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Abstract

The traveling salesman problem (TSP) is the most well-
known problem in combinatorial optimization which has
been studied for many decades. This paper focuses on deal-
ing with one of the most difficult TSP variants named the
quadratic traveling salesman problem (QTSP) that has nu-
merous planning applications in robotics and bioinformatics.
The goal of QTSP is similar to TSP which finds a cycle vis-
iting all nodes exactly once with minimum total costs. How-
ever, the costs in QTSP are associated with three vertices tra-
versed in succession (instead of two like in TSP). This leads
to a quadratic objective function that is much harder to solve.
To efficiently solve the problem, we propose a hybrid genetic
algorithm including a local search procedure for intensifica-
tion and a new mutation operator for diversification. The lo-
cal search is composed of a restricted double-bridge move
(a variant of 4-Opt); and we show the neighborhood can be
evaluated in O(n2), the same complexity as for the classical
TSP. The mutation phase is inspired by a ruin-and-recreate
scheme. Experimental results conducted on benchmark in-
stances show that our method significantly outperforms state-
of-the-art algorithms in terms of solution quality. Out of the
800 instances tested, it finds 437 new best-known solutions.

1 Introduction
Recently, there has been increasing attention to the vari-
ants of classical combinatorial optimization problems with
quadratic costs e.g. the quadratic assignment problem (Silva,
Coelho, and Darvish 2021), the quadratic shortest path prob-
lem (Hu and Sotirov 2020), and the quadratic set cov-
ering problem (Guimarães, da Cunha, and Pereira 2020).
Quadratic problems have real-world applications in many
fields like engineering, economics, and finance (Horst,
Pardalos, and Van Thoai 2000).

The objective functions in these problems are non-
linear (or even non-convex) which makes them very dif-
ficult to solve computationally. In this paper, we consider
the Quadratic Traveling Salesman Problem which is the
quadratic variant of the famous Traveling Salesman Prob-
lem. The cost in TSP is dependent on 2 consecutive vertices
of the tour while the QTSP considers the cost associated

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with 3 consecutive vertices. This changes the objective func-
tion from linear to quadratic which is the main challenge for
many underlying combinatorial optimization problems. For
example, QTSP has been used to tackle the bioinformatics
problem of finding the optimal Markov model for a given
set of DNA sequences in (Fischer et al. 2014) and a robotics
planning problem in (Aggarwal et al. 2000). It has also seen
applications in the planning of telecommunication and trans-
port networks.

1.1 Problem Definition
QTSP is formally defined as follows. Let G = {V,E} be
a complete graph in which V = {1, 2, ..., n} is the ver-
tex set and E = {(i, j) : i, j ∈ V, i ̸= j} is the arc set.
Each 3-tuple of nodes (i, j, k) with i, j, k ∈ V is associated
with a cost cijk. A Hamiltonian cycle of G is represented
as a permutation of nodes σ =

(
σ(1), σ(2), ..., σ(n)

)
where

σ(i) ∈ {1, ..., n}∀i ∈ {1, ..., n} and σ(i) ̸= σ(j)∀i ̸= j.
For convenience, we also assume that σ(0) = σ(n) and
σ(n + 1) = σ(1). The goal of QTSP is to find a Hamil-
tonian cycle (i.e. a sequence σ) that minimizes the following
objective function:

cost(σ) =

n−1∑
i=0

cσ(i)σ(i+1)σ(i+2) (1)

1.2 Related Literature
The QTSP was first introduced by (Aggarwal et al. 2000)
with motivation in robotics. The authors used a differ-
ent name, the angular-metric traveling salesman problem
(Angle-TSP). The goal of Angle-TSP is to minimize the to-
tal angle of the TSP tour in Euclidean space, where the an-
gle of a tour is the sum of the turning angle at the points.
They also proved that the Angle-TSP problem is NP-hard.
An approximation polynomial-time algorithm with the ap-
proximate ratio of O(log n) was proposed for the Angle-
TSP. A similar variant of QTSP named angular-distance-
metric TSP (Angle-Distance-TSP) was studied in (Savla,
Frazzoli, and Bullo 2008) where the cost cijk is the linear
combination of both angle and distance. The authors con-
sidered the Angle-Distance-TSP as an approximate solution
of the TSP for the Dubins vehicle (TSPD). The DTSP prob-
lem focuses on planning a route for a nonholonomic vehicle
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(a robot model), which is required to move along paths of
bounded curvature in a given direction. The objective is to
minimize the total costs of the tour for such a Dubins vehicle
through a given set of target points. (Jäger and Molitor 2008)
proposed the Traveling Salesman Problem of Second Order
(2-TSP), which is the asymmetric version of QTSP. The 2-
TSP is equivalent to finding the optimal Permuted Markov
(PM) model (Ellrott et al. 2002) and the optimal Permuted
Variable Length Markov (PVLM) model (Zhao, Huang, and
Speed 2005) of order two for a given dataset. The PM and
PLVM models are used widely in bioinformatics to under-
stand how transcription factors bind to their binding sites.
Recently, a few works in the literature (Punnen, Walter, and
Woods 2017; Woods and Punnen 2020) have proposed a dif-
ferent version of QTSP where the objective function con-
tains the costs of every pair of edges in the tour. They term
the problem setting in Section 1.1 as the adjacent QTSP.

