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Abstract

The PDDL modelling problem is known to be challenging,
time consuming and error prone. This has led researchers to
investigate methods of supporting the modelling process. One
particular avenue is to adapt tools and techniques that have
proven useful in software engineering to support the mod-
elling process. We observe that concepts, such as inheritance
and modularity have not been fully explored in the context
of modelling PDDL planning models. Within software engi-
neering these concepts help to organise and provide structure
to code, which can make it easier to read, debug, and reuse
code. In this work we consider inheritance and modularity
and their use in PDDL action descriptions, and how these can
have a similar impact on the PDDL modelling process. We
define an extension to PDDL and develop appropriate tools
to compile models using these extensions, both directly from
the command line and through the Visual Studio Code PDDL
extension. We report on our use of inheritance and modular-
ity when modelling a planning model for a companion robot
scenario. We also discuss the benefits of exploiting the inher-
itance hierarchy in other modules within our robot system.

Introduction
The problem of authoring PDDL domains has been identified
as a major bottleneck in the adoption of planning. Tradition-
ally authoring PDDL was carried out entirely in a text edi-
tor, but over the years tools and techniques have been devel-
oped to support the process. These include frameworks sim-
ilar to Integrated Development Environments (IDEs) for use
by software engineers, e.g., the GIPO (Simpson, Kitchin,
and McCluskey 2007), itSIMPLE (Vaquero et al. 2007) and
KEWI (Wickler, Chrpa, and McCluskey 2014) systems. Al-
ternatively, approaches to domain model acquisition aim to
learn models from observations, e.g., (Wu, Yang, and Jiang
2007; Mourao et al. 2012; Lindsay et al. 2017) and ap-
proaches that provide assistance in refining (Lindsay et al.
2020) and extending (Porteous et al. 2021) existing plan-
ning models, each aim to reduce the burden of modelling a
complete domain model.

We observe that concepts that have proven useful in soft-
ware engineering, such as inheritance and modularity, have
not been fully explored in the context of modelling planning
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models. Inheritance and modularity are used in software en-
gineering as organisational strategies, which can be used to
organise complex code into hierarchical structures, simpli-
fying writing and reading code. Inheritance is used in object
orientated programming (OOP) (Stefik and Bobrow 1985),
and allows groups of similar features that use similar inter-
faces, to share core code. In the case of OOP, the shared code
is captured in an abstract object, and it is written once. Each
specific feature extends this abstract object, adding the spe-
cific details of the implementation that distinguish the fea-
ture. The key is that all of the functionality provided by the
shared code is inherited by each of these features. Modular-
ity allows for code to be organised amongst files or modules,
with the necessary dependencies explicitly declared between
these modules.

Planning models can involve substantial duplication (e.g.,
context dependent actions) and complexity (e.g., models for
real world applications). For example, context dependent ac-
tions are actions that can have several interpretations, or spe-
cific implementations, depending on the context that the ac-
tion is executed. In the barman domain, there are different
actions to fill a shot glass, which depend on whether the shot
glass is empty or not. Of course, the actions representing
these specific cases will typically share much of their repre-
sentation. Moreover, redundancy and complexity can reduce
legibility and increase the chances of introducing errors dur-
ing model changes.

In this work we consider using inheritance and modular-
ity within PDDL domain definitions. We make an extension
to the PDDL syntax to allow their use in the definition of
domain models and use benchmark domains to demonstrate
their use. We present an approach for compiling domain def-
initions that use inheritance and modularity into standard
PDDL, allowing planners to be used on these domains. We
present a case study in which we use inheritance and mod-
ularity as part of the development of a domain model for a
companion robot for use in a medical setting. We also con-
sider how the inheritance structure can be used in other parts
of the robot system to increase robustness in the system and
reduce redundancy.

Related Work
There are various approaches to supporting authoring PDDL
models, including frameworks similar to IDEs for use by
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software engineers, e.g., the GIPO (Simpson, Kitchin, and
McCluskey 2007), itSIMPLE (Vaquero et al. 2007) and
KEWI (Wickler, Chrