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Abstract

Algorithms are usually shown to be correct on paper, but bugs
in their implementations can still lead to incorrect results. In
the case of classical planning, it is fortunately straightfor-
ward to check whether a computed plan is correct. For op-
timal planning, however, plans are additionally required to
have minimal cost, which is significantly more difficult to ver-
ify. While some domain-specific approaches exists, we lack a
general tool to verify optimality for arbitrary problems. We
bridge this gap and introduce two approaches based on the
principle of certifying algorithms, which provide a computer-
verifiable certificate of correctness alongside their answer. We
show that both approaches are sound and complete, analyze
whether they can be generated and verified efficiently, and
show how to apply them to concrete planning algorithms.
The experimental evaluation shows that verifying optimality
comes with a cost, but is still practically feasible. Further-
more, it confirms that the tested planner configurations pro-
vide optimal plans on the given instances, as all certificates
were verified successfully.

Introduction
Classical planning is concerned with techniques for finding
sequences of actions, called plans, that lead from a given
initial state to a goal state within a fully-observable, deter-
ministic world model. In optimal planning, a task is only
considered solved if the found plan has minimal cost among
all plans. While optimal planning algorithms are usually the-
oretically proven to only return optimal plans, their imple-
mentation can still contain bugs whose frequency only in-
creases with the level of complexity of the underlying algo-
rithm, and with the level of optimization within the code.

Extensive testing, a common way of detecting bugs, can
only ensure correctness on the tested cases. For classical
planning, we fortunately can do better: The validity of a
found plan can be verified by using tools such as VAL
(Howey and Long 2003), INVAL (Haslum 2011), or the for-
mally verified validator by Abdulaziz and Lammich (2018).
In the case of unsolvability, we recently introduced ways to
verify that a planner reached this conclusion with sound rea-
soning (e. g. Eriksson, Röger, and Helmert 2018). However,
no such tool exists to verify the optimality of a found plan.
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The planning community has faced this problem before
when running the international planning competition (IPC),
which has maintained a dedicated optimal planning track
ever since its fourth installment in 2004. Organizers have
put great effort towards ensuring optimality by comput-
ing minimal-cost plans ahead of time using domain-specific
solvers and high resource bounds, or by proving lower
bounds on paper. However, these techniques are highly
domain-specific and not suitable for a general setting, where
we want to verify optimality for so far unseen problems.

A principled, long-known solution is offered by formal
verification (McCarthy 1963; Floyd 1967; Hoare 1969).
Formally verified implementations are guaranteed to al-
ways give a correct output, but this usually comes with
a prohibitively high overhead. We thus pursue a dif-
ferent approach, called certifying algorithms (McConnell
et al. 2011). Along with its usual output, a certifying
algorithm provides a machine-readable certificate prov-
ing the validity of said output. The validity of the triple
⟨input, output, certificate⟩ can then be checked by an inde-
pendent verifier. This approach cannot guarantee correctness
on every possible input, but still verifies whether every con-
crete input results in a correct output.

In the SAT community, it is a long-standing practice to
verify unsatisfiability with a certificate. The most commonly
used proof formalisms are based on reverse asymmetric tau-
tology (Järvisalo, Heule, and Biere 2012), such as DRAT
(Heule, Hunter, and Wetzler 2013a,b; Wetzler, Heule, and
Hunter 2014) or LRAT (Cruz-Filipe et al. 2017). More re-
cent development in the area uses the general purpose proof
system VeriPB (e. g. Elffers et al. 2020; Bogaerts et al. 2022)
for turning MaxSAT solvers into certifying algorithms (Van-
desande, Wulf, and Bogaerts 2022).

For classical planning, the mentioned tools for verifying
plan (non-)existence are based on the concept of certifying
algorithms. Our work now applies this concept to verifying
optimality of a found plan π. Concretely, we verify that the
cost of π is a lower bound for plan cost. Together with a ver-
ification that π is indeed a plan, we can thus guarantee that π
must be an optimal plan. We present two types of certificates
for verifying lower bounds. The first reduces optimality to
unsolvability, allowing us to make use of existing unsolv-
ability certificates. The second constructs native optimality
certificates that directly reason about lower bounds.
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In order to be useful in practice, certificates should have
certain properties. First and foremost we require soundness
and completeness, i. e., a certificate for a lower bound exists
if and only if it is indeed a lower bound. Furthermore, we
want to be able to efficiently generate and verify certificates,
meaning that their creation only imparts polynomial over-
head on planner runtime and the verifier runs in polynomial
time in the certificate size. Finally, they should be general
in the sense that a large number of commonly used planning
techniques can be modified to be certifying. We theoretically
analyze our approaches with respect to these properties, pro-
vide empirical studies that support our results, and verify
that the tested algorithms indeed produce optimal plans.

Background
We consider planning tasks in the STRIPS formalism (Fikes
and Nilsson 1971), where a task is defined as a tuple Π =
⟨V ,A, I,G⟩ containing a finite set of propositional variables
V , a finite set of actions A, an initial state I, and a goal
description G. A state s ⊆ V is defined as the set of variables
that are true in s. The set of all states in a planning task Π is
therefore the power set of V and we denote it by S . The goal
description G ⊆ V implicitly defines the set of goal states as
SG = {s ∈ S | G ⊆ s}. An action in A is given by a =
⟨pre(a), add(a), del(a), cost(a)⟩ where pre(a) ⊆ V are the
action’s preconditions, add(a) ⊆ V its add effects, del(a) ⊆
V its delete effects, and cost(a) ∈ N0 its cost. We denote the
maximal action cost in A by cmax(A) = maxa∈A cost(a),
and for 0 ≤ i ≤ cmax(A) we define the set of all actions that
have cost i as AA|i = {a ∈ A | cost(a) = i}.