The most common approach to dealing with QTSP is ex-
act methods that can prove the optimality of the solution.
(Jäger and Molitor 2008) first proposed two exact algorithms
i.e. Branch-and-Bound (B&B) and Integer Programming
(IP) for solving the 2-TSP. These methods were tested on
random instances and real-world instances with a maximum
of dimension 44. However, the exact algorithms only solve
instances up to 26 nodes. The polyhedral structure of the
symmetric QTSP is investigated in (Fischer and Helmberg
2013). The authors also introduced some valid inequalities
for the QTSP as well as proved their facetness. A Branch-
and-Cut (B&C) framework was designed as a “proof-of-
concept” to exploit these inequalities which can solve op-
timally Angle-TSP instances with up to 30 nodes. (Fischer
2014) extended the work of (Fischer and Helmberg 2013) to
the Asymmetric QTSP. Their experimental results showed
that their B&C approach takes only less than 10 seconds
to solve all 2-TSP instances with n ≤ 40 while the B&B
of (Jäger and Molitor 2008) consumes about three weeks to
deal with the 26-node instances. (Fischer et al. 2014) dealt
with both symmetric and asymmetric QTSP. They presented
three exact methods: TSP-R, B&B, and B&C which were
tested on random, Angle-TSP, Angle-Distance-TSP, and 2-
TSP instances with up to 100 vertices in a limited time.
The TSP-R transforms a QTSP instance into a TSP instance
which can be solved easily to by the Concorde TSP solver1.
However, the TSP-R is only able to solve instances with a
number of vertices up to 20 due to the large scale of trans-
formed TSP instances. For example, it needs to find the op-
timal solution of a 420-node TSP instance to deal with a 15-
node QTSP instance. B&C is the leading method in terms of
scalability and running time which takes 10 minutes to solve
all 2-TSP instances up to dimension 100. Finally, an Integer
Linear Programming (ILP) based approach is proposed in
(Oswin et al. 2017). The method is inspired by the work of
(Pferschy and Staněk 2017) for TSP which uses a separa-
tion process detecting the subtour elimination constraints on
only integral solutions. Surprisingly, the ILP approach out-
performs the B&C approach of (Fischer et al. 2014) despite
being a simpler method.

1https://www.math.uwaterloo.ca/tsp/index.html

In terms of approximate algorithms, (Jäger and Moli-
tor 2008) and (Fischer et al. 2014) adapted several simple
heuristics of TSP to deal with the QTSP like Cheapest-
Insert algorithm (CI), Nearest-Neighbor algorithm (NN),
and k-Opt algorithm (Rosenkrantz, Stearns, and Lewis 1977;
Glover et al. 2001; Lin and Kernighan 1973). The perfor-
mance of these methods is not really good. They could
not reproduce all the optimal solutions obtained from exact
methods. Furthermore, in (Fischer et al. 2014), the objec-
tive values of the best heuristic in some instances are nearly
double the optimal values. (Staněk et al. 2019) first intro-
duced several metaheuristics to overcome this drawback.
These metaheuristics are the combination of construction
and improvement approaches based on previous works, ge-
ometrical properties, and (I)LP models. The authors mainly
focus on solving the Angle-TSP and Angle-Distance-TSP
instances. Their metaheuristics are able to find more opti-
mal solutions than previous heuristics. The worst optimal
gap in all cases is only slightly over 10%. The best method
in (Staněk et al. 2019), which is also the state-of-the-art ap-
proximate algorithm for the QTSP in our best knowledge, is
a matheuristic that exploits the (I)LP models for construct-
ing as well as improving solutions. Another interesting ap-
proach for QTSP is Deep Reinforcement Learning (DRL)
which has been introduced recently by (Zhang et al. 2022).
The authors adapt the Transformer architecture (Vaswani
et al. 2017) to design a deep neural network that helps to
train a model (policy). The model after training takes as in-
put the node coordinates of a QTSP instance and then gener-
ates the respective solution. The method is then only tested
on a limited amount of instances with 30, 40, and 50 ver-
tices. Two simple heuristics CI and NN from (Fischer et al.
2014) are chosen as baseline approaches. The DRL method
easily outperforms them but cannot produce the optimal so-
lution on any benchmark instance. The optimality gap is
sometimes over 30% on some instances. This is quite un-
acceptable for the performance of a learning method on a
small-scale dataset.

1.3 Our Contribution
Our work makes the following contributions:

• We show that finding the best move among all O(n4)
double-bridge moves in QTSP is more difficult than in
TSP which takes O(n3) instead of O(n2) time. How-
ever, the time complexity for neighborhood exploration
can be reduced to O(n2) for a restricted double-bridge
neighborhood.

