
A Best-First Search Algorithm for FOND Planning and
Heuristic Functions to Optimize Decompressed Solution Size

Frederico Messa, André Grahl Pereira
Federal University of Rio Grande do Sul, Brazil

{frederico.messa, agpereira}@inf.ufrgs.br

Abstract
In this work, we study fully-observable non-deterministic
(FOND) planning, which models uncertainty through actions
with non-deterministic effects. We present a best-first heuris-
tic search algorithm called AND∗ that searches the policy-
space of the FOND task to find a solution policy. We gen-
eralize the concepts of optimality, admissibility, and goal-
awareness for FOND. Using these new concepts, we formal-
ize the concept of heuristic functions that can guide a policy-
space search. We analyze different aspects of the general
structure of FOND solutions to introduce and characterize a
set of FOND heuristics that estimate how far a policy is from
becoming a solution. One of these heuristics applies a novel
insight. Guided by them AND∗ returns only solutions with
the minimal possible number of mapped states. We systemat-
ically study these FOND heuristics theoretically and empiri-
cally. We observe that our best heuristic makes AND∗ much
more effective than the straightforward heuristics. We believe
that our work allows a better understanding of how to design
algorithms and heuristics to solve FOND tasks.

Introduction
Many goal-directed problems can be modeled as planning
tasks and solved with AI planning techniques. The solution
of a planning task is a plan describing what actions should
be taken in what states so that a goal state is reached from
the initial state. Such a plan is also called a policy.

Fully-observable non-deterministic (FOND) planning
models tasks with uncertainty through actions with non-
deterministic effects. A solution for a FOND planning task is
a policy that takes into account all the outcomes of taken ac-
tions, and under non-adversarial environments safely guides
one to a goal state. If cyclic trajectories are allowed, states
may be visited an arbitrary number of times before eventu-
ally reaching the goal. Then the solution is called a strong-
cyclic policy. In this work, we focus on the search for strong-
cyclic policies that solve the task.

There are several FOND planners that search for strong-
cyclic policies. They apply a diverse set of techniques to ef-
fectively solve FOND tasks. Some do re-planning: they re-
peatedly try to extend policies that are solutions for the de-
terministic version of the task – found using classical plan-
ning search techniques – into policies that are solutions for

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the original task (Kuter et al. 2008; Fu et al. 2011; Muise,
McIlraith, and Beck 2012; Pereira et al. 2022). Others solve
FOND tasks by heuristically expanding an AND/OR graph
that represents the task state-space and re-computing the cur-
rent best action for each non-leaf state in the graph, until
a solution policy is found (Hansen and Zilberstein 2001;
Mattmüller et al. 2010). A planner that compiles FOND
tasks into SAT instances (Geffner and Geffner 2018), plan-
ners that use Binary Decision Diagrams (Cimatti et al.
2003; Kissmann and Edelkamp 2009), and other planners
(Ramirez and Sardina 2014), were also proposed. Yet, none
of the existent planners in our knowledge explicitly search
the policy-space of the FOND task to find a solution policy.

Inspired by A∗ (Hart, Nilsson, and Raphael 1968), we
propose an algorithm, called A∗ with Non-Determinism
(AND∗ for short), that searches for a solution policy in the
space of policies of the FOND task. It is the analogous ver-
sion for FOND planning of A∗. Starting from the empty pol-
icy, it repeatedly expands the most promising stored policy
into successor policies, until a solution is found. We general-
ize for FOND the concepts of solution optimality, heuristic
admissibility, and heuristic goal-awareness.

Our main contribution is a systematic study of heuristics
for optimal-size FOND planning. We analyze different as-
pects of the general structure of FOND solutions to intro-
duce and characterize a set of FOND heuristics that esti-
mate how far a policy is from becoming a FOND solution.
We study their theoretical properties and theoretical rela-
tions of dominance. Guided by these heuristics, AND∗ re-
turns only solutions with the minimal possible number of
mapped states. We analyze the empirical impact of heuristic
features and verify that our best heuristic, which applies a
novel insight, makes AND∗ much more effective in practice
than the straightforward heuristics. We conclude by empiri-
cally comparing AND∗ to some well-established planners.

Background
A FOND task Π induces a non-deterministic state-space task
ΘΠ = ⟨S,A, T, c, sI , S∗⟩. Where S is a finite set of states,
A is a finite set of actions, T : S × A ⇀ 2S is a partial
function of transitions between states, c : A → R≥0 is a cost
function that maps actions to non-negative real costs, sI ∈ S
is the initial state, and S∗ ⊆ S is the set of goal states.
The factored description of FOND tasks allows compactly

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

277



representing certain subsets of S as partial states. A partial
state Sp groups the set of states that share some property p.

A trajectory is a sequence of transitions ⟨⟨s1, a1, s2⟩,
⟨s2, a2, s3⟩, . . . , ⟨sk, ak, sk+1⟩⟩, with si+1 ∈ T (si, ai),
∀i ∈ {1, 2, . . . , k}. It starts from s1 and leads to sk. The
empty trajectory starts from any state s and leads to the
same state s. Figure 1 depicts an example state-space task
with eight states. In this example, s∗ is the only goal state,
there are no cyclic trajectories, and the application of the ac-
tion a in sI results in T (sI , a) = {sb1, sa1, sc1}. In other
words, the result of applying a in sI is not deterministic.
⟨⟨sI , a, sc1⟩⟩ is one of the 37 non-empty existent trajectories
in this state-space task. Trajectories represent deterministic
paths in the state-space. Later, we will refer to the numbers
that appear next to the states.

A policy is a partial function π : S ⇀ A that maps
states to actions. For all s ∈ Dom(π), π[s] is applicable
to s (i.e. T (s, π[s]) ̸= ⊥). We define |π| = |Dom(π)|.
Reach(π) =

⋃
s∈Dom(π) T (s, π[s]) is the set of states reach-

able from a policy π. The outgoing states Out(π) of a pol-
icy π are its unmapped reachable states – i.e., Out(π) =
Reach(π) \Dom(π). We denote Out∗(π) as the goal states
of Out(π), and Out∼(π) as the non-goal states of Out(π).