Action a is applicable in state s iff pre(a) ⊆ s. Ap-
plying a in s yields its successor, the state sJaK = (s \
del(a)) ∪ add(a). We use the same notation when apply-
ing a sequence of action, or path, π = ⟨a1, . . . , an⟩, leading
to sJπK = sJa1K . . . JanK, whereby every action ai must be
applicable in the state sJa1K . . . Jai−1K for all 1 ≤ i ≤ n. We
further define the application of an action a to a set of states
S as SJaK = {sJaK | s ∈ S and a applicable in s}. Finally,
we also extend application to a set of actions A ∈ A and
define it as SJAK = {s | a ∈ A and s ∈ SJaK}.

A state s′ is reachable from state s, if there exists a
path π such that sJπK = s′. A path π has cost cost(π) =∑

a∈π cost(a) and is called a plan for state s iff G ⊆ sJπK.
A plan for I is called a plan for Π or simply plan without
explicitly referring to a state. A plan for s is optimal if there
exists no plan for s with lower cost.

Proof Systems A proof system is a framework that facili-
tates the construction of formal proofs by defining how ini-
tial knowledge can be acquired and how this knowledge can
be expanded. For our purposes, we consider proof systems
based on natural deduction (Gentzen 1935), which reason
over inference rules. Such rules are defined by assumptions
and conclusions, with the natural semantic that if all assump-
tions hold, the conclusions also hold. As an example of such
a proof system, we here briefly describe the proof system
for verifying unsolvability (Eriksson 2019), since our sec-
ond approach is heavily based on it.

The system reasons about sets of states and sets of ac-
tions. While action sets are simply represented by explicit
enumeration, state sets can either be represented in some
logic formalism or as a composition of other sets. Possible
formalisms are BDDs, Horn formulas, or a DNF formula,
whereas possible composition operations for state sets S and
S′ are the complement S, the intersection S ∩ S′, and the
union S ∪ S′. Using an action set A, we can additionally
define the progression SJAK.

The proof system expresses two types of knowledge with
these sets: E ⊆ E′, where E and E′ are either two state
sets or two action sets, and S is dead for a state set S, which
means that no state s ∈ S can be part of any plan. Knowl-
edge about the deadness of state sets is exclusively derived
by using inference rules, which must only be verified once
and are thereafter universally true. Knowledge about subset
relations on the other hand can either be derived by standard
rules of set theory, or by so-called basic statements. These
differ from inference rules in that their truth is not universal,
but depends on the concrete sets used in each application.
For our work, only the following two basic statements over
state sets S and action sets A are relevant:

B1
⋂n

i=1 Si ⊆
⋃m

j=1 S
′
j

B2 (
⋂n

i=1 Si)JAK ∩
⋂m

j=1 S
′
j ⊆

⋃o
k=1 S

′′
k .

A proof within such a system can be expressed as a sequence
of instantiated basic statements and inference rule applica-
tions. This sequence can then be independently verified.

Compilation to Unsolvability
In order to prove that a task has optimal cost c(Π), we can
make use of unsolvability certificates (e. g. Eriksson, Röger,
and Helmert 2018). We do this by reformulating the original
task Π such that it has an upper cost bound of c(Π) − 1,
rendering it unsolvable.

Definition 1 (Unsolvability Compilation). Given a STRIPS
planning task Π = ⟨V ,A, I,G⟩ and x ∈ N1, we define the
task Πx = ⟨Vx,Ax, Ix,G⟩. The set of variables for Πx is
defined as Vx = V ∪ {ci | 0 ≤ i < x}, where variables ci
indicate the cost of reaching that state. The set of actions is
Ax = {ai | a ∈ A, 0 ≤ i < x− cost(a)}, where pre(ai) =
pre(a)∪{ci}, add(ai) = add(a)∪{ci+cost(a)}, del(ai) =
del(a)∪{ci}, and cost(ai) = cost(a). Lastly, we define the
initial state Ix = I ∪ {c0}.

In order to verify that c(Π) is the optimal plan cost for Π,
we can use an algorithm that certifies unsolvability on Πc(Π).
With the resulting certificate, we can verify that Πc(Π) is un-
solvable. Assuming that the unsolvability certificate is sound
and complete, the compilation approach is sound if Πx be-
ing unsolvable implies that x is a lower bound for c(Π), and
complete if for any x ≤ c(Π) we have that Πx is unsolvable.

Theorem 1 (Soundness and completeness). Πx is unsolv-
able iff the optimal plan cost in Π is at least x.

Proof. We will show both directions in their contraposition.
For soundness, this means we need to show that if a plan
π for Π with cost(π) < x exists, then Πx is solvable. We
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will first show through induction over path length that for
all paths π from Π applicable to I with cost(π) < x, there
exists a corresponding path π′ from Πx that is applicable
to Ix. In this path every reached state only differs in the
variable ci, where i is the cost of reaching the state over π′:

Induction Basis l=0: The only path of length 0 is the
empty path. It is applicable to both I and Ix, and results in
I and Ix respectively. Furthermore, we have Ix = I∪{c0}.

Induction Hypothesis: To prove the statement for paths of
length l + 1, we may use that it holds for paths of length l.