• We combine the restricted double-bridge neighborhood
with some classical ones like Relocate, Swap and 2-Opt
to create a LS procedure which can improve extensively
a QTSP solution. The procedure is then integrated into
a hybrid genetic algorithm for dealing with QTSP. Our
algorithm also features a new mutation operator relying
on the ruin-and-recreate scheme (Schrimpf et al. 2000)
to keep a balance between intensification and diversifica-
tion.

• The results obtained from conducting experiments on the
benchmark QTSP instances show that our method can
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Figure 1: Overview of HGA metaheuristic

produce all proved optimal solutions and outperform the
best one from the literature. Furthermore, it finds the new
best-known solutions in nearly all instances which are
not solved optimally. We also carry out sensitivity anal-
yses to prove the vital contributions of new mutation op-
erator and restricted double-bridge neighborhood.

2 Method

In this section, we propose a hybrid genetic algorithm
(HGA) to solve QTSP. Our metaheuristic is inspired by
the hybrid genetic search (HGS) framework of (Vidal et al.
2012). We adapt HGS for QTSP by introducing a new mu-
tation operator and designing a different local search proce-
dure. The overview of HGA is illustrated in Figure 1. The
algorithm maintains a population P of individuals repre-
senting QTSP solutions in Itmax iterations. At each itera-
tion, two individuals are selected from the population and
recombined into an offspring using a crossover operator. The
ruin-and-recreate mutation is applied to this offspring with
probability pmut. The generated offspring is then intensified
by a local search (LS) procedure and added to the popula-
tion. A population management phase is triggered to remove
some individuals from the population based on its size and
the number of iterations without improvement.

In the next sub-sections, we will describe in detail the
main components of HGA. Section 2.1 shows how we evalu-
ate individuals. Section 2.2 describes genetic operators: par-
ent selection, crossover and ruin-and-recreate mutation. The
LS procedure and population management phase are dis-
cussed in Section 2.3 and Section 2.4, respectively.

2.1 Individual Evaluation

Each individual Pi in the population P of our HGA is repre-
sented by a QTSP tour, i.e a visit sequence σPi

as described
in Section 1.1. Similar to HGS, we evaluate the individual

Pi by the following biased fitness function:

BF (Pi) = f C(Pi) +

(
1− µELITE

|P|

)
× f D(Pi) (2)

where f C(Pi) and f D(Pi) represent the ranks of individ-
ual Pi in the population P in terms of its objective value
cost(σPi

) and the diversity contribution dc(σPi
). The pa-

rameter µELITE stands for the number of elite individuals that
always survive throughout the search as proven in (Vidal
et al. 2012)

For each individual Pi, the diversity contribution dc(Pi)
is calculated as the average distance to its closest other indi-
viduals in P denoted by set Nclose (Equation 3).

dc(Pi) =
1

|Nclose|
∑

Pj∈Nclose

δ(Pi,Pj) (3)

We use the normalized broken-pairs distance (Prins 2009) to
compute the distance δ(Pi,Pj) between two individuals Pi

and Pj as follows:

δ(Pi,Pj) =
1

n
Φ(Pi,Pj) (4)

where Φ(Pi,Pj) denotes the number of pairs of successive
nodes in the tour σPi

which are not included in the tour σPj
.

Note that, in this measure, two pairs of nodes (i, j) and (j, i)
are equivalent.

2.2 Offspring Generation
To generate a new individual, we first obtain two parent in-
dividuals from the population by performing two times of
a binary tournament selection process. More precisely, two
individuals are randomly picked and the process selects the
one with the best fitness as a parent. An ordered crossover
(OX) (Oliver, Smith, and Holland 1987) is then applied to
the two parents to create an offspring. As shown in (Vidal
et al. 2012), the HGS tends to be very susceptible to lack of
diversity, leading to the phenomenon of early convergence.
Therefore, efficient diversity mechanisms need to be added
to prevent the algorithm from falling into the local optimum.
One can remove a large part of existing individuals in the
population and replace them by the new ones as proposed in
(Vidal et al. 2012). However, our initial experiments show
that this strategy is not enough to maintain the diversity of
our algorithm. As a result, we decide to design an additional
mutation operator in which a created offspring is selected
with a probability of pmut to go through a ruin-and-recreate
(R&R) phase (Schrimpf et al. 2000). Its main idea is to re-
move some vertices from the current offspring using a re-
moval heuristic and then exploit an insertion heuristic to re-
construct the solution. It is similar to a well-known meta-
heuristic, Large Neighborhood Search (LNS) (Shaw 1998).
Basically, LNS iteratively destroys and repairs an initial so-
lution to improve it. We note that the goal of the R&R phase
in our algorithm is to diversify the search, not to intensify the
search as in LNS. Therefore, the offspring after mutation is
not necessarily improved.

In the following, we describe several basic removal and
insertion heuristics from the literature that are adapted to
solve QTSP. All these heuristics are chosen randomly with a
uniform probability during the mutation phase.
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Removal Heuristics Whenever the mutation phase is trig-
gered, the incumbent solution σ is modified by removing
some vertices. We denote the number of removed vertices as
p which is chosen randomly in the range [pmin, pmax].

