning problem Π+, and (ii) an
effective solution methodology for the newly defined Π+.

Stochastic Metric Hybrid Planning Problem
A stochastic metric hybrid planning problem is a tuple
Π+ = ⟨X , S,A,∆, C+, T+, V,G+, R+, H⟩ where A and
S denote the sets of concurrent action and factored random
state variables, ∆ denotes the duration of a step, V denotes
the initial values of all state variables and H denotes the
planning horizon. Moreover,
• X = {X1, . . . ,Xk} is the set of random variables with

domains DX1 , . . . , DXk
(i.e., sample spaces) for positive

integer k ∈ Z+ where the distribution Zi of each random
variable Xi ∼ Zi is known, and each distribution Zi be-
longs to the location-scale family with known location µ
and scale σ > 0 parameters,

• C+ :
∏n

i=1 Dsi ×
∏m

i=1 Dai × [ϵ,M ]×
∏k

i=1 DXi → R
is the stochastic temporal constraint function,

• T+ :
∏n

i=1 Dsi ×
∏m

i=1 Dai
× [ϵ,M ] ×

∏k
i=1 DXi

→∏n
i=1 Dsi is the stochastic state transition function, and

T+
pdf :

∏n
i=1 Dsi ×

∏m
i=1 Dai

× [ϵ,M ] ×
∏n

i=1 Dsi ×∏k
i=1 DXi → [0,∞) is the corresponding probability

density function of the state transitions,
• G+ :

∏n
i=1 Dsi ×

∏k
i=1 DXi

→ R is the stochastic goal
state function, and

• R+ :
∏n

i=1 Dsi ×
∏m

i=1 Dai
× [ϵ,M ]×

∏k
i=1 DXi

→ R
is the stochastic reward function.

In this paper, we assume that the random variables X are
the only source of stochasticity of functions C+, T+, G+

and R+, and X 1
i , . . . ,X

H+1
i are independent and identically

distributed. This assumption will allow us to effectively sam-
ple each Xi from their distribution Zi such that each sampled
future will remain deterministic functions of sti, a

t
i and ∆t

using the previously described determinization procedure.
A solution to Π+ is a tuple of values ⟨āt1, . . . , ātm⟩ ∈∏m
i=1 Dai for all action variables A and for all steps t ∈

{1, . . . ,H} and value ∆̄t ∈ [ϵ,M ] for all steps t ∈
{1, . . . ,H} that maximizes the expected solution quality
Es1i=Vi,s

t+1
i ∼T+

pdf ,X
t
i ∼Zi

[v] in which the auxiliary binary
variable v ∈ {0, 1} denotes the plan success such that:

v =


1, if G+(sH+1

1 , . . . ,XH+1
k ) ≤ 0 and

C+(st1, . . . , x
t, . . . ,X t

k) ≤ 0

for all t ∈ {1, . . . ,H}, xt ∈ [0,∆t]

0, otherwise

Similarly, an optimal solution to Π+ is a solution that maxi-
mizes the expected bi-objective solution quality such that:

max
a1
1,...,a

H
m

∆1,...,∆H

E s1i=Vi

st+1
i ∼T+

pdf

X t
i ∼Zi

[(
v, v

H∑
t=1

R+(st1, . . . ,X t
k)

)]
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The expected bi-objective solution quality consists of (i)
the expected plan success and (ii) the expected total reward
that is accumulated over the planning horizon H where the
expected plan success optimization is prioritized over the
expected total reward optimization in risk-sensitive settings
that require robust decision making. Next, we will present
an effective methodology for solving Π+.

SCIPPlan+: A Robust Stochastic Metric
Hybrid Planner

In this section, we introduce an effective methodology for
solving Π+, and refer to the resulting automated planner
as SCIPPlan+. SCIPPlan+ will leverage the previously de-
scribed determinization procedure to randomly sample F ∈
Z+ futures, and solve them collectively as one mathematical
optimization problem. Given each future f ∈ {1, . . . , F}
will represent a version of Π that is parameterized by a set
of sampled random variables, we proceed with the definition
of the parameterized deterministic metric hybrid planning
problem Πp below.