Induction step from l to l+1: From the induction hypoth-
esis, we know that any path πl applicable to I with length
l and cost(πl) < x has a corresponding path π′

l in Πx such
that IxJπ′

lK = IJπlK ∪ {ccost(πl)}. Any action a in Π has
corresponding actions ai in Πx for 0 ≤ i < x − cost(a).
These differ in the precondition ci (for ai) where i indicates
the cost of the path so far. The differences in the effect of
ai are that ci is being deleted and replaced by ci+cost(a).
Any action a with cost(πl) + cost(a) < x that is appli-
cable in IJπlK has a corresponding action acost(πl), which
has the precondition ccost(πl) in addition to all precondi-
tions from a. As IxJπ′

lK consists of all variables of IxJπlK
as well as the variable ccost(πl), the action acost(πl) has to
be applicable in IxJπ′

lK and leads to a state where only
the variable ccost(πl)+cost(a) is true in addition to all vari-
ables of IJ⟨π, a⟩K. Hence, any path π = ⟨πl, a⟩ for Π with
cost(π) = cost(πl) + cost(a) < x has a corresponding path
π′ = ⟨π′

l, a
cost(π)⟩ for Πx.

In particular, this also means that if a plan π in Π with
cost(π) < x exists, then there is a corresponding plan in
Πx, since the resulting state will satisfy all goal variables.

We also show completeness with its contrapositive,
namely that if Πx is solvable, then Π must have a plan π
with cost(π) < x. Because we can view Π as a projection of
Πx to the variables Vx \ {ci | 0 ≤ i < x} = V , it must hold
that for every plan in Πx, there is a corresponding plan in Π
with equal cost. As every plan π in Πx has cost(π) < x by
construction, the compilation approach is complete.

Beyond soundness and completeness, we have defined
three additional essential properties: generality, as well as
efficient verification and generation.

For generality, it is easy to see that we can apply the de-
scribed compilation to arbitrary planning tasks, and the ap-
proach is therefore as general as the unsolvability certificates
it relies upon. Efficient verification holds for the same rea-
son. Critical problems arise, however, when considering effi-
cient generation, the last remaining property. Compiling the
problem only requires space and time linear in the cost of
the optimal plan, but exploring the state space of the modi-
fied task Πx can incur an exponential overhead in general.

To illustrate this, let us consider a simple planning task
where n lights must be turned on using n corresponding
switches. To generate an optimal plan, let us use the A∗ al-
gorithm (Hart, Nilsson, and Raphael 1968) with the LM-cut
heuristic (Helmert and Domshlak 2009), which yields the
perfect heuristic for this problem and A∗ thus finds a plan
after n expansions.

The next step would then be to rerun the algorithm on the
compiled task Πn to prove that it is unsolvable. There are(
n
1

)
+
(
n
2

)
+ · · ·+

(
n

n−1

)
= 2n − 1 reachable states in total.

Since LM-cut is based on delete-relaxation, it can only de-
tect dead-ends in Πx if it does so for the corresponding state
in Π, or if the state has no successor. Since in the original
task no dead-ends exist, LM-cut will only detect

(
n

n−1

)
= n

states as dead-ends, namely those where n − 1 lights are
on and which thus have no successors. This leaves us with
2n−1−n states that have to be expanded in order to generate
the unsolvability certificate. The existence of this counterex-
ample shows that efficient generation is not guaranteed.

We finish our discussion on unsolvability compilation
with a final remark: While the task compilation is straight-
forward, it is a part of the certificate that is not verified,
meaning bugs occurring in this step would not be detected.

Optimality Proof System
Aside from potentially inefficient generation and an unveri-
fied translation step, the compilation approach does not fol-
low the spirit of certifying algorithms: Instead of building
a certificate that explains the reasoning of the algorithm, it
translates the input into a new problem solved by a different
algorithm. We thus introduce a second type of certificate that
is based on the idea of proof systems and uses the reasoning
of the planner.

Our optimality proof system adapts almost all compo-
nents of the unsolvability proof system described in the
background. The only exceptions are the rules that reason
about deadness. When proving optimality, we need to rea-
son about costs of plans going through s, which we represent
with a new type of knowledge.
Definition 2. We say s has a lower bound of x, denoted by
gc(s) ≥ x, if all paths from s to some goal state sg ∈ SG
have at least cost x. For state set S, we define gc(S) ≥ x if
gc(s) ≥ x for all s ∈ S.

We acquire bound knowledge with several new inference
rules. First, we observe the following trivial rules:
Theorem 2 (Trivial Cost bound; Empty set Cost bound).
Let S be a state set. The following statements are true with-
out conditions:

TC gc(S) ≥ 0.
EC gc(∅) ≥ ∞.

Proof. Rule TC follows directly from the fact that we only
consider non-negative action costs, while for rule EC we
have that a condition over all elements of an empty set is triv-
ially satisfied, meaning we can derive any arbitrary bound
for the empty set.

Next, we can easily see how lower bounds transfer to sub-
sets or unions:
Theorem 3 (Subset Cost bound; Union Cost bound). Let
S, S′ be state sets.

SC If gc(S′) ≥ x and S ⊆ S′, then gc(S) ≥ x.
UC If gc(S) ≥ x and gc(S′) ≥ x′, then gc(S ∪ S′) ≥
min(x, x′).
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Proof. For rule SC, we know from Definition 2 that if
gc(S′) ≥ x then gc(s) ≥ x for all s ∈ S′ and thus also
for all s ∈ S ⊆ S′, from which gc(S) ≥ x directly fol-
lows. For rule UC, we know for each s ∈ S ∪ S′ that
gc(s) ≥ x or gc(s) ≥ x′ holds, and since x ≥ min(x, x′)
and x′ ≥ min(x, x′) we have gc(s) ≥ min(x, x′).