• Worst removal (Ropke and Pisinger 2006): The purpose
of the worst removal heuristic is to remove “expensive”
vertices in the solution. For each node v in the tour σ,
the heuristic first computes its cost saving as cost(σ) −
cost−v(σ), where cost−v(σ) is the objective value of σ
after removing v. We then randomly choose p vertices
to remove such that one with larger savings has a higher
selection probability.

• Block removal (Veenstra et al. 2017): The block removal
heuristic randomly selects one node σ(k) in σ. A subse-
quence of consecutive nodes

(
σ(k),...,σ(k + p)

)
is then

removed from the current solution σ.

Insertion Heuristics After the removal phase, p vertices
are then sequentially inserted back into the incomplete solu-
tion. The insertion order of these vertices relies on one of the
below insertion heuristics. Each node is then inserted into its
best position with the least increase of objective value.

• Random insertion (Ropke and Pisinger 2006): The order
of nodes to be inserted is randomized.

• Cheapest insertion (Fischer et al. 2014): As shown
through its name, the heuristic prioritizes inserting the
node that makes the total solution costs increase the least.

2.3 Local Search
Algorithm 1 shows the LS procedure acting as an intensifi-
cation phase in our HGA. In general, an incumbent solution
σ is iteratively improved by two phases until no improve-
ment is found. In the first phase, several basic neighborhoods
in the list N are explored. Similar to HGS, each node u is
associated with a candidate list L(u). The procedure loops
through every pair of nodes (u, v) with v ∈ L(u), checks
only LS moves containing the arc (u, v), and applies the first
improvement move for each such pair (Lines 5-12). The sec-
ond phase finds the best move for a restricted double-bridge
neighborhood and then updates the solution if there is any
improvement (Lines 13-17). Because the second phase con-
sumes more computation time than the first one, we only
perform it with a probability p4Opt when there is no im-
provement in the first phase. In the following, two phases
of the LS procedure are described in detail.

Basic neighborhoods To construct the candidate list L,
we adapt the granular search (GS) of (Toth and Vigo 2003).
For each node u, L(u) is defined by Γ closest neighbors
v with respect to a measure π(u, v). This helps to restrict
the complexity of exploring a neighborhood to O(Γn) in-
stead of O(n2). Empirically, a suitable value of Γ can not
only reduce the computing time but also remain or even im-
prove the search performance. This strategy is quite similar
to the well-known technique neighbor list applied in 2-Opt
and 3-Opt neighborhoods for TSP (Johnson and McGeoch
1997). The popular metric for π(u, v) is the distance be-
tween two nodes which is also used in HGS. For QTSP, we

Algorithm 1: Local Search
1 σ ← Current Solution, imp← true
2 use4Opt← true with a probability p4Opt

3 while imp do
4 imp← false
5 for u ∈ V do
6 for v ∈ L(u) do
7 for i = 1→ |N| do
8 σ′ ← move(σ, (u, v),Ni)
9 if cost(σ′) < cost(σ) then

10 σ ← σ′

11 imp← true
12 break

13 if use4Opt ∧ ¬ imp then
14 σ′ ← best4Opt(σ)
15 if cost(σ′) < cost(σ) then
16 σ ← σ′

17 imp← true

18 return σ

set π(u, v) = cw,u,v where w is the predecessor of u in the
incumbent solution σ.

We next describe the neighborhoods in N and how they
work for each arc (u, v) with v ∈ L(u). We denote the pre-
ceding and successive nodes of u in the tour σ as pre(u) and
suc(u), respectively.
• N1 (Relocate 1): Relocate v to a position between u and
suc(u).

• N2 (Relocate 2): Relocate (v, suc(v)) to a position be-
tween u and suc(u).

• N3 (Swap 1-1): Swap suc(u) and v.
• N4 (Swap 1-2): Swap suc(u) with

(
v, suc(v)

)
.

• N5 (Swap 2-1): Swap suc(u) and suc(suc(u)) with v.
• N6 (Swap 2-2): Swap suc(u) and suc(suc(u)) with v

and suc(v).
• N7 (2-Opt): Reverse the visit sequence

(
suc(u),

suc(suc(u)), ..., pre(v), v
)
.

Restricted double-bridge neighborhood The double-
bridge move is a variant of 4-Opt move which is often used
as a mutation operator in GAs for TSP (see e.g. (Nguyen
et al. 2007)). For the intensification purpose, Glover (1996)
first introduced an efficient way to explore the double-bridge
TSP neighborhood comprisingO(n4) moves inO(n2) time.
Pacheco et al. (2022) extended this work to the TSP with
pickup and delivery constraints. The authors kept the same
idea of (Glover 1996) but presented an easy-to-approach
evaluation using dynamic programming (DP). In our algo-
rithm, we adapt this DP representation to design the double-
bridge neighborhood for QTSP.