A π-trajectory is a trajectory ⟨⟨s1, a1, s2⟩, ⟨s2, a2, s3⟩,
. . . , ⟨sk, ak, sk+1⟩⟩, with ai = π[si], ∀i ∈ {1, 2, . . . , k}.
A strong-cyclic policy is a policy π∗ with Out∼(π∗) = ∅
and with the property that for any state s ∈ Dom(π∗) there
is at least one π∗-trajectory that starts from s and leads to
a goal state. These two requirements are often respectively
called closedness and properness.

A solution for Π is a strong-cyclic policy π∗ with sI ∈
S∗∪Dom(π∗). In other words, a solution is a policy that un-
der a non-adversarial1 environment safely guides one from
sI to a goal state, by addressing all the possible outcomes
of the taken actions, although possibly visiting some states
an arbitrary number of times before eventually reaching the
goal, due to cyclic trajectories. In our example task, any so-
lution would address the three possible outcomes of apply-
ing a in sI and end up mapping all the states besides s∗.

From now on, we disregard the case where sI is a goal
state because – although trivial, as the empty policy becomes
a solution – it yields several edge cases in our definitions.

Heuristic Functions for FOND Planning
In this section, we formally define the concept of heuris-
tic functions for FOND planning and characterize some of
their properties by extending concepts from classical plan-
ning heuristic search.

In classical planning, all transitions are deterministic
(∀s ∈ S, ∀a ∈ A, T (s, a) ̸= ⊥ =⇒ |T (s, a)| = 1), so any
solution policy is equivalent to a single trajectory from sI
to a goal state. A∗ (Hart, Nilsson, and Raphael 1968) – the
most popular optimal best-first search algorithm for classical
planning – finds a trajectory with minimal cost from sI to a
state s∗ ∈ S∗ by using f -values to guide the search. It stores
trajectories with potential to become a solution and expands

1Also called “fair environment”. (Cimatti et al. 2003)

sI

5

sa1

4

sa2

3

sa3

2

sa4

1

s∗

0

sb1

5

sc1

5a

Figure 1: State-Space 1

first trajectories with least f -value. The f -value of a trajec-
tory in classical planning is the sum of its g-value and its h-
value (respectively its current accumulated cost and its esti-
mated remaining cost to become a solution). If unitary costs
are assumed, we can interpret these values as lengths. The h-
values are given by a classical planning heuristic function h,
which is admissible if it never overestimates the real remain-
ing cost. A∗ guided by an admissible heuristic is guaranteed
to find an optimal solution if one exists.

To define admissible heuristics for FOND planning, we
need a concept of cost or value for FOND solutions.
However, there are alternative metrics to evaluate solu-
tions in FOND such as: expected number of transitions
from sI to reach the goal under a random selection of ac-
tion outcomes (Mattmüller et al. 2010), number of mapped
states (Fu et al. 2011), and number of mapped partial
states (Geffner and Geffner 2018). Therefore, we generalize
the concept of FOND solution cost. Given any metric φ that
evaluates and total-preorders2 all the possible solutions, we
define a solution π∗ to be optimal if it has minimal φ(π∗).

In this work, we define heuristic functions for FOND
planning as functions that directly return the f -values of
policies, instead of giving their h-values. We use this def-
inition because our main new heuristic reasons about how
promising a policy is as a single value. For any policy π, we
define f∗(π) as the value of the best solution it may become
if extended – i.e., f∗(π) = minsolution π∗|π∗⊇π{φ(π∗)}.
f∗(π) = ∞ if there is no solution π∗ ⊇ π. A FOND
heuristic f is admissible if f(π) ≤ f∗(π) for any pol-
icy π, analogously to the admissibility concept of classi-
cal planning heuristics. A FOND heuristic is goal-aware if
f(π∗) = φ(π∗) for all solutions π∗.

Note that any metric that allows reducing the cost of some
solution by extending it into a larger one cannot possibly
have a heuristic simultaneously admissible and goal-aware.

Optimal-Size FOND Heuristics
Effectively evaluating how far a given policy is from be-
coming a FOND solution is a fundamental step that has
not been extensively explored, and that we are interested
to tackle. Heuristics that provide such information would
be of great utility for approaches that search for solutions

2A metric φ total-preorders the solutions if for all pairs of so-
lutions π∗, π

′
∗, we have φ(π∗) ≤ φ(π′

∗) ∨ φ(π∗) ≥ φ(π′
∗), and

for all triples of solutions π∗, π
′
∗, π

′′
∗ , we have φ(π∗) ≤ φ(π′

∗) ∧
φ(π′

∗) ≤ φ(π′′
∗ ) =⇒ φ(π∗) ≤ φ(π′′

∗ ).

278



in the policy-space. In this section, we present and char-
acterize FOND heuristic functions that are admissible and
goal-aware for the metric of size φ. For any solution π∗,
φ(π∗) = |π∗| = |Dom(π∗)|. The presented heuristics esti-
mate, for a given policy π, the minimal possible size of any
solution that can be made from π, thus also providing infor-
mation on how far π is from becoming a solution.

We use classical planning heuristics to estimate the length
– denoted h∗(s) – of the shortest trajectory from any given
state s to S∗ – with h∗(s) = ∞ if there is no such trajectory.
A classical planning heuristic h only returns non-negative
values, and is admissible if h(s) ≤ h∗(s) for all states s ∈ S.
We assume that all classical planning heuristics dominate the
blind heuristic hBLIND – i.e., that they return values at least
one to non-goal states. We also assume Dom(π) ∩ S∗ = ∅
for all policies π to avoid edge cases that are irrelevant when
minimizing size (as we never need to map goal states).

We refer to the example state-space task presented in Fig-
ure 1. The h∗-values of the states are presented next to them.
We will use the policy πe.g. = {sI 7→ a} as our recurring ex-
ample in this section.

Heuristic G

A simple admissible FOND heuristic is G(π) = |π|. The
heuristic G is trivially goal-aware, because G(π∗) = |π∗| =
φ(π∗) for any solution π∗. In our example, G(πe.g.) = 1
because πe.g. contains a single mapped state.