Furthermore, we want to infer new lower bounds based
on existing ones. We know that an optimal plan π for any
non-goal state s must go through one of its successors s′,
and the cost of π is equal to the cost of the action reaching
s′ plus the cost of an optimal plan from s′. If we know lower
bounds of the goal cost for all successors, we can derive a
lower bound for s by minimizing over all successors, similar
to Bellman updates: For example, assume a non-goal state s
has two successors s1 and s2 reached with actions a1 and
a2 respectively, with cost(a1) = 6 and cost(a2) = 4, and
we know gc(s1) ≥ 2 and gc(s2) ≥ 5. Then an optimal
plan for s must cost at least mini∈{1,2}(cost(ai)+gc(si)) =
min(6 + 2, 4 + 5) = 8. The following rule generalizes this
argument for state sets, grouping successors reached through
actions with same cost:
Theorem 4 (Progression Cost bound). Let S and Si with
1 ≤ i ≤ cmax(A) be state sets. As a reminder, AA|i is the
set of all actions from A with cost i.

PC If S ∩ SG ⊆ ∅, and for all 1 ≤ i ≤ cmax(A) we
have SJAA|iK ⊆ S ∪ Si and gc(Si) ≥ ci, then gc(S) ≥
min1≤i≤cmax(A)(ci + i).

Proof. Consider an arbitrary s ∈ S. If there is no plan
for s, then gc(s) ≥ x is true for any x. Otherwise, let
π = ⟨a1, . . . , an⟩ be an optimal plan for s. We define πx′

x =

⟨ax, . . . , ax′⟩ to be a subsequence of π, with πx′

x = ⟨⟩ if
x′ < x. Since S∩SG ⊆ ∅, we know that the plan must leave
S at some point t, i. e., sJπt−1

1 K ∈ S and sJπt
1K ̸∈ S for some

1 ≤ t ≤ n. We know that SJAA|cost(at)K ⊆ S ∪ Scost(at)

and thus sJπt
1K ∈ Scost(at). We also know that the path

πn
t+1 must be an optimal plan for sJπt

1K since π is an op-
timal plan for s, and together with gc(Scost(at)) ≥ ccost(at),
we have that the cost of πn

t+1 is at least ccost(at). From this
follows that the cost of πn

t is at least ccost(at) + cost(at).
Since πn

t is a subsequence of π, we can conclude that
the cost of π, and thus the optimal cost for s, is at least
ccost(at) + cost(at) ≥ min1≤i≤cmax(A)(ci + i). Since s was
chosen arbitrarily, the bound holds for any s ∈ S, meaning
we have gc(S) ≥ min1≤i≤cmax(A)(ci + i).

The reason we allow the successors of S with AA|i to
be in S itself is twofold. First, it allows us to consider states
where not all successors have a (nontrivial) lower bound yet;
for example, in a unit-cost task we can derive that all non-
goal states have a lower bound of 1 with a single application
of PC. Secondly, it allows us to derive higher bounds in the
presence of 0-cost cycles by defining S such that it contains
all states reached with only 0-cost actions. We can then set
S0 = ∅, for which we can derive a lower bound of ∞, since
all successors of SJAA|0K must be in S itself.

Finally, we define a rule that infers a lower bound for the
optimal plan cost of Π using a known lower bound for I.

Theorem 5 (Initial state Bound). Let I be the initial state
of a planning task Π.

IB If gc({I}) ≥ x, then the optimal plan cost of Π is at
least x.

Proof. If we have gc({I}) ≥ x, then all plans for I must
have at least cost x. These are exactly the plans for Π, mean-
ing we must have optimal plan cost for Π of at least x.

Having fully defined our optimality proof system, we an-
alyze its practical usefulness based on our four properties.

Theorem 6. The optimality proof system is sound and com-
plete.

Proof. A proof system is sound iff all its rules are sound.
For all rules from the unsolvability proof system this has
been shown in previous work, and we showed soundness for
the additional rules concerning costs in Theorems 2–5.

For completeness, we present a certificate for an arbitrary
planning task Π with optimal plan cost c(Π), and prove that
each step is correct. Table 1 depicts such a certificate, where
Si contains all states with optimal plan cost of at least i.

Step (gi) shows with basic statements that no Si contains
a goal state, which is correct because goal states have an
optimal plan of cost 0 (the empty path) and thus cannot have
an optimal plan with at least cost i (for i > 0). Next, the
three versions of (pi,j) state that if we apply an action with
cost j to any state s in Si, the successor s′ must be contained
either (a) in Si∪∅ = Si if j = 0, (b) in Si∪Si−j if i > j, or
(c) in Si∪S if i ≤ j. This is correct since (a) if s′ is reached
with a 0-cost action its optimal plan cost must be at least as
high as the optimal plan cost for s and thus s′ ∈ Si, (b) if
s′ is reached with cost j its optimal plan must be at least the
optimal plan cost of s minus j (i. e. i−j) and thus s′ ∈ Si−j ,
and (c) the set of all states S trivially contains s′. Note that
while we do not need a union in any of the cases, we write it
in this fashion such that we can later directly apply rule PC.

The main part of the proof consists of iteratively deducing
lower bounds for all Si. We first use rule EC to show that
∅ has an infinite lower bound, as well as rule TC to get a
trivial lower bound of 0 for S . We can then apply rule PC
repeatedly, starting with S1 and incrementing the index up to
c(Π), which shows that Si has a lower bound of i. To show
that the deduction is correct, consider an arbitrary step (ci).
To apply rule PC, we need to know

• that Si does not contain goal states (shown in (gi)),
• that for 1 ≤ j ≤ cmax(A) we have that SiJAA|iK ⊆
Si ∪ S′ (shown in steps (p) with S′ = ∅ for j = 0,
S′ = Si−j for i > j and S′ = S otherwise), and

• that we have a bound gc(S′) ≥ c′ for all S′ occurring
above (shown in steps (c)).1

The rule thus correctly deduces that the lower bound for Si is
the minimum of all c′+j, that is the minimum over ∞+0 =
∞ for j = 0, (i− j) + j = i for all i > j and 0 + j = j for
all i ≤ j, which is i.