Any double-bridge move can be defined by 4 indices
i1, i2, j1 and j2 such that 1 ≤ i1 < i2 < j1 < j2 < n.
As illustrated in Figure 2, the move separates the tour σ
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σ(j2+1)

σ(1)

σ(i1)

σ(j2)

σ(i2)

σ(i1+1)

σ(j1+1)

σ(i2+1)

σ(j1)

Figure 2: An illustration of double-bridge move

into four parts
(
σ(j2+1), ..., σ(n), σ(1), ..., σ(i1)

)
,
(
σ(i1+

1), ...., σ(i2)
)
,
(
σ(i2+1), ..., σ(j1)

)
and

(
σ(j1+1), σ(j2)

)
by removing some arcs (dash lines). These parts are then re-
connected by four arcs (σ(i1), σ(j1+1)), (σ(j1), σ(i1+1)),
(σ(i2), σ(j2 + 1)), and (σ(j2), σ(i2 + 1)). Pacheco et al.
(2022) proposed the following formula for computing the
cost of a double-bridge move ∆(i1, i2, j1, j2) i.e. change in
objective value after applying move:

∆(i1, i2, j1, j2) = ∆D
2O(i1, j1) + ∆D

2O(i2, j2) (5)

where ∆D
2O(i, j) is the cost of disconecting 2-Opt move for

each pair (i, j). This move divides the tour into two sub-tours
as depicted in Figure 3. A double-bridge move (i1, i2, j1, j2)
can be described as the combination of two disconnecting
moves of (i1, j1) and (i2, j2). In QTSP, we calculate the cost
∆D

2O(i, j) as follows:

∆D
2O(i, j) = cσ(i−1),σ(i),σ(j+1) + cσ(i),σ(j+1),σ(j+2)

+ cσ(j),σ(i+1),σ(i+2) + cσ(j−1),σ(j),σ(i+1)

− cσ(i−1),σ(i),σ(i+1) − cσ(i),σ(i+1),σ(i+2)

− cσ(j−1),σ(j),σ(j+1) − cσ(j),σ(j+1),σ(j+2) (6)

Based on described representation, the cost of the best
double-bridge move of each two fixed indices (i2, j2) in
(Pacheco et al. 2022) for TSP can be computed by Equation
7.

∆Best(i2,j2) = ∆D
2O(i2, j2) + min∆D

2O(i1, j1)

∀i1 ∈ {1, . . . , i2 − 1}, j1 ∈ {i2 + 1, . . . , j2 − 1} (7)

Unfortunately, Equation 7 does not hold true in the case of
QTSP if i1 = i2−1 or j1 = i2+1 or j1 = j2−1. We prove
this for the first condition i1 = i2 − 1 and the two remain-
ing ones can be done in a similar manner. We first illustrate
a double-bridge move of (i1, i2, j1, j2) with i1 = i2 − 1 in
Figure 4. It is easy to see that the tour after applying the
double-bridge move when i1 = i2 − 1 contains three suc-
cessive nodes σ(j1), σ(i1 +1), σ(j2 +1) constructed by re-
connected arcs. However, the cost of this move computed by
Equations 5-6 does not contain cσ(j1),σ(i1+1),σ(j2+1) which

σ(1)

σ(i) σ(i+1)

σ(j+1) σ(j)

Figure 3: An illustration of disconnecting 2-Opt move

σ(j2+1)

σ(1)

σ(i1)

σ(j2)

σ(i1+1)

σ(j1+1)

σ(i2+1)

σ(j1)

Figure 4: A special case of double-bridge move with i1 =
i2 − 1

results in the inaccuracy of Equation 7. Therefore, to iden-
tify accurately argmin

i1,i2,j1,j2

∆(i1, i2, j1, j2), we categorize each

double-bridge move into one of the following mutually dis-
joint cases:

1. i1 + 1 ̸= i2, i2 + 1 ̸= j1, j1 + 1 ̸= j2: then Equation 7
can be corrected as:

∆Best(i2, j2) = ∆D
2O(i2, j2) + min∆D

2O(i1, j1)

∀i1 ∈ {1, . . . , i2 − 2}, j1 ∈ {i2 + 2, . . . , j2 − 2} (8)

The DP of (Pacheco et al. 2022) can be applied in this
case for QTSP to find the argmin

i1,i2,j1,j2

∆(i1, i2, j1, j2) in

O(n2) time.
2. {i1 + 1 = i2, i2 + 1 ̸= j1, j1 + 1 ̸= j2 } or {i1 + 1 ̸=

i2, i2 + 1 = j1, j1 + 1 ̸= j2} or {i1 + 1 ̸= i2, i2 +
1 ̸= j1, j1 + 1 = j2}: Looping through every 4-tuples
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(i1, i2, j1, j2) satisfying this condition takes O(n3) time
to record the best move.

3. At least two of three conditions i1 + 1 = i2, i2 + 1 =
j1, j1 +1 = j2 are satisfied. In this case, if we know 2 of
4 indices i1, i2, j1, j2, we can easily compute the rest and
thus find the double-bridge move that results in the best
saving cost. The time complexity of this enumeration is
O(n2).