Heuristic Count (C)
Another simple admissible FOND heuristic is Count(π) =
G(π) + |Out∼(π)| = |Dom(π) ⊔ Out∼(π)|. The heuris-
tic Count (C for short) is admissible because a policy π
with Out∼(π) ̸= ∅ must map all the states in Out∼(π)
to actions to satisfy the closedness property of a solu-
tion. Since all solutions π∗ have Out∼(π∗) = ∅, they all
have C(π∗) = G(π∗) = φ(π∗), thus C is goal-aware.
In our example, heuristic C(πe.g.) = 4, since πe.g. con-
tains one mapped state plus three non-goal outgoing states
Out∼(πe.g.) = {sb1, sa1, sc1}.

Heuristic Nearest (↓)
Any non-empty policy π with empty Out∗(π) is non-proper,
as it does not have any π-trajectory leading to goal states.
Moreover, if h is an admissible classical planning heuris-
tic, mapping less than mins∈Out(π){h(s)} new states in π
is not enough for π to have such a trajectory. Therefore, a
FOND heuristic Nearest(π) = G(π) +mins∈Out(π){h(s)}
with admissible h is admissible for non-empty policies π
with empty Out∗(π). Nearest (↓ for short) is also ad-
missible if Out∗(π) is not empty because in that case
mins∈Out(π){h(s)} is zero and ↓(π) = G(π). Thus, it is
always admissible for non-empty policies, and also is goal-
aware since Out∗(π∗) ̸= ∅ for any solution π∗. We hard-
define ↓(∅) = 0 to obtain admissibility in general.

Example. ↓(πe.g.) = 5 if we use h = h∗ because πe.g.
contains one mapped state, and the minimal shortest distance
from its outgoing states to a goal – mins∈Out(πe.g.){h(s)} =
min{h(sb1), h(sa1), h(sc1)} – is four.

Heuristic Farthest (↑)
If a policy π has some state s ∈ Dom(π) whose short-
est distance to any goal state is n, π then needs at least n
mapped states to be a solution, otherwise there will be no
π-trajectory from s to any goal state. The same is true for
states s ∈ Out∼(π), since all states in Out∼(π) will be
in Dom(π∗) of any solution π∗ ⊇ π. Therefore, a FOND
heuristic Farthest(π) = maxs∈Dom(π)⊔Out(π){h(s)}, with-
out adding G(π), is admissible if h is an admissible classical
planning heuristic. Farthest (↑ for short) is not goal-aware,
though. Nevertheless, it can be combined to other FOND
heuristics to improve their quality, owing to the fact that
f(π) = max{f1(π), f2(π)} is goal-aware and admissible
if both f1 and f2 are admissible, and any is goal-aware.

Example. ↑(πe.g.) = 5 if we use h = h∗ because among
the states in πe.g. and its non-goal outgoing states, the max-
imal shortest distance to a goal – maxs∈Dom(πe.g.)⊔Out(πe.g.)

{h(s)} = max{h(sI), h(sb1), h(sa1), h(sc1)} – is five.

Heuristic ∆

When k non-goal states have h∗-values greater than n, we
need at least k + n states to create a policy that has trajec-
tories leading all of them to a goal. This is the insightful
idea that rules our main heuristic, called ∆. We claim that
taking a close look at the heuristic values of the states in
Dom(π) ⊔ Out∼(π), and aggregating them appropriately,
is much more powerful than just counting them (Count) or
taking their maximum (Farthest).

To properly define ∆, we first need to define a vector of
heuristic values Hπ = ⟨hπ

1 , h
π
2 , . . . , h

π
C(π)⟩ for any given

policy π. Hπ is the vector that contains the h-values of all
states in Dom(π) ⊔Out∼(π), sorted in descending order.

We then define ∆(π) = maxi∈⟨1,2,...,C(π)⟩{hπ
i + i − 1},

with Hπ using an admissible classical planning heuristic h.

Example. Hπe.g. = ⟨hπe.g.
1 , h

πe.g.
2 , h

πe.g.
3 , h

πe.g.
4 ⟩ = ⟨5, 5, 5, 4⟩,

if we use h = h∗. Then, ∆(πe.g.) = 7, because ∆(πe.g.) =

maxi∈⟨1,2,...,C(πe.g.)⟩{h
πe.g.
i +i−1} = max{hπe.g.

1 +0, h
πe.g.
2 +

1, h
πe.g.
3 +2, h

πe.g.
4 +3} = max{5+0, 5+1, 5+2, 4+3} = 7.

Admissibility. We prove that ∆(π) ≤ f∗(π) for any given
policy π by contradiction, assuming f∗(π) < ∆(π) for
some arbitrary π.

Since f∗(π) < ∆(π), f∗(π) ̸= ∞ and thus there is at
least one solution π∗ ⊇ π with |π∗| = f∗(π). If we prove
∆(π) ≤ ∆(π∗) and ∆(π∗) ≤ φ(π∗), we will have our con-
tradiction, because φ(π∗) = |π∗| by the choice of φ.

First, we prove that ∆(π∗) ≤ φ(π∗) for any given solu-
tion policy π∗. Since π∗ is a solution, there is a π∗-trajectory
from every state in Dom(π∗) to some goal state. Thus,
there are at least i states s ∈ Dom(π∗) with h∗(s) ≤
i for each i ∈ {1, 2, · · · , |π|}.3 By admissibility of h,

3Suppose otherwise: suppose that there are only k < i states
s ∈ Dom(π∗) with h∗(s) ≤ i, for some i ∈ {1, 2, · · · , |π|}. Then
there is some state s′ ∈ Dom(π∗) with h∗(s′) > i. Since it has
π∗-trajectory to the goal, this trajectory has length at least i + 1,
and contains i states s′′ ∈ Dom(π∗) with distance at most i to the
goal (h∗(s′′) ≤ i), contradicting the supposition.

279



there are also at least i with h(s) ≤ i. In other words,
Hπ∗ = ⟨hπ∗

1 , hπ∗
2 , . . . , hπ∗

C(π∗)
⟩ has the property of hπ∗

i ≤
C(π∗) + 1 − i for each i ∈ {1, 2, . . . , C(π∗)}, since be-
cause Out∼(π∗) = ∅, Hπ∗ is then defined exactly by the
h-values of the states in Dom(π∗) and then C(π∗) = |π∗|.
Therefore, ∆(π∗) = maxi∈{1,2,...,C(π∗)}{h

π∗
i + i − 1} ≤

maxi∈{1,2,...,C(π∗)}{(C(π∗) + 1 − i) + i − 1} =
maxi∈{1,2,...,C(π∗)}{C(π∗)} = C(π∗) = φ(π∗).

Now, we prove that ∆(π) ≤ ∆(π′) for any pair of policies
π, π′ with π ⊆ π′. Consider that the value of ∆(π) is deter-
mined by the term hπ

k + k− 1 (i.e., hπ
k + k− 1 ≥ hπ

i + i− 1
for all i ∈ {1, 2, . . . , C(π)}). Then ∆(π) = hπ

k + k − 1.
Furthermore, ∆(π′) have to be at least hπ

i + i− 1 for all i ∈
{1, 2, . . . , C(π)} since ∆(π′) ≥ hπ′

i + i − 1 and hπ
i ≤ hπ′

i
for all such i, as all states used to define Hπ are also used to
define Hπ′

. Thus, ∆(π′) ≥ hπ
k + k − 1 = ∆(π). □

Goal-Awareness. As we will see next, ∆(π) ≥ C(π) for
any given policy π. So ∆(π∗) ≥ φ(π∗) for any given solu-
tion π∗ as C is goal-aware. But, ∆(π∗) ≤ f∗(π∗) ≤ φ(π∗),
by the admissibility of ∆. Therefore, ∆(π∗) = φ(π∗). □

Heuristics Dominances

C

∆

G

↓ ↑

Figure 2: Hasse Diagram of FOND Heuristics Dominance

There are four established direct dominances between
pairs of FOND heuristics (Figure 2), given that a same ad-
missible classical planning heuristic h is used by all the
FOND heuristics that use one, under the assumption that h
dominates hBLIND and that Dom(π) ∩ S∗ = ∅.
• ↓(π) ≥ G(π) and C(π) ≥ G(π) for any given policy π

because both ↓(π) and C(π) are defined as the sum of
G(π) with some always-non-negative value.

• ∆(π) ≥ C(π) for any given policy π because ∆(π) =
maxi∈{1,2,...,C(π)}{hπ

i + i− 1} ≥ hπ
C(π) +C(π)− 1 ≥

1 + C(π)− 1 = C(π).
• ∆(π) ≥ ↑(π) for any given policy π because ∆(π) =
maxi∈{1,2,...,C(π)}{hπ

i + i − 1} ≥ maxi∈{1,2,...,C(π)}
{hπ

i } = maxs∈Dom(π)⊔Out(π){h(s)} = ↑(π).
As a consequence, we can obtain the best of all these five

FOND heuristics by simply using a hybrid FOND heuristic
∆↓(π) = max{∆(π), ↓(π)}.

The examples from previous section using πe.g. also show
that these four relations of dominance are actually strict ones
(i.e., there are actually some policies where the dominating
heuristic gives a f -value strictly greater than the dominated
one). Furthermore, there are no other relations of dominance
among the five basic FOND heuristics besides the four pre-
sented, and the one between ∆ and G that follows by transi-
tivity. All other combinations do not dominate each other.

sa1

k + 1

sa2

k

◦ ◦ ◦sak

2

◦ ◦ ◦ sb2 1 sb1 1sbk 1

sc1

k

sc2

k − 1

◦ ◦ ◦

sck 1

s∗

0

b
c

Figure 3: State-Space 2

∆ versus ↓
We now use an example to show that there is no dominance
between ∆ and ↓. Figure 3 depicts the example state-space.
In this example, sa1 = sI and s∗ is the only goal state. The
h∗-value of the states (their shortest distances to the goal) is
presented next to them. There are three actions: a, b, and c.
Transitions without label are a result of the action a. There
are two optimal solutions for the state-space depicted: π1

∗
and π2

∗, both with size 2 · k (Equation 1).

π1
∗ = {sa1 7→ a, sa2 7→ a, . . . , sak−1 7→ a, sak 7→ b,

sb1 7→ a, sb2 7→ a, . . . , sbk 7→ a}
π2
∗ = {sa1 7→ a, sa2 7→ a, . . . , sak−1 7→ a, sak 7→ c,

sc1 7→ a, sc2 7→ a, . . . , sck 7→ a}

(1)

We analyze how the FOND heuristics ∆ and ↓ – using
h(s) = h∗(s), ∀s ∈ S – behave for two incomplete policies:
π1 ⊂ π1

∗ and π2 ⊂ π2
∗, both with size k (Equation 2).

π1 = {sa1 7→ a, sa2 7→ a, . . . , sak−1 7→ a, sak 7→ b}
π2 = {sa1 7→ a, sa2 7→ a, . . . , sak−1 7→ a, sak 7→ c}

(2)

While ↓(π1) = |π1| + min{h(sb1), h(sb2), . . . , h(sbk)}
is just k + 1, ∆ perfectly estimates f∗(π1): ∆(π1) = 2 · k
(Equation 3), because Hπ1

= ⟨k + 1, k, . . . , 2, 1, 1, . . . , 1⟩
(with k ones). Differently of ∆, ↓ does not correlate the
heuristic information from the outgoing non-goal states. We
use the notation ⟨ab ⟩ to compactly express the sum a+ b.

max{⟨k+1
0 ⟩, ⟨k1⟩, . . . , ⟨2k−1⟩, ⟨1k⟩, ⟨1k+1⟩, . . . , ⟨12·k−1⟩} = 2·k (3)

For π2, ↓ is the one that gives a perfect estimation.
↓(π2) = |π2| + min{h(sc1)} = k + k = f∗(π2), while
∆(π2) = k + 2 (Equation 4), since Hπ2

= ⟨k + 1, k, k,
k − 1, . . . , 2⟩. ∆ does not differentiate outgoing non-goal
states from already mapped states, and thus does not capture
the fact that the goal is still (much) more than two states far
away from the current policy π2.

max{⟨k+1
0 ⟩, ⟨k1⟩, ⟨k2⟩, ⟨k−1

3 ⟩, . . . , ⟨2k⟩} = k + 2 (4)

∆↓ combines the power of the two FOND heuristics.
∆↓(π

1) = ∆↓(π
2) = 2 · k.

280



Algorithm 1: AND∗

1 πI := ∅, Open := {πI}
2 while Open ̸= ∅ :
3 Remove from Open some policy π with least f(π)
4 return π if closed and proper // strong-cyclic
5 if π is not closed :
6 Select a state s from Out∼(π)
7 for each action a applicable to s :
8 Insert π′ = π ⊔ {s 7→ a} in Open

9 return ⊥ // unsolvable task

The AND∗ Algorithm
In this section, we present the A∗ with Non-Determinism
(AND∗) algorithm (Algorithm 1). Our algorithm exception-
ally assumes Out(∅) = {sI}. We call T (π) the set of all
links s → s′ between states s ∈ Dom(π), s′ ∈ T (s, π[s]).

AND∗ begins the policy-space search on the empty pol-
icy ∅. Since sI is assumed to be non-goal4, the first step of
AND∗ is to expand ∅ using all possible mappings of sI to
actions applicable to sI , this way generating successor poli-
cies with size one. It then repeats this procedure on gener-
ated policies until finding a policy that is a solution. If no
generated policy is a solution, AND∗ will return ⊥ after an-
alyzing all of them.

In detail, what AND∗ does is to repeatedly select the most
promising already generated policy π (one with least f -
value) among the ones stored in Open (Line 3), verifies if π
is yet not closed, and if not, expands it, selecting some of its
non-goal outgoing states to map to all possible actions, gen-
erating successor policies with size |π|+1 (Lines 6–8). If π
is instead closed, AND∗ will check whether π is also proper,
and if it is, AND∗ will return π as a solution (Line 4).

Checking whether a policy is or not proper can be done
simply by constructing T (π), and checking whether all the
states in Dom(π) are reached regressing from Out∗(π).

Expansion. When expanding a policy π, we map only one
of the states in Out∼(π) (small-step) – instead of all of them
at once (big-step) – because it may be extremely costly to
make big-step expansions, and there is no reason to rush that,
since we do not even know in advance whether expanding π
is useful or not, as it may even not lead to any solution. Do-
ing a small-step expansion may generate up to |A| succes-
sors policies while doing a big-step expansion may generate
up to |A||Out∼(π)| successor policies. Regardless of which,
no policy is generated twice during AND∗ execution, as two
policies π′

1 and π′
2 successors of π have π′

1[s] ̸= π′
2[s] for at

least one state s, and mappings are never overwritten.

Execution Example. Figure 4 depicts a state-space with
ten states. In this example, s0 = sI and s∗ is the only goal
state. There are three actions: a, b, and c. Transitions without
label are a result of the action a. The application of the action
b in s0 results in T (s0, b) = {s∗, sa1}, while the application
of the action a in sb1 results in T (sb1, a) = {s0, sb2}. We

4AND∗ will return the solution ∅, otherwise.

s0

sb1

sb2

s∗sb5sb4sb3

sa1

sa2

c

b

Figure 4: State-Space 3

analyze how the AND∗ execution would follow using some
arbitrary priority function of our choice.

The algorithm starts expanding the policy π1 = ∅.
Out(π1) = {s0}, by definition. Now, since s0 is not a goal
state, Out∼(π1) ̸= ∅, thus π1 is expanded. The algorithm
selects s0 from Out∼(π1) and considers the two actions ap-
plicable to s0, namely b and c, generating the policies π2 =
{s0 7→ b} and π3 = {s0 7→ c}. Both are added to Open.

Let’s say AND∗ picks π2 first. Out(π2) = {sa1, s∗}.
Since Out∼(π2) = {sa1} ̸= ∅, π2 is expanded and the pol-
icy π4 = π2 ⊔ {sa1 7→ a} is generated and stored. If AND∗

selects π4 before π3, it will expand π4, as Out∼(π4) =
{sa2} ̸= ∅, and will generate the policy π5 = π4 ⊔ {sa2 7→
a}, which will be discarded whenever selected, because
Out∼(π5) = ∅ and Out∗(π5) = {s∗}, but π5 is not proper.
There is no π5-trajectory from sa1 or sa2 to any goal state.

After the discard of π5, there are no more selection
choices, as Open will not ever have more than one policy
in it again. AND∗ expands π3 = {s0 7→ c}. Out∼(π3) =
{sb1}, so the policy π6 = π3 ⊔ {sb1 7→ a} = {s0 7→
c, sb1 7→ a} is generated. AND∗ will then follow incor-
porating states into π6 successfully, until finding the solu-
tion π10 = {s0 7→ c, sb1 7→ a, sb2 7→ a, sb3 7→ a, sb4 7→
a, sb5 7→ a}, and returning it. Out(π10) = {s∗}.

We will go back to this example later in this section.

Implementation Note. The policy-space is exponentially
larger than the state-space, so while we can cache state and
action information, such as state-action successors or state
heuristic values, the policy representation should be as com-
pact as possible. Therefore, we represent a policy π′ as the
pointer to its predecessor policy π together with the infor-
mation of what is the single state-action pair in π′ \ π.

Soundness and Completeness
Theorem. AND∗, using a heuristic function f that is admis-
sible and goal-aware to a metric φ, always terminates, and
returns a solution π∗ with minimal φ(π∗) if there is one, and
⊥ if there is none.

Proof Sketch. The proof sketch is subdivided into four in-
dependent and sufficient parts.

1. AND∗ always terminates. The number of possible
policies is finite since the numbers of states and actions are
finite. And, as discussed before, each policy is generated at
most once, thus the number of Open removals is also finite.
Finally, the time processing a policy removed from Open is
finite. Therefore, the execution must eventually terminate. □

281



2. If there is any solution, AND∗ does not return ⊥.
By contradiction, we suppose it does return ⊥. Consider
some strong-cyclic policy π∗ with minimal size (there must
exist one since there is a solution). Consider also the largest
policy π ⊆ π∗ that was once inserted in Open. π ̸= π∗ oth-
erwise π would have been returned instead of ⊥. Since π∗ is
a strong-cyclic policy with minimal size, all policies π′ ⊂ π∗
must have Out∼(π

′) ̸= ∅. Thus π was expanded. However,
any choice of s ∈ Out∼(π) in Line 6 would yield a succes-
sor policy π′ = π⊔{s 7→ π∗[s]} in Line 8, because Out∼(π)
⊆ Dom(π∗) (as π ⊆ π∗ and Out∼(π∗) = ∅). But π is the
largest subset of π∗ once inserted in Open. Contradiction. □

3. When AND∗ returns π, it is a solution. By contradic-
tion, assume π is not a solution. Then π is not a strong-cyclic
policy or sI ̸∈ Dom(π). The first cannot be true because of
Line 4’s condition. The second case also cannot be because
all the non-empty generated policies π′ have sI ∈ Dom(π′)
and because π cannot be ∅ as Out∼(∅) ̸= ∅ (again failing
Line 4’s condition). □

4. If AND∗ returns a solution π∗, φ(π∗) is optimal. It is
optimal because all the intermediate generated policies πi in
∅ = π0 ⊂ π1 ⊂ · · · ⊂ π|π∗|−1 ⊂ π|π∗| = π∗ have f(πi) ≤
φ(π∗) by the admissibility of f and would be expanded be-
fore any sub-optimal solution π′

∗ with φ(π′
∗) > φ(π∗) be-

cause f(π′
∗) = φ(π′

∗) by the goal-awareness of f . □

Corollary. AND∗, using the presented admissible goal-
aware optimal-size FOND heuristics, always terminates,
and returns a solution π∗ with the minimal possible number
of mapped states if there is one, and ⊥ if there is none.

Early Deadlock Detection
We can always discard a newly generated policy π′ =
π ⊔ {s 7→ a} if ∃s′ ∈ T (s, a) | h(s′) = ∞, with h ad-
missible, because then Out∼(π

′) has dead-end states. Be-
sides such policies, we can detect and discard in advance
some other policies that cannot become proper even with
new state-actions mappings. If we verify that a policy π has
some state s ∈ Dom(π) which has no current π-trajectory
from s leading to any state s′ ∈ Out(π), we say that s has
no escape route, and we can for sure discard π. On the other
hand, if some policy π has Out∼(π) = ∅, and all states
s ∈ Dom(π) have some escape route, then π is necessarily
a strong-cyclic policy, by definition.

In particular, we can incrementally verify whether all
mapped states of a successor policy π′ have escape routes,
given that we know that all mapped states of its predecessor
policy π had escape routes (Lemma 1).

Lemma 1. If π′ = π ⊔ {s 7→ a} and all mapped states
of π have escape routes, then all mapped states of π′ have
escape routes if and only if T (s, a)\{s} ̸⊆ {s′ ∈ Dom(π) |
Out(π, s′) = {s}}, with Out(π, s′) = {s′′ ∈ Out(π) |
∃π-trajectory from s′ leading to s′′}.

Proof sketch. In on hand, if all the states resulting from
the new mapping s 7→ a are either s itself or states in
Dom(π) that have no escape route that leads to any state
besides s in π, then s and all these states will have no es-
cape routes in the new policy π′. They will form a deadlock.

Algorithm 2: Method for Early Deadlock Detection
1 Method still no deadlocks(π′ = π ⊔ {s 7→ a}):
2 Stack := {s}, Marked := ∅
3 while Stack ̸= ∅ :
4 Move some state s′ from Stack to Marked
5 return ⊤ if T (s′, π′[s′]) \Dom(π′) ̸= ∅
6 Extend Stack with T (s′, π′[s′]) \ (Stack⊔Marked)

7 return ⊥

On the other hand, if T (s, a) \ {s} ̸⊆ {s′ ∈ Dom(π) |
Out(π, s′) = {s}}, there is at least one state s′ ∈ T (s, a)
that either (1) is in Out(π′); or (2) has Out(π, s′) ̸= {s}.
Note first that since all mapped states of π had escape routes
in π, the only states s′′ ∈ Dom(π) that may stop having
escape routes in the successor policy π′ are the ones with
exactly Out(π, s′′) = {s}. In case (1), s and all these in-
danger states will have some escape route in π′ through s′.
In case (2), they will have some escape routes in π′ through
the states in Out(π, s′). □

The still no deadlocks method (Algorithm 2) visits
the states in T (s, a) and verify whether all of them are either
s or states s′ ∈ Dom(π) with Out(π, s′) = {s} through a
recursive analysis on successors. If yes, then the inclusion
of the mapping s 7→ a results in a deadlock. Thereby, we
can use this method between Algorithm 1’s Lines 7 and 8 to
early discard policies, and by doing so, we also don’t need to
assert properness in Algorithm 1’s Line 4. In the worst case,
it analyzes all the states in Dom(π′) one time.

Execution Differences. We recall the execution example
presented earlier in this section. We analyze how the use of
still no deadlocks method affects it. When the policies
π2 = {s0 7→ b} and π3 = {s0 7→ c} were generated from
π1 = ∅, the method would successfully assert the existence
of escape routes for s0 in both policies. Through sa1 and s∗
in π2. Through sb1 in π3. However, when generating the pol-
icy π4 = π2 ⊔ {sa1 7→ a} it would detect the non-existence
of escape routes for sa1 in π4. sa1 and sa2 form a deadlock
in π4. AND∗ would then discard π4, and would not have
needed to generate the non-proper closed policy π5. The rest
of the execution would follow as previously described. Note
that the policy π6 = π3 ⊔ {sb1 7→ a} has escape routes
through sb2 despite having a cyclic trajectory on s0 and sb1.

Empirical Analysis
In this section, we empirically compare the different
optimal-size FOND heuristics using AND∗, studying how
the heuristic features impact the AND∗ performance. We
also analyze the impact of the early deadlock detection,
and compare our proposed algorithm AND∗ with other two
FOND planners – FOND-SAT (Geffner and Geffner 2018)
and PRP (Muise, McIlraith, and Beck 2012) – to provide a
reference of its performance and solution compactness.

We make our empirical analysis using the same two
benchmarks used by Pereira et al. (2022). One, called
IPC-FOND, with 379 tasks over 12 FOND planning do-
mains from the International Planning Competition (IPC),

282



G C ↓ ∆ ∆↓

- 8,858.73 3,219.35 - - -
hmax - - 1,746.50 1,246.89 1,022.86
hLM-Cut - - 793.17 535.08 460.84
h∗ - - 650.07 459.08 372.81

Table 1: Heuristics Average Number of Generated Policies.

(a) FOND Heuristics (b) FOND Planners

Figure 5: Ratio of Coverage per Time

and the other, called NEW-FOND, that includes 211 tasks
over five FOND planning domains, introduced by Geffner
and Geffner (2018). We remove from comparison the tasks
without solution, namely 25 tasks from the first-responders
domain, for which all configurations, except the planner
FOND-SAT, detect unsolvability. We merged blocksworld-
new and blocksworld-2 domains into a single domain called
blocksworld-advanced, as they actually are equal domains.

We run our experiments on an AMD Ryzen 9 3900X, us-
ing limits of 8 GB and 30 minutes per task. Used code and
data are publicly available (Messa and Pereira 2023).

We use greater policy size (|π|) as the AND∗ policy-
selection tie-breaker, analogously to the use of the greater
g-value (lower h-value) tie-breaking on classical planning.
We always select to map the most recently generated outgo-
ing non-goal state when expanding a policy. We keep dead-
end state detection enabled in all experiments. We keep early
deadlock detection enabled in all experiments besides the
one that compares its usage impact.

All domains have the same weight in our aggregation av-
erages, independently of the number of (solved) tasks each
has. We use the ratio of solved tasks to measure the cov-
erage of the configurations in each domain. We use arith-
metic means to aggregate ratios of coverage, and geometric
means to aggregate other kinds of information (to avoid giv-
ing more weight to hard tasks or domains).

Comparison of Optimal-Size FOND Heuristics
We compare the use of the four presented admissible goal-
aware basic FOND heuristics – G, C, ↓, and ∆ – with ∆↓,
using three classical planning heuristics as components –
hmax, hLM-Cut (Helmert and Domshlak 2009), and h∗.

Table 1 shows the average number of policies generated
by AND∗ when using each heuristic combination. The av-
erages consider only the 112 tasks that are solved by all the

combinations simultaneously. Although slower than hmax,
hLM-Cut theoretically dominates it, and is dominated by h∗.
This is reflected in practice, as the number of generated poli-
cies substantially decreases as we improve the classical plan-
ning component of the FOND heuristics. Note also that us-
ing C is equivalent to using ∆↓ with hBLIND.

We can see that FOND heuristics stronger in theory pro-
vide a better guidance in practice. AND∗ using the heuris-
tic C generates 63.66% fewer policies than using G, and at
least 84.33% more than using any of the FOND heuristics
with classical planning heuristic information. We can also
notice that using ∆ is significantly more effective than using
↓, and that using their combination is the best approach.

Figure 5a shows the average ratio of coverage per time for
each FOND heuristic, with hLM-Cut as the classical heuristic
component. We can see that the FOND heuristics that do not
use the classical heuristic component start better, because
they are faster to be computed, but soon are overwhelmed
by the superior quality of the FOND heuristics that use it.
At the 30 minutes mark, ∆↓ has 0.523 average ratio of cov-
erage, ∆ has 0.515, ↓ 0.459, C 0.451, and G 0.368.

Impact of Early Deadlock Detection
We analyzed the effect of disabling the early deadlock de-
tection, in the performance of AND∗, when using ∆↓ with
hmax. For most of the domains, there was no significant ef-
fect. However, for five domains, disabling the early deadlock
detection has a dramatic detrimental effect on the perfor-
mance of AND∗. In chain-rooms, the coverage drops from
1.000 to 0.200, and the number of generated policies in-
creases by 4,447.00%. In acrobatics, the coverage drops
from 1.000 to 0.500, and the number of generated policies
increases by 753.51%. In earth-observations, blocksworld-
original, and blocksworld-advanced, the number of gener-
ated policies increases by 48.09%, 39.36%, and 26.29%.

Comparison of AND∗ with other FOND Planners
A comparison of AND∗ with other FOND planners should
provide an empirical reference for the results we have seen
so far. However, none of the well-established FOND plan-
ners allow us an entirely fair comparison, since all of them
are designed for different purposes than AND∗. We choose
to compare AND∗ using ∆↓, hLM-Cut with PRP and FOND-
SAT. PRP (Muise, McIlraith, and Beck 2012) is a state-
of-the-art satisficing FOND planner that uses re-planning
to quickly solve the traditional FOND tasks. FOND-SAT
(Geffner and Geffner 2018) in turn is a FOND planner that
compiles FOND tasks into SAT instances aiming for a better
scalability in tasks with higher degrees of non-determinism.

Since both PRP and FOND-SAT return solutions with
partial states (that we call compressed solutions), we can
compute their decompressed versions, which are more com-
parable with the solutions returned by AND∗. Figure 6 com-
pares against AND∗ the sizes of both versions of the solu-
tions returned by PRP and FOND-SAT for each task, us-
ing proportionally bigger marks for tasks from domains with
fewer tasks. For most domains, the returned solutions of the
three algorithms are always of similar size, even if we com-
pare compressed versions against uncompressed ones.

283



Figure 6: Comparison of Solutions Sizes

Next, any presented information about solutions size takes
into account only non-goal mapped states and averages only
over the tasks solved by all three algorithms simultaneously.

Returned Size. If we compare the uncompressed solu-
tion size of solutions returned by AND∗ against the com-
pressed size of solutions returned by FOND-SAT (which are
never larger than the ones returned by PRP for the solved
tasks), we notice that their size are equal in ten of the 16
domains! They are similar in three of the six remaining
domains: +7.41% in blocksworld-advanced, +13.64% in
tireworld-spiky, and +21.89% in tireworld-truck. Whereas,
in tireworld-triangle AND∗ maps 45.75% more states, and
+67.28% in faults. Doors is the only domain for which us-
ing partial states is indispensable for scalability. In doors,
AND∗ needs exponentially more states (4 · 2i − 2 states
against 2 · i+ 2 for the i-th instance).

Uncompressed Size. For 12 of the 16 domains, the aver-
age uncompressed size is similar: 15.43 for AND∗, 15.52
for FOND-SAT, and 15.92 for PRP. The major differences
appear on the remaining four domains: zenotravel, miner,
tireworld-truck, and tireworld-triangle, for which AND∗

returns solutions with significantly fewer states than PRP
(resp. −31.24%, −32.34%, −49.52%, and −94.75%). In
miner and tireworld-triangle, differences also exist in rela-
tion to FOND-SAT (resp. −27.37% and −94.75%). In par-
ticular, for the i-th instance of tireworld-triangle, FOND-
SAT and PRP return a compressed solution size with respec-
tively 8 · i − 1 and 12 · i − 2 partial states, but both with
3
2 · 16i − 2 states when decompressed, while AND∗ returns
uncompressed solutions with only 12 · i− 2 states. Because
they get too large when decompressed, a special bin con-
tains the fourth instance onwards of tireworld-triangle for
Decompressed PRP in Figure 6 (FOND-SAT does not solve
these). The strategy found by AND∗ is to always change

the car’s tires after moving, regardless of outcomes. These
results using the decompressed versions of PRP and FOND-
SAT solutions do not imply any downside for these planners.
They just elucidate the existence of potential gains in AND∗

solution compactness if partial states were also used by it.

Coverage. With regard to satisfying performance, PRP
overwhelms AND∗ and FOND-SAT in IPC-FOND, solv-
ing all the tasks, but loses to FOND-SAT and virtually ties
with AND∗ in NEW-FOND, having a 0.420 average ratio of
coverage for NEW-FOND. AND∗ is better than FOND-SAT
in IPC-FOND (0.575 vs. 0.306) and worse in NEW-FOND
(0.410 vs. 0.810). Figure 5b shows the average ratio of cov-
erage per time for each algorithm, considering all domains.
The results show that AND∗ is an effective optimal solver.

Discussion
In this work, we step into a different research direction for
FOND planning. We examined a policy-space-based way
to search for FOND solutions, providing a simple best-first
search algorithm for FOND planning with strong theoreti-
cal guarantees, called AND∗, using as reference the well-
established A∗ algorithm. We also made a systematic study
of policy-space search heuristics that factor different aspects
of the general structure of FOND solutions to inform the
search. With the best of our proposed heuristics, AND∗ is
able to effectively find solutions with the minimal possible
number of mapped complete states. We intend to study how
to create more informed heuristics. However, this raises the
question of why don’t we use partial states.

As shown by the experiments, solutions over partial states
can be much more compact than solutions over complete
states, but this is rare in the current benchmark. And, al-
though there are some strong arguments for using partial-
state representations of policies, such as the scalability of
planners and the interpretability of generated solutions, clas-
sical planning heuristics reason over complete states. There-
fore, if we want to use classical planning heuristics, we are
initially limited to working with estimates regarding quanti-
ties of complete states. Moreover, there are scenarios where
optimizing the uncompressed policy is essential. For exam-
ple, if we need to store any information per complete state
(e.g. the expected distance from each to the goal), optimiz-
ing over partial states will not be good enough for us because
the number of complete states can be exponentially worse in
some domains if we decide to optimize over partial states. In
such cases, we really need to reason about complete states,
and AND∗ will be useful. Notwithstanding, we believe that
studying heuristics that are capable of estimating the number
of mapped complete states that remains for an arbitrary pol-
icy to become a FOND solution helps to better understand
FOND planning, and that our work, as a whole, allows a bet-
ter understanding of how to design algorithms and heuristics
to solve FOND tasks.

As another future work, we intend to analyze how to com-
press solutions returned by AND∗ using partial states, and
to understand what theoretical guarantees such compressed
solutions would have with regard to how far they are from
being optimally compressed.

284



Acknowledgments
We thank UFRGS, CNPq, CAPES, and FAPERGS for par-
tially funding this research. The present work was car-
ried out with the support of CNPq, Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico - Brazil.
We acknowledge support from FAPERGS with project
21/2551-0000741-9. This study was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Su-
perior - Brasil (CAPES) - Finance Code 001.

References
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence, 147: 35–84.
Fu, J.; Ng, V.; Bastani, F.; and Yen, I.-L. 2011. Simple
and fast strong cyclic planning for fully-observable nonde-
terministic planning problems. In Proceedings of the In-
ternational Joint Conference On Artificial Intelligence, vol-
ume 22, 1949–1954.
Geffner, T.; and Geffner, H. 2018. Compact policies for fully
observable non-deterministic planning as SAT. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, volume 28, 88–96.
Hansen, E. A.; and Zilberstein, S. 2001. LAO∗: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129: 35–62.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE transactions on Systems Science and Cybernetics, 4:
100–107.
Helmert, M.; and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 19, 162–169.
Kissmann, P.; and Edelkamp, S. 2009. Solving fully-
observable non-deterministic planning problems via trans-
lation into a general game. In Proceedings of the Annual
German Conference on Artificial Intelligence, volume 32,
1–8.
Kuter, U.; Nau, D.; Reisner, E.; and Goldman, R. P. 2008.
Using classical planners to solve nondeterministic planning
problems. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 18, 190–
197.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern database heuristics for fully observable non-
deterministic planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 20, 105–112.
Messa, F.; and Pereira, A. G. 2023. And-Star-Project. https:
//doi.org/10.5281/zenodo.7738316.
Muise, C.; McIlraith, S.; and Beck, C. 2012. Improved
non-deterministic planning by exploiting state relevance. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 22, 172–180.

Pereira, R. F.; Pereira, A. G.; Messa, F.; and De Giacomo, G.
2022. Iterative Depth-First Search for FOND Planning. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 32, 90–99.
Ramirez, M.; and Sardina, S. 2014. Directed fixed-point
regression-based planning for non-deterministic domains. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 24, 235–243.

285