1This does not lead to circular reasoning since we only require
(ci′) with i′ < i, which has already been established at this point.
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index knowledge rule preconditions comment

(gi) Si ∩ SG ⊆ ∅ B1 for all 1 ≤ i ≤ c(Π)
(pi,0) SiJAA|0K ⊆ Si ∪ ∅ B2 for all 1 ≤ i ≤ c(Π)
(pi,j) SiJAA|jK ⊆ Si ∪ Si−j B2 for all 1 ≤ i ≤ c(Π), 1 ≤ j < i

(pi,j′ ) SiJAA|j′K ⊆ Si ∪ S B2 for all 1 ≤ i ≤ c(Π), i ≤ j′ < cmax(A)
(c∅) gc(∅) ≥ ∞ EC
(c0) gc(S) ≥ 0 TC
(ci) gc(Si) ≥ i PC (gi), (pi,0), (c∅), (pi,1), (ci−1),

. . . , (pi,cA ), (cmax(0,i−cA)) for all 1 ≤ i ≤ c(Π)
(1) {I} ⊆ Sc(Π) B1
(2) gc({I}) ≥ c(Π) SC (cc(Π)), (1)
(3) optimal plan cost ≥ c(Π) IB (2)

Table 1: Optimality proof for a planning task with optimal cost c(Π), where Si represents all states with goal cost of at least i.

The proof then finishes by establishing with basic state-
ment B1 that the initial state is contained in Sc(Π), which
must be the case because the optimal plan costs are c(Π),
and applying rule SC to transfer the lower bound from Sc(Π)

to {I}, which is used to finish the proof with rule IB, con-
cluding that Π has an optimal plan cost of at least c(Π).

The other three properties for practical usability do not
have clear-cut answers. Contrary to our first approach, we
can only show that the optimality proof system is general by
specifying certificates for a variety of concrete algorithms.
We remark however that proof systems are expandable by
nature, meaning that we can introduce new inference rules
that capture different reasoning techniques if needed. Effi-
cient generation and verification depends on the concrete al-
gorithm as well. For generation, we need to show that certifi-
cate size does not grow exponentially, i. e. both the number
of steps needed in the proof and the size of the state set rep-
resentation must be bounded polynomially. For verification,
we only need to consider basic statements, since verifying
the correct application of inference rules is a purely syntac-
tical check. While this generally depends on the basic state-
ments and formalisms used, we will show that all state sets
needed for the certificates we describe in this work can be
efficiently represented with BDDs, for which previous work
has already shown that efficient verification is guaranteed.

Generating Optimality Proofs
While Table 1 provides a possible optimality proof for any
solvable planning task, we can in general not efficiently gen-
erate it since it would require to know the optimal plan cost
for every state s ∈ S in order to build the sets Si. Instead,
we consider concrete planning algorithms based on forward
search and show how we can create a similar certificate only
using knowledge the algorithm derives while finding an op-
timal plan.

Blind Search
Blind forward search algorithms annotate each state s they
see with a g value denoting the cost of the cheapest path
from I to s. We consider uniform-cost search, which ex-
pands states in ascending order of their g value. The algo-
rithm terminates upon expanding a goal state, at which point

it is guaranteed that the found solution has optimal cost c(Π)
and that all seen states with g(s) < c(Π) were expanded.

While blind search does not reason about cost from state s
to the goal, we can infer a lower bound based on the g value
and the optimal plan cost, namely gc(s) ≥ c(Π)− g(s). We
define an optimality proof that will establish these bounds
iteratively for states s with c(Π) − g(s) ≥ i for increas-
ing i. It does so by applying rule PC with the knowledge
that for all successors s′ of s reached with an action with
cost j, we either have c(Π) − g(s′) ≥ i or the lower bound
max(0, c(Π) − (g(s) + j)) has already been established. If
we define sets Si = {s|c(Π)− g(s) ≥ i} for 1 ≤ i ≤ c(Π),
we can actually directly use the proof shown in Table 1. Intu-
itively, this is the case because this proof works for any def-
inition of Si with the property that they do not contain goal
states and that all successors s′ ∈ SiJAA|jK with j < i are in
Si−j . This is true for the Si defined here because all s ∈ Si

are expanded, meaning they are not a goal state and the al-
gorithm has seen their successors and put them in their cor-
responding sets. To show the claim more formally, we show
that the basic statements still hold, which directly proves the
correctness of the inference rules and thus the entire proof.

Knowledge (gi) still holds for all redefined Si, since no
goal state can have a g value smaller than c(Π) (otherwise
the algorithm would have expanded it). Looking at knowl-
edge derived in steps (p), the statement trivially holds for
any j ≥ i, since all states are contained in S . For j < i we
know from s ∈ Si that g(s) must be lower than c(Π), mean-
ing s must have been expanded, and thus any successor s′
reached with an action from AA|j must have been assigned
a g value of g(s)+ j or lower (if a cheaper path to s′ not go-
ing through s was found). From this, we can conclude that
s′ ∈ Si−j must hold. This in particular also means for (pi,0)
that s′ ∈ Si must hold. Finally, knowledge (1) also still holds
since c(Π)− g(I) = c(Π)− 0 ≥ c(Π) and thus I ∈ Sc(Π).