Parameterized Deterministic Metric Hybrid
Planning Problem
Given the set of samples X̄ f of random variables X
for future f ∈ {1, . . . , F}, a parameterized determinis-
tic metric hybrid planning problem is a tuple Πp(X̄ f ) =
⟨X̄ f , Sf , Af ,∆f , Cp, T p, V,Gp, Rp, H⟩ where Af and Sf

denote the sets of concurrent action and factored state vari-
ables, ∆f denotes the duration of a step, V denotes the ini-
tial values of all state variables and H denotes the planning
horizon. Moreover,

• Cp :
∏n

i=1 Dsi ×
∏m

i=1 Dai
× [ϵ,M ] ×

∏k
i=1 DXi

→
R is the parameterized deterministic temporal con-
straint function that is used to define the constraint
Cp(st,f1 , . . . , X̄ t,f

k ) ≤ 0 for all steps t ∈ {1, . . . ,H},

• T p :
∏n

i=1 Dsi ×
∏m

i=1 Dai
× [ϵ,M ] ×

∏k
i=1 DXi

→∏n
i=1 Dsi is the parameterized deterministic state transi-

tion function,
• Gp :

∏n
i=1 Dsi ×

∏k
i=1 DXi

→ R is the parameterized
deterministic goal state function that is used to define the
constraint Gp(sH+1

1 , . . . , X̄H+1,f
k ) ≤ 0,

• Rp :
∏n

i=1 Dsi ×
∏m

i=1 Dai
× [ϵ,M ]×

∏k
i=1 DXi

→ R
is the deterministic reward function,

The deterministic functions Cp, T p, Gp and Rp are obtained
from the stochastic functions C+, T+, G+ and R+ respec-
tively, following the previously described determinization
procedure. The samples X̄ 1

i , . . . , X̄
H+1
i used in this deter-

minization procedure are drawn via inverse transform sam-
pling, and are assumed to be independent and identically dis-
tributed. As a result for example, the previously presented
stochastic expression can be sampled for future f as:

st,f1 + at,f1 ∆t,f +∆t,f
(
µ+ σF−1

Z (ut,f
1 )
)

for decision variables st,f1 , at,f1 and ∆t,f , and constants
ut,f
1 ∼ U(0, 1), µ and σ2 > 0. Given the definition of Πp,

we will define two solutions over all parameterized problems
Πp(X̄ 1), . . . ,Πp(X̄F ) based on the decision making setting
we are in, namely: online or offline planning. In both of these
definitions, we will use the binary variable vf ∈ {0, 1} to
denote whether the values of state variables, action variables
and durations satisfy the specifications of Πp for future f
(i.e., vf = 1) or not (i.e., vf = 0).

Fully Committed Plan In an offline planning setting
(e.g., when we need to commit to the values of action
variables and durations for all steps t ∈ {1, . . . ,H}),
we will define the solution to the parameterized problems
Πp(X̄ 1), . . . ,Πp(X̄F ) as a tuple of values ⟨āt,f1 , . . . , āt,fm ⟩ ∈∏m

i=1 Dai for all action variables A and a value ∆̄t,f ∈
[ϵ,M ], for all steps t ∈ {1, . . . ,H} and futures f ∈
{1, . . . , F} if and only if the following conditions hold for
all pairs of futures f, f ′ ∈ {1, . . . , F}:

1. v̄f = 1 → Gp(s̄H+1,f
1 , . . . , X̄H+1,f

k ) ≤ 0,

2. v̄f = 1 → Cp(s̄t,f1 , . . . , xt,f , . . . X̄ t,f
k ) ≤ 0 for steps

t ∈ {1, . . . ,H} and for all values of xt,f ∈ [0, ∆̄t,f ],

3. (v̄f = 1∧ v̄f
′
= 1) → (āt,fi = āt,f

′

i ∧ ∆̄t,f = ∆̄t,f ′
) for

all i ∈ {1, . . . ,m} and steps t ∈ {1, . . . ,H},

and the solution quality 1
F

∑F
f=1 v

f is maximized. Simi-
larly, an optimal solution to Πp(X̄ 1), . . . ,Πp(X̄F ) is a solu-
tion that maximizes the bi-objective solution quality

max
a1,1
1 ,...,aH,F

m

∆1,1,...,∆H,F

v1,...,vF

 1

F

F∑
f=1

vf ,
1

F

F∑
f=1

vf
H∑
t=1

R(st,f1 , . . . , X̄ t,f
k )


such that the total plan success optimization (i.e., the first
objective) is prioritized over the total reward optimization
(i.e., the second objective).