Overall, handling all three above cases takes O(n3) time
which is also the time complexity of detecting the best move
in all existing O(n4) double-bridge moves for QTSP. More-
over, a subset of these moves (in the first and third cases) can
be explored in O(n2) time by excluding the above second
case which consists of O(n3) moves. We define this explo-
ration strategy as a restricted double-bridge neighborhood.

To better understand the time complexity for the restricted
double-bridge neighborhood, we now present the DP formu-
lation given in (Pacheco et al. 2022) to compute the mini-
mum value of ∆Best(i2, j2) in O(n2) time. First, Equation
8 can be rewritten as:

∆Best(i2, j2) = ∆D
2O(i2, j2) + ∆∗(i2, j2) (9)

∆∗(i2, j2) = min
j1∈{i2+2,...,j2−2}

F (i2, j1) (10)

F (i2, j1) = min
i1∈{1,...,i2−2}

∆D
2O(i1, j1) (11)

We can precompute the F (i2, j1) for each pair (i2, j1) in
O(n2) time. Therefore, the time complexity of finding the
double-bridge move minimizing ∆Best(i2, j2) is alsoO(n2)
based on Equation 10. More precisely, the following recur-
sive calls are performed.

F (i2, j1) = ∆D
2O(1, j1) if i2 = 3

F (i2, j1) = min{F (i2 − 1, j1),∆
D
2O(i2 − 2, j1)} otherwise

(12)

∆∗(i2, j2) = F (i2, i2 + 2) if j2 = i2 + 4

∆∗(i2, j2) = min{∆∗(i2, j2 − 1), F (i2, j2 − 2)} otherwise.
(13)

Finally, Algorithm 2 provides the pseudo-code for exploring
the restricted double-bridge neighborhood in O(n2) time.
For convenience, a boolean function Cond(i1, i2, j1, j2) is
defined as true if at least two of three conditions i1 + 1 =
i2, i2+1 = j1, j1+1 = j2 are satisfied, and false otherwise.
Line 1 shows theO(n2) enumeration of the third case above.
The introduced recursion (Equations 12-13) is described in
Lines 2 to 10.

2.4 Population Management
In the beginning, HGA initializes the population by creat-
ing µ individuals via Random insertion heuristic (Section
2.2). These initial individuals are also diversified and inten-
sified by the mutation operator and LS procedure, respec-
tively. The population continues to grow after each offspring
generation until its size |P| exceeds the upper limit of µ +
λ. When this happens, λ individuals are selected to be ex-
cluded from the population based on its number of clones
and s fitness. Finally, as in HGS, the population undergoes

Algorithm 2: Restricted double-bridge neighbor-
hood exploration

1 BEST ← min
Cond(i1,i2,j1,j2) is true

{∆(i1, i2, j1, j2)}

2 for j1 = 5→ n− 3 do
3 F (3, j1) = ∆D

2O(1, j1)
4 for i2 = 4→ j1 − 2 do
5 F (i2, j1) = min{F (i2 − 1, j1),∆

D
2O(i2 − 2, j1)}

6 for i2 = 3→ n− 5 do
7 ∆∗(i2 + 4, j2) = F (i2, i2 + 2)
8 for j2 ∈ {i2 + 5, . . . , n− 1} do
9 ∆∗(i2, j2) = min{∆∗(i2, j2 − 1), F (i2, j2 − 2)}

10 ∆Best(i2, j2) = ∆D
2opt(i2, j2) + ∆∗(i2, j2)

11 BEST = min(BEST,∆Best(i2, j2))

12 return BEST

a Diversification phase after Itdiv non-improvement iter-
ations. In this phase, the population keeps µ

3 best individu-
als, removes the remaining and then triggers the initializa-
tion phase again until the population size reaches back to
µ.

3 Computational Studies
HGA is implemented in C++ and compiled by MSVC 14.29.
It is run on an AMD Ryzen 7 3700X @ 3.60GHz machine.
Based on preliminary experiments and previous studies re-
lated to HGS and R&R, and in order to keep the algo-
rithm simple, we fix some parameters of HGA and only cali-
brate the mutation rate pmut and the probability of using the
restricted double-bridge neighborhood p4Opt. The IRACE
package (López-Ibáñez et al. 2016) is used to tune pmut and
p4Opt in the ranges of [0.5-1.0] and [0.1-0.3], respectively.
Table 1 shows the final configuration of HGA.

Parameters Used values
pmut 0.9
Itmax 50000
µELITE 5
|Nclose| 2
pmin 5
pmax min(40, n/3)
Γ 20
p4Opt 0.3
µ 25
λ 40
Itdiv 4000

Table 1: HGA setting

The algorithm is evaluated on two QTSP variants, the
Angle-TSP and Angle-Distance-TSP. We use the benchmark
instances from (Staněk et al. 2019) which are randomly gen-
erated with the number of nodes n ranging from 5 to 200.
All these instances are available online2 and a large part

2https://arxiv.org/src/1803.03681v1/anc/
TestInstancesAndResults.rar
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Set #Ins |V | HGA MH
Gap Avg T #Best Gap T #Best

Angle-opt 150 5-75 0.00 0.004 87.41 150 0.92 27.14 83
Angle-hard 250 80-200 -2.61 -1.83 831.05 250 1.02 462.96 152
Angle-dis-opt 200 5-100 0.00 0.00 130.94 200 0.33 26.99 115
Angle-dis-hard 200 105-200 -0.46 -0.46 945.44 200 0.47 354.45 33

Table 2: Summary of comparison results on benchmark instances

of them are not solved optimally. As such, we separate the
instances into 4 sets: Angle-opt, Angle-hard, Angle-dis-
opt, and Angle-dis-hard. The first set Angle-opt contains
all Angle-TSP instances that have the known optimal solu-
tion found by exact methods, while the remaining Angle-
TSP instances are included in set Angle-hard. We also con-
struct two sets Angle-dis-opt and Angle-dis-hard in a sim-
ilar way for Angle-Distance-TSP instances. All detailed re-
sults of conducted experiments can be accessed at our online
repository 3.

3.1 Performance Assessment
We run HGA ten times on each benchmark instance and
compare its results with those of the best approach in
(Staněk et al. 2019) which is a matheuristic as mentioned
in Section 1.2. For convenience, we denote this method
as MH. In (Staněk et al. 2019), MH was evaluated on
an Intel(R) Core(TM) i7-4790 CPU 4-Core Processor @
3.60GHz which is about 16% slower than our computer ac-
cording to an online assessment tool4. On each instance, due
to its deterministic nature, MH is run only once. This algo-
rithm is implemented in Python which is in general slower
than C++. However, the most time-consuming components
of MH are (I)LP-based and are solved using GUROBI,
whose backend engine is coded in C/C++ and called by
other programming languages via interfaces as described in
its manual document5. Furthermore, the MH uses the default
setting of Gurobi which allows multi-thread mode while our
HGA is run on a single processor. Because it is difficult to
make a fair conversion of the computing conditions, we do
not compare the running time of the methods and decide to
present the raw running time of MH as reported in (Staněk
et al. 2019), letting the readers self-select the faster method.

Table 2 summarizes our comparison results between HGA
and MH on 4 benchmark sets: Angle-opt, Angle-hard,
Angle-dis-opt, and Angle-dis-hard. Columns “#Ins” and
“|V |” indicate the number of instances and the number of
nodes in each set, respectively. For each method, we report
the following information:

• Gap: The average of gap∗ values computed in percentage
as 100. obj

∗−bks
bks in which obj∗ is the best objective value

found over 10 runs of HGA or 1 run of MH and bks is
the best-known solution value in the literature. Note that

3http://orlab.com.vn/home/download
4https://www.cpubenchmark.net/
5https://www.gurobi.com/documentation/10.0/refman/index.

html

the gap value can be negative, implying that our meta-
heuristic improves the best-known solutions found in the
literature.

• Avg: The average of gap values in percentage computed
as 100. obj−bks

bks where obj is the average objective value
over 10 runs. We omit these values of MH because it is
run only once.

• T: The average computation time in seconds.
• #Best: The number of best-known solutions a method

found or improved.

As can be seen in Table 2, HGA outperforms MH with
respect to solution quality. The “Gap” value of HGA is al-
ways no more than 0.00% while the same value for MH
ranges from 0.33% to 1.02%. HGA produces all optimal so-
lutions in both two sets Angle-opt and Angle-dis-opt over
10 runs or even 1 run in the case of Angle-dis-opt. Re-
garding MH, the proportion of instances it finds the opti-
mal solutions is only over 50%. For the remaining sets, MH
can reproduce 152/250 and 33/200 best-known solutions on
Angle-hard and Angle-dis-hard instances, respectively.
HGA still dominates MH when finding or improving all
these best-known solutions. Remarkably, 437 over a total
of 450 non-proved-optimal instances have new best-known
solutions obtained by our method. In terms of stability, the
“Avg” value of HGA is in the range of [-1,83%, 0.004%]
which clearly shows that the algorithm can consistently gen-
erate high-quality solutions.

Another interesting observation is that HGA tends to per-
form much better on Angle-hard instances than in Angle-
dis-hard ones. This can be explained as follows. The ob-
jective function of the Angle-dis variant includes the cost
of traversed edges, possibly making this variant closer to the
classical TSP. As a consequence, the Angle-dis instances
tend to be easier than the Angle instances. From the number
of known optimal solutions of both instance classes and the
column “Gap” of MH in Table 2, we can clearly observe this
phenomenon. On the harder instances, MH and other meth-
ods in the literature perform worse and our HGA could have
more chances to improve their solutions.

Although HGA has a superior performance in terms of so-
lution quality, it possibly consumes more computation time
than MH according to Table 2. In the worst case, HGA is
about 5 times slower than MH (set Angle-dis-opt). How-
ever, as we mentioned above, two algorithms are run on dif-
ferent computing conditions, it is hard to conclude which
method is faster. In addition, MH includes several exponen-
tially computing ILP-based components; it can behave un-
stably in terms of speed and get slower when dealing with
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larger instances.

3.2 Algorithm Component Analysis
The major difference between HGA and HGS is the two ad-
ditional features: the restricted double-bridge neighborhood
and R&R mutation. Their impact on the algorithm perfor-
mance is now investigated. We compare the original ver-
sion of HGA with three other configurations HGA−4Opt,
HGA−Mut and HGA−Both created by removing the re-
stricted double-bridge neighborhood, the mutation operator,
and both of them, respectively. Table 3 shows the compari-
son results with the same measures used in Table 2.

According to Table 3, the full setting of HGA is still the
leading method in terms of solution quality as well as stabil-
ity. Three sets Angle-opt, Angle-dis-opt, and Angle-dis-
hard seem to be easy because we do not notice any sig-
nificant difference in the performance between all configu-
rations. On Angle-opt-hard instances, HGA−Mut is only
slightly worse than HGA in which the deviations in Gap
and Avg values are only less than 0.02% while these figures
for HGA−4Opt and HGA−Both increase to over 1%. This
clearly shows the vital role of the mutation operator com-
pared to the restricted-double bridge neighborhood. Never-
theless, there is an increasing algorithm performance when
applying the restricted double-bridge neighborhood. The al-
gorithm without this feature (HGA−4Opt) cannot generate
all optimal solutions as well as find or improve all best-
known solutions on the Angle-TSP instances. Therefore, the
restricted double-bridge neighborhood still has a specific im-
pact on the success of HGA.

Set #Ins Setting Gap Avg #Best
Angle-opt 150 HGA 0.000 0.004 150

HGA−4Opt 0.001 0.008 149
HGA−Mut 0.002 0.027 149
HGA−Both 0.000 0.039 150

Angle-hard 250 HGA -2.608 -1.829 250
HGA−4Opt -2.540 -1.664 249
HGA−Mut -1.437 0.190 223
HGA−Both -1.062 0.627 204

Angle-dis-opt 200 HGA 0.000 0.000 200
HGA−4Opt 0.000 0.000 200
HGA−Mut 0.000 0.000 200
HGA−Both 0.000 0.000 200

Angle-dis-hard 200 HGA -0.464 -0.462 200
HGA−4Opt -0.464 -0.461 200
HGA−Mut -0.464 -0.460 200
HGA−Both -0.464 -0.462 200

Table 3: Comparison among different configurations of
HGA

3.3 Results on Larger Instances
We now investigate the performance of HGA on larger in-
stances, which have been generated following the data gen-
eration procedure proposed by (Staněk et al. 2019). In-
stances of the Angle-TSP variant, which is considered to be
harder, are selected in this experiment. The number of nodes

Figure 5: The growth in the running time of HGA

|V | 50 100 150 200 250 300 350 400
Gap 0.00 0.34 1.02 1.55 1.75 1.54 1.83 1.91

Table 4: Stability of HGA on all Angle-TSP instances

n in the new instances is in the set {250, 300, 350, 400}. For
each value of n, ten instances are randomly generated. As
such, we obtain an additional 40 instances for the experi-
ment. We believe that these results can be also used to assess
the performance of algorithms proposed by other authors in
future studies.

Because there is no benchmark result on these larger in-
stances, we only assess the speed of HGA and its stability.
Figure 5 reports the average computation time over 10 runs
for each instance size (n). It can be seen that our approach
can still handle the large instances in a reasonable running
time, where the time needed to solve the largest instance
with 400 nodes is less than 2 hours. The relationship be-
tween the running time and the instance size tends to follow
the quadratic function, which is consistent with the compu-
tation complexity of the most expensive component (i.e., the
restricted double-bridge local search) of the algorithm. In
terms of stability, Table 4 presents the average gap over the
10 runs, where gap is measured based on percentage devia-
tion from the best solution found by HGA. Here, we observe
that our approach is stable as the average gap on the largest
instances are less than 2.00 %.

4 Conclusion
In this article, we develop a hybrid genetic algorithm called
HGA to solve the QTSP, which has applications in bioin-
formatics and robotics planning. Our algorithm has several
new features, such as a mutation operator based on ruin-and-
recreate principle and a local search procedure including
a restricted double-bridge neighborhood running in O(n2)
time. Experimental results obtained on the QTSP benchmark
instances of the literature are compared with the state-of-
the-art results, showing a good performance of our HGA in
terms of solution quality and stability. In addition, 437 new
best-known solutions are first found in this paper. We also
conduct a sensitivity analysis to investigate the impact of
two components: mutation and double-bridge move on the
algorithm performance. The results demonstrate the impor-
tance of these features. For future works, exact algorithms
that can handle larger instances are definitely worth devel-
oping. Their results could help to investigate further the per-
formance of our metaheuristic.
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