The number of steps in the proof is linear in cmax(A) ·
c(Π). Furthermore, we can efficiently represent sets Si as
BDDs by adding each expanded state to the appropriate sets,
which can be done in time linear to the amount of variables
(Eriksson 2019). We thus conclude that proofs for blind
search can be generated efficiently.
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index knowledge rule preconditions comment

(gi) Gi ∩ SG ⊆ ∅ B1 for all 1 ≤ i ≤ c(Π)

(chs) gc({s}) ≥ h(s) [shown by heuristic] for all s ∈
⋃c(Π)

i=1 Hi

(chi) gc(Hi) ≥ i UC (chs) for all s ∈ Hi for all 1 ≤ i ≤ c(Π)
(pi,0) GiJAA|0K ⊆ Gi ∪Hi B2 for all 1 ≤ i ≤ c(Π)
(pi,j) GiJAA|jK ⊆ Gi ∪ (Gi−j ∪Hi−j) B2 for all 1 ≤ i ≤ c(Π), 1 ≤ j < i

(pi,j′ ) GiJAA|j′K ⊆ Gi ∪ S B2 for all 1 ≤ i ≤ c(Π), i ≤ j′ ≤ cmax(A)
(c0) gc(S) ≥ 0 TC

(cgi) gc(Gi) ≥ i PC (gi), (pi,0), (chi), (pi,1), (ci−1),
. . . , (pi,cA ), (cmax(0,i−cA)) for all 1 ≤ i ≤ c(Π)

(ci) gc(Gi ∪Hi) ≥ i UC (cgi), (chi) for all 1 ≤ i ≤ c(Π)
(1) {I} ⊆ Gc(Π) ∪Hc(Π) B1
(2) gc({I}) ≥ c(Π) SC (cc(Π)), (1)
(3) optimal plan cost ≥ c(Π) IB (2)

Table 2: Optimality proof for heuristic search.

Heuristic Search
Heuristic forward search is similar to its blind counterpart,
but instead of expanding states according to only their g
value, heuristic search makes use of a heuristic h that es-
timates the cost from s to the goal. We consider A∗, which
expands states according to f(s) = g(s) + h(s) and guar-
antees that the plan obtained from the first expanded goal
state is optimal if the used heuristic is admissible, i. e. never
overestimates the true cost to the goal. Furthermore, we have
for all states s that if g(s) + h(s) < c(Π) then s has been
expanded.

In this scenario we can no longer directly use the proof
from Table 1 since not all successors s′ ∈ SiJAA|jK of
s ∈ Si are in Si−j for i > j, namely in the case where s
was not expanded, and we thus never saw s′. However, this
implies h(s) + g(s) ≥ c(Π), meaning the heuristic value
h(s) provides a cost bound at least as tight as c(Π) − g(s).
Assuming that the heuristic can translate its reasoning into
the proof system, i. e. derive gc(s) ≥ h(s), we can modify
the proof by first letting the heuristic prove lower bounds for
all states that were seen but not expanded, and then using this
information to prove the lower bounds for expanded states.
Table 2 presents a formal definition of a proof following this
idea, where for 1 ≤ i ≤ c(Π) we define

• Gi = {s | c(Π)− g(s) ≥ i, c(Π)− g(s) > h(s)} and
• Hi = {s | h(s) ≥ i, c(Π)− g(s) ≤ h(s)}.

The proof divides seen states into two types of sets, Gi

and Hi, based on whether their g or h value is used for prov-
ing a lower bound. Again, we first state in step (gi) that Gi

does not contain any goal state for all 1 ≤ i ≤ c(Π), which
holds because all states in any Gi have g(s) + h(s) < c(Π),
meaning they have been expanded and cannot be goal states
(otherwise the algorithm would have terminated earlier). For
each state s in some Hi, knowledge (chs) lets the heuristic
establish why h(s) is a correct lower bound for s, and from
this knowledge (chi) deduces with rule UC that gc(Hi) ≥ i
holds for all 1 ≤ i ≤ c(Π).2

2Technically we would need to do this in |Hi| − 1 steps as UC
only considers the union of two sets, but we summarize for brevity.

Knowledge (pi,j) for 1 ≤ i ≤ c(Π) and 0 ≤ j ≤
cmax(A) states where we can find the successors of any s ∈
Gi: Let s′ = sJaK with a ∈ AA|j be an arbitrary successor
of s. If j ≥ i we trivially have s′ ∈ S . Otherwise, it is suffi-
cient to show that s′ ∈ Gi−j ∪Hi−j . From s ∈ Gi, we have
c(Π)−g(s) ≥ i and c(Π)−g(s) > h(s). From the latter we
see that s must have been expanded, meaning the algorithm
has seen s′ and we must have g(s′) ≤ g(s) + j. Combining
this with c(Π) − g(s) ≥ i yields g(s′) − j ≤ c(Π) − i or
c(Π)−g(s′) ≥ i−j. If c(Π)−g(s′) > h(s′), then s′ ∈ Gi−j ,
otherwise we have h(s′) ≥ i− j and thus s′ ∈ Hi−j .

The proof continues with establishing in (c0) that S has
a trivial lower bound of 0. The lower bound for Gi is then
proven by applying rule PC, which can be applied since for
all AA|j we have shown with (pi,j) and (ci−j) (or (chi) for
j = 0) that GiJAA|jK ⊆ Gi ∪ S′ and gc(S′) ≥ i − j,
meaning we must have gc(Gi) ≥ i. Since we already have a
lower bound for Hi from (chi), we can now say in (ci) with
rule UC that gc(Gi ∪Hi) ≥ i. We can then finish the proof
similar to previous cases: We first state in (1) that I must be
in Gc(Π) or Hc(Π), which is true since from g(I) = 0 we
have c(Π) − g(I) ≥ c(Π) and thus I ∈ Gc(Π) if h(I) <
c(Π), otherwise h(I) ≥ c(Π) and thus I ∈ Hc(Π). With
this, we can conclude with SC that gc({I}) ≥ c(Π) from
cc(Π) and (1), because the initial state is in a set with a lower
bound of c(Π). Finally, we apply rule IB using (2), showing
that the optimal plan cost of Π must be at least c(Π).

Looking at the size of the proof, we can bound the num-
ber of (chs) steps by the number of evaluated states, which
also bounds the number of (chi) steps by the same number,
even when only building a union of two sets at a time. Fur-
thermore, as with blind search, the number of (pi,j) steps is
linear in cmax(A) · c(Π), and the number of (gi), (cgi) and
(ci) steps is linear in c(Π). Putting everything together, we
can see that the number of steps is polynomially bounded by
the runtime of the algorithm. Additionally, we can again rep-
resent all sets mentioned in Table 2 as BDDs, which means
we can guarantee efficient generation for everything except
the sub-proofs from the heuristic. Note however that this re-
quires the heuristic to provide a proof for {s} represented as
a BDD, which can be challenging if other formalisms would
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be better suited for describing its reasoning.
What is left to show is if and how we can translate

the heuristic’s reasoning into the proof system. Since every
heuristic needs to be investigated separately this is beyond
the scope of this paper, but we present the case of hmax here.

hmax Heuristic
Given state s, the hmax heuristic (Bonet and Geffner 2001)
computes for every variable v ∈ V the cost to reach
v from s in the delete relaxation with a fixpoint itera-
tion: c(v, s) = 0 if v ∈ s and otherwise c(v, s) =
mina∈A,v∈add(a)(maxp∈pre(a) c(p, s)+ cost(a)). The over-
all heuristic value is hmax(s) = maxg∈G c(g, s).

The hmax heuristic assumes that from s we can reach
state s′ with cost i as long as s′ only contains variables
v with c(v, s) ≤ i. In particular, it assumes that we can
reach a goal with cost hmax. Since this is an underestima-
tion of the true cost, we can deduce that the cost from s′ to
any goal state must be at least hmax(s) − i. We define state
sets Si = {s′ | c(v, s) ≤ hmax(s) − i for all v ∈ s′} for
1 ≤ i ≤ hmax(s), representing all states for which hmax

deduces gc(Si) = hmax(s) − (hmax(s) − i) = i. These
sets can be used in the proof structure of Table 1 to show
gc(Shmax(s)) ≥ hmax(s). Instead of finishing the proof with
steps (1)–(3), we will apply rule B1 to show {s} ⊆ Shmax(s)

(which holds since s contains only variables with c(v, s) =
0), and then use rule SC to conclude gc({s}) ≥ hmax(s).

As mentioned before, the proof structure from Table 1
works if (a) no Si contains any goal state and (b) we
have SiJAA|jK ⊆ Si−j for all j < i. For (a), we know
that c(g, s) = hmax(s) for some goal variable g ∈ G,
and since states in any Si can only contain variables with
c(v, s) ≤ hmax(s) − i, no Si can contain a state where g
is true. For (b) we consider an arbitrary 1 ≤ i ≤ hmax(s),
s′ ∈ Si, 1 ≤ j ≤ cmax(A) and a ∈ AA|j applicable
to s′. To show that s′JaK is contained in Si−j , we need
to show c(v, s) ≤ hmax(s) − (i − j) = hmax(s) − i + j
for all v ∈ s′JaK. We know that any such v was either al-
ready true in s′ or was added by a. In the former case, we
must have c(v, s) ≤ hmax(s) − i ≤ hmax(s) − i + j since
s′ ∈ Si. In the latter case we have from the definition of hmax

that c(v, s) = mina′∈A,v∈add(a′)(maxp∈pre(a′) c(p, s) +
cost(a′)) ≤ maxp∈pre(a) c(p, s) + j because a is one of the
actions that add v. Furthermore, all preconditions are true in
s′ and thus must have c(p, s) ≤ hmax(s) − i, meaning we
have c(v, s) ≤ hmax(s)− i+ j in this case as well.

To show efficient verification, we observe that the length
of the proof is linear in cmax(A) · hmax(s), with the latter
bounded by c(Π). Furthermore, We can represent Si with
BDD φi =

∧
{v|c(v,s)>hmax(s)−i} ¬v, whose representation

size is linear in V .

Experimental Evaluation
In order to test the practical feasibility of our approaches, we
implemented them on top of Fast Downward 21.12 (Helmert
2006) and ran them on the STRIPS subset of the standard
IPC benchmark collection. Our experiments were run on
single cores of Intel Xeon E5-2660 processors with a clock

base created verified

U

u-hmax 549 292 (−229/−28) 278 ( −8/ −6)
u-hM&S 549 339 (−174/−36) 316 ( −0/−23)
o-blind 413 372 ( −36/ −5) 364 ( −7/ −1)
o-hmax 448 380 ( −34/−34) 324 (−50/ −6)

U
o-blind 287 248 ( −34/ −5) 243 ( −5/ −0)
o-hmax 345 272 ( −41/−32) 234 (−22/−16)

Table 3: Coverage for non-certifying (base) planners, certi-
fying (created) planners, and for successful verification (ver-
ified) of generated certificates. In the created and verified
columns, (−x/−y) denotes that x tasks were lost due to
timeout and y due to memory limit. Part U considers 1190
unit-cost tasks and part U considers 637 non unit-cost tasks.

speed of 2.2 GHz and using the Downward Lab environment
(Seipp et al. 2017). Unless stated otherwise, each run was
given a 30-minute time and 3.5 GiB memory limit. We pub-
lished all code, benchmarks, and data (Mugdan, Christen,
and Eriksson 2023).

For the compilation approach, we first calculated an op-
timal plan with A∗ and the LM-cut heuristic (Helmert and
Domshlak 2009). Using the computed plan length x as well
as the original PDDL files as input, we ran our purpose-built
translator to generate the compiled task Πx. The current im-
plementation only supports unit-cost tasks, but more sophis-
ticated encodings are possible. This step takes time in the
order of milliseconds and is not represented in later results.
Next, we executed two algorithms to generate unsolvabil-
ity certificates for the compiled tasks, namely hmax (u-hmax),
which computes the same dead-ends as LM-cut but is faster
to compute, and hM&S (u-hM&S; Helmert, Haslum, and Hoff-
mann 2007; Helmert et al. 2014), which offers a more in-
formed heuristic to compare to. Implementations stem from
previous work (Eriksson, Röger, and Helmert 2018).

For the proof system approach, we extended Fast Down-
ward with the ability to generate optimality certificates for
A∗ search with the blind3 heuristic (o-blind) and the hmax

heuristic (o-hmax). Because both the plan and certificate are
computed in a single step, the optimality certificate approach
is more resource constrained than the compilation. To see
the overhead caused by certifying the result, we also run the
non-certifying versions of these algorithms as a baseline.

Verification of both the unsolvability and optimality cer-
tificates was performed by the verifier Helve4, which was
extended with new rules to support optimality certificates.
This step ran for an additional 4 hours for each successfully
created certificate. In the following we will use create to de-
note the approaches’ respective steps where certificates are
created, and verify to denote their verification steps.

Table 3 shows for how many tasks the configuration could
successfully find an optimal plan (without certificate), cre-
ate a certificate, and verify said certificate. Moreover, it is
shown how much coverage is lost between steps due to ex-

3We changed the implementation of the blind heuristic to al-
ways return 0 instead of the minimal action cost.

4https://github.com/salome-eriksson/helve
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(a) Runtime comparison between base and create, showing how
much overhead creating a certificate causes.
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(b) Verification time in relation to the size of the certificate to be
verified.

Figure 1: Efficiency analysis of certificate generation and verification.

ceeding either time or memory limits. Looking at creating
certificates, we see that the compilation based approaches
perform significantly worse, despite having more forgiving
resource constraints. Of the two heuristics, u-hM&S performs
better than u-hmax. This aligns with our theoretical result that
compilation based certificates cannot always be generated
efficiently, and that u-hmax has weaker dead-end detection
than hM&S, which is detrimental in the compiled task.

The optimality proof system based configurations can cre-
ate certificates for 88% (o-blind) respectively 82% (o-hmax)
of tasks solved by base. While this is still a significant drop,
we deem these results encouraging given that certifying op-
timality is expected to come with some overhead. In terms of
verification, o-hmax only verifies 86% of created certificates,
while o-blind reaches 98%. We explain these results by ob-
serving that the certificate size and thus complexity grows
significantly with the number of sub-certificates needed for
heuristic values: For o-blind we do not need any, for compi-
lation based approaches we only need them for dead-ends,
and for o-hmax we need one for every state that was not ex-
panded due to its heuristic value.

Figure 1 gives a more detailed look into the results, focus-
ing on runtime. In Figure 1a, which compares certifying and
non-certifying time, we can see that o-hmax and o-blind are
on average about a factor of 10 slower when generating cer-
tificates, but stay within polynomial overhead (shown by the
linear relationship in the log plot). This is not the case for u-
hmax and u-hM&S: The former is often slower by a factor of
100 or higher, while the latter can perform equally bad but
better than optimality proof based approaches. We attribute
this to the strength of hM&S. In rare cases, it is even faster
than its base version, which indicates that hM&S provides
better pruning in the compiled task than LM-cut provides
guidance in the original task.

Figure 1b shows verification time as a function of the size
of the certificate and confirms that all approaches can effi-
ciently verify created certificates. Moreover, it confirms that
o-hmax tends to have the largest certificates, which is espe-
cially visible by the size of the non-verified certificates.

Conclusion
We introduce two approaches for verifying optimality in
classical planning based on the idea of certifying algorithms;
one based on a compilation to unsolvability and one based
on a proof system that directly reasons about costs. While
both approaches are sound and complete, the compilation
suffers from several drawbacks, chief among which is that
efficient generation cannot be guaranteed. Our experimental
evaluation confirms these theoretical results, showing that
the proof system approach generally performs better, but
both approaches are feasible in the majority of cases.

The compilation approach can be a useful fallback when
no other method of verification is available, since it can be
used in any setting as long as we know the optimal plan
cost. But if applicable, the optimality proof system is the
better choice, and we are confident that it can be used for a
large number of optimal planning algorithms due to its ex-
pandable nature. Difficulties can arise when different parts
of the algorithm require different formalisms to efficiently
represent their reasoning. However, the existing unsolvabil-
ity proof system already has strategies to deal with this, and
we expect to be able to adapt them given how similar the two
systems are. Furthermore, it is unclear if and how knowledge
provided by different heuristics can be combined. A maxi-
mum over several heuristics can be covered by simply se-
lecting the appropriate heuristic for each state separately, but
techniques like cost partitioning require more sophisticated
reasoning, opening an interesting avenue for future research.
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