In the definition above, the indicator constraints (i.e., de-
noted by the symbol →) enforce that conditions 1-3 are sat-
isfied for future f when vf = 1. The bi-objective solu-
tion quality first aims to maximize the total number of fu-
tures for which the plan satisfies conditions 1-3, and sec-
ond aims to maximize the total reward accumulated over
such plans. The solution of the parameterized planning prob-
lems Πp(X̄ 1), . . . ,Πp(X̄F ) over all sampled futures ap-
proximates the solution of Π+ as F approaches infinity (i.e.,
the overestimation is obtained from first swapping expec-
tation and maximization, and then taking the limit of F to
infinity) (Mercier and Van Hentenryck 2008; Yoon et al.
2008).

Partially Committed Plan In an online planning setting3

(e.g., when we only need to commit to the values of action
variables and duration at step t = 1), we will define the (op-
timal) solution by modifying condition 3 of fully committed
plan to: (v̄f = 1∧v̄f ′

= 1) → (āt,fi = āt,f
′

i ∧∆̄t,f = ∆̄t,f ′
)

for all i ∈ {1, . . . ,m}, for all pairs of futures f, f ′ ∈
3The duration of the first step ∆1,f can be constrained to ac-

commodate for the computational time required for online plan-
ning.
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{1, . . . , F} and only for step t = 1. Since this definition
only relaxes condition 3 of the previous definition, a par-
tially committed plan provides an upper bound on the solu-
tion quality of a fully committed plan.

Bi-Objective Mathematical Optimization for
Stochastic Metric Hybrid Planning
The mathematical optimization model that SCIPPlan+ uses
to solve Πp over F futures is presented below.

max
a1,1
1 ,...,aH,F

m

∆1,1,...,∆H,F

v1,...,vF

1

F

F∑
f=1

vf
H∑
t=1

R(st,f1 , . . . , X̄ t,f
k ) (9)

Vi = s1,fi ∀i∈{1,...,n},f∈{1,...,F} (10)

T p
i (s

t,f
1 , . . . , X̄ t,f

k ) = st+1,f
i

∀i∈{1,...,n},t∈{1,...,H},f∈{1,...,F} (11)

vf = 1 → Cp(st,f1 , . . . , ct,f∆t,f , . . . X̄ t,f
k ) ≤ 0

∀ct,f∈[0,1],t∈{1,...,H},f∈{1,...,F} (12)

vf = 1 → Gp(sH+1,f
1 , . . . , X̄H+1,f

k ) ≤ 0

∀f∈{1,...,F} (13)

st,fi ∈ Dsi ∀i∈{1,...,n},t∈{1,...,H+1},f∈{1,...,F} (14)

at,fi ∈ Dai
∀i∈{1,...,m},t∈{1,...,H},f∈{1,...,F} (15)

ϵ ≤ ∆t,f ≤ M ∀t∈{1,...,H},f∈{1,...,F} (16)
F∑

f=1

vf = F ′ (17)

(vf = 1 ∧ vf
′
= 1) → at,fi = at,f

′

i

∀i∈{1,...,m},t∈{1,...,H′},f,f ′∈{1,...,F} (18)

(vf = 1 ∧ vf
′
= 1) → ∆t,f = ∆t,f ′

∀t∈{1,...,H′},f,f ′∈{1,...,F} (19)

where the hyperparameter F ′ ∈ {1, . . . , F} denotes the to-
tal number of plans that must satisfy conditions 1-3, and the
hyperparameter H ′ is set equal to the planning horizon H
for the computation of a fully committed plan or set to 1 for
the computation of a partially committed plan. Given this
mathematical optimization model, next we present the algo-
rithmic description of SCIPPlan+ (i.e., Algorithm 2).

Algorithm 2: SCIPPlan+

1: Planning Setting: H ′ = H for FC plan or H ′ = 1 for PC plan
2: Number of sampled futures: F ′ = F
3: while F ′ > 0 do
4: Solve the model with H ′ and F ′.
5: if A solution is found then
6: return the solution.
7: F ′ ← F ′ - 1
8: return infeasibility.

For a given planning setting (i.e., either FC plan or PC
plan is set in line 1), SCIPPlan+ solves Πp over F futures by

solving the mathematical optimization model initially with
the value F ′ = F (i.e., lines 2-4). If the model is feasible
at any iteration (i.e., line 5), SCIPPlan+ terminates with a
solution (i.e., line 6). If the model is infeasible, F ′ is decre-
mented by 1 (i.e., line 7) and the model is solved again (i.e.,
line 4). This procedure is repeated (i.e., line 3) until either
the model is feasible and SCIPPlan+ returns a solution, or
the model is infeasible when F ′ is equal to 1 and SCIPPlan+
terminates (i.e., line 8).

Next, we will present the remaining two contributions of
this paper, namely: (iii) the theoretical results on the finite-
ness and correctness of both SCIPPlan and SCIPPlan+, and
(iv) the experimental results on the computational perfor-
mance of SCIPPlan+.

Theoretical Results
In this section, we present our theoretical results on the
finiteness and correctness of a modification of SCIPPlan for
solving Π, and consequently the finiteness and correctness
of SCIPPlan+ for solving Πp. Namely, SCIPPlan can be
modified to verify condition 4 given āti, s̄

t
i and ∆̄t by solving

the following decision problem (i.e., line 6 of Algorithm 1):

C(s̄t1, . . . , s̄
t
n, ā

t
1, . . . , ā

t
m, ct∆̄t) ≥ γ

for decision variable ct ∈ (0, 1) within some maximum tol-
erance for constraint violation γ > 0. This modification al-
lows SCIPPlan to either verify the values āti, s̄

t
i and ∆̄t to be

a solution to Π within γ tolerance, or generate constraint (4)
with a correct value of coefficient ct ∈ (0, 1) in any iteration
of Algorithm 1. Now we can show that SCIPPlan correctly
terminates in finite number of iterations if function C is as-
sumed to be Lipschitz continuous.

Theorem 1 (Finiteness of SCIPPlan). SCIPPlan terminates
in finite number of constraint generation iterations if func-
tion C is Lipschitz continuous.

Proof. The definition of Lipschitz continuity of function C
allows us to write the following inequality:

|C(st1, . . . , x
t
1)− C(st1, . . . , x

t
2)| ≤ κ|xt

1 − xt
2|

for any two durations xt
1, x

t
2 ∈ [0,∆t], constant κ and for

all steps t ∈ {1, . . . ,H}. Assume SCIPPlan does not ter-
minate which means Algorithm 1 generates infinite number
of constraints (i.e., line 9 of Algorithm 1 is executed infi-
nite number of times). For any iteration of Algorithm 1, we
can let ct1 ∈ (0, 1) denote the newly generated coefficient
of constraint (4), and ct2 ∈ [0, 1] denote either a previously
generated coefficient (i.e., ct2 ∈ (0, 1)) or one of the initial
coefficients (i.e., ct2 ∈ {0, 1}) of constraint (4). Given this
setup, we have:

|C(st1, . . . , c
t
1∆

t)− C(st1, . . . , c
t
2∆

t)| ≤ κ|ct1∆t − ct2∆
t|

Let constant γ > 0 denote the maximum tolerance for con-
straint violation. Since constraint (4) is violated at duration
ct1∆

t and not violated at duration ct2∆
t, we also have:

|γ − 0| ≤ |C(st1, . . . , c
t
1∆

t)− C(st1, . . . , c
t
2∆

t)|

379



From combining these two inequalities, restricting κ > 0
and rearranging the terms, we can obtain the following con-
stant bound for the separation of coefficients ct1 and ct2:

γ

κM
≤ γ

κ∆t
≤ |ct1 − ct2|

which concludes our proof since every newly generated
ct1 ∈ (0, 1) must be separated from the existing ct2 ∈ [0, 1]
minimally by the constant γ

κM , and therefore SCIPPlan must
be bounded by κM

γ H constraint generation iterations.

Lemma 1 (Correctness of SCIPPlan). SCIPPlan either re-
turns a solution to Π within γ > 0 tolerance or proves the
infeasibility of Π.

Proof. Case 1: Assume SCIPPlan terminates with the values
āti, s̄

t
i and ∆̄t which violate either conditions 1-3 or condi-

tion 4 by more than γ. We know that conditions 1-3 must
be feasible for āti, s̄

t
i and ∆̄t since the model is solved by a

complete and sound algorithm. It also means there exists a
coefficient ct ∈ (0, 1) that violates condition 4 by more than
γ. This creates a contradiction since the problem of finding
the value of constant ct is solved exactly and therefore SCIP-
Plan would not have terminated. Case 2: Assume SCIPPlan
terminates with infeasibility and Π is feasible. This means
that the underlying mathematical optimization model is in-
feasible which is a contradiction since the model is solved
by a complete and sound algorithm.

Lemma 2 (Finiteness of SCIPPlan+). SCIPPlan+ termi-
nates in finite number of constraint generation iterations if
function C is Lipschitz continuous.

Proof. SCIPPlan+ is bounded by κM
γ HF 2 constraint gen-

eration iterations since each iteration of Algorithm 2 can
generate at most κM

γ HF constraints over F futures (i.e.,
from Theorem 1) and the value of F ′ can be decremented
by 1 at most F times.

Lemma 3 (Correctness of SCIPPlan+). SCIPPlan+ either
returns a solution to Πp within γ > 0 tolerance or proves
the infeasibility of Πp (i.e.,

∑F
f=1 v

f = 0).

Proof. Every iteration of Algorithm 2 is correctly solved
within γ tolerance (i.e., from Lemma 1), and Algorithm 2
maximizes the bi-objective solution quality given F ′ is ini-
tially set to F , and is decremented by 1 if and only if the
model is infeasible in each iteration of Algorithm 2.

Experimental Results
In this section, we present the results of our detailed com-
putational experiments for testing the effectiveness of using
SCIPPlan+ to approximately solve Π+ by computing both
fully committed (FC) plans and partially committed (PC)
plans on Πp over F futures.

Domain Descriptions

Four challenging domains are selected from the literature to
be used in our experiments, namely: two versions of Nav-
igation (Faulwasser and Findeisen 2009), Reservoir Con-
trol (Yeh 1985) and Heating, Ventilation and Air Condition-
ing (HVAC) (Agarwal et al. 2010). Each domain is formal-
ized as Π+ using the solution equations of the underlying
physics ordinary differential equations. We provide a brief
summary of the domains in Table 1.

Domain n,m Brief Description
Continuous control of an agent
in a two dimensional maze with

obstacle(s). The movement of the
Navigation 1 2,2 agent is based on the solution

of the first-order ordinary
differential equation: dsti

dxt = at
i

T and C are stochastic functions,
and A and S have real domains.

Similar to Navigation 1 except the
Navigation 2 4,2 movement of the agent is based on the

solution of the second-order ordinary

differential equation: d2sti
dxt2 = at

i

Continuous control of n connected
reservoirs that are about to overflow
back to safe water levels. The water
levels are based on the solution of
the first-order ordinary differential

Reservoir 5,5 equation: dsti
dxt =

∑
j∈J(i) a

t
j − at

i

Control where J(i) is the set of reservoirs
flowing into reservoir i. Reservoirs

are required to maintain water
within the safety limits at all times.
T and C are stochastic functions,
and A and S have real domains.
Continuous HVAC control of a

building with n rooms. Temperature
of each room is based on the
(approximate) solution of the
ordinary differential equation:

HVAC 6,5 dsti
dxt = c1

∑
j∈J(i) s

t
j + c2s

t
i + c3a

t
i

where J(i) is the set of rooms
adjacent to room i, and ci are

constants. Rooms are required to
maintain temperature within the

desired limits at all times.
T and C are stochastic functions,
and A and S have real domains.

Table 1: Summary of the experimental domains where n and
m are the number of state and action variables, respectively.

Experimental Setup

All experiments were run on the CPU of a MacBookPro
with 2.8 GHz Intel Core i716GB memory, using a single
thread with one hour total time limit per instance. We used
SCIP (Vigerske and Gleixner 2018) as the spatial branch-
and-bound solver.
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Figure 1: Visualization of runtime comparison between the
computation of FC plans and PC plans using SCIPPlan+
over the four domains.

Implementation Details
In our experiments, we fixed the values of the sampled ran-
dom variables between the computation of PC and FC plans
per instance. In the first iteration of Algorithm 2, we have
reduced all indicator constraints to their right hand side, re-
moved constraint (17) and removed the expression

∑F
f=1 v

f

from the objective function. For the remaining iterations, we
first heuristically computed feasible solutions by removing
futures based on the order statistics of expressions |uf

i −0.5|.

Comparison of Runtime Performance
Figure 1 visualizes the comparison of the computational ef-
forts spent for finding FC plans over PC plans in terms of
logarithmic runtime where each data point represents an in-
stance that is labelled uniquely by their domain. The inspec-
tion of Figure 1 clearly highlights the effectiveness of com-
puting FC plans over PC plans. Overall we found that 79%
of instances were solved within the one hour time limit by
the computation of FC plans whereas this percentage was
dropped to 25% for PC plans. Interestingly this wide gap in
runtime performance resulted in more instances to be cov-
ered by FC plans with higher solution qualities than PC
plans, since most PC plans found within the time limit were
suboptimal. Next, we explore the effects of runtime perfor-
mance on the computation of FC and PC plans in terms of
coverage and solution quality.

Comparison of Coverage and Solution Quality
Table 2 summarizes the comparison between the computa-
tion of FC plans and PC plans in terms of coverage (i.e.,
measured by the total number of problem instances solved)
and normalized solution quality (i.e., reported as a num-
ber between 0 and 1 measuring the optimization of the bi-
objective solution quality together with the respective stan-
dard deviation) per domain within the time limit. The in-

spection of Table 2 highlights that FC plans cover 31% more
instances compared to PC plans due to the relative runtime
performance of their computation as previously shown in
Figure 1. The inspection of solution qualities demonstrate
the theoretical benefit of computing PC plans over FC plans
in domains that can be solved within the time limit. Namely
in Navigation 1, PC plans on average have 32% higher nor-
malized solution quality compared to FC plans with lower
standard deviations.

Coverage Solution Quality
Domain FC PC FC PC
Navigation 1 20/20 13/20 0.50 ± 0.36 0.82 ± 0.15
Navigation 2 16/20 0/20 0.58 ± 0.47 -
HVAC 20/20 20/20 0.68 ± 0.26 0.64 ± 0.28
Reservoir 20/20 18/20 0.42 ± 0.25 0.46 ± 0.33

Table 2: Summary of problem coverage and solution quality
comparison between the computation of FC plans and PC
plans using SCIPPlan+ over the four domains.

Discussion and Related Work
In this section, we discuss the importance of our theoretical
and computational results in relation to the literature for the
purpose of opening new areas for future work.

We have shown important theoretical results on finiteness
and correctness of SCIPPlan and SCIPPlan+. Our theoret-
ical results sit at the core of robust decision making with
SCIPPlan+ which provide theoretical guarantees on the per-
formance of SCIPPlan+. We have made minimal assump-
tions (i.e., the Lipschitz continuity of function C) in achiev-
ing our theoretical results. This is in contrast to other related
decision making systems that are built on top of additional
restrictive assumptions (e.g., the assumption that the state
transition function T is piecewise linear (Shin and Davis
2005), polynomial (Cashmore et al. 2016) etc.). Our results
suggest similar constraint generation approaches can be uti-
lized for effective planning under other planning formalisms
that support continuous-time planning (Fox and Long 2003,
2006; Benton, Coles, and Coles 2012; Scala et al. 2016;
Micheli and Scala 2019; Denenberg and Coles 2021; Per-
cassi, Scala, and Vallati 2021). Moreover, our theoretical
results provide us with some practical insights. For exam-
ple, a direct implication of Lemma 1 is that the constant γ
can be used to offset each generated constraint (4), meaning
if SCIPPlan terminates with feasibility, it must satisfy con-
ditions 1-4 exactly. We highlight this important feature of
SCIPPlan+ especially for safety critical settings that do not
allow γ tolerance for constraint violation.

We have shown the experimental performance of
SCIPPlan+ to solve stochastic, continuous-time and con-
strained domains with concurrent action spaces. In partic-
ular, we found that computing FC plans was easier in com-
parison to PC plans even though a PC plan provides an up-
per bound on a FC plan if it can be computed optimally.
An important area of future work here is to study how to im-
prove the computational performance of SCIPPlan+ through
(i) the coupling of SCIPPlan+ with gradient descent based
planning (Wu, Say, and Sanner 2017, 2020; Patton et al.
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2022; Jin et al. 2022) inside a unified framework for plan-
ning (Say 2021), and (ii) the exploitation of model sym-
metries across different steps and futures inside an effective
constraint generation framework (Say et al. 2020).

Conclusion
In this paper, we have (i) formalized the stochastic metric
hybrid planning problem Π+, (ii) presented an effective so-
lution methodology (i.e., SCIPPlan+) for solving Π+ using
bi-objective mathematical optimization, and presented both
(iii) theoretical results and (iv) experimental results on the
performance of SCIPPlan+. Overall, we have introduced a
robust automated planner for risk-sensitive decision making
in stochastic, continuous-time and constrained domains with
mixed concurrent action spaces.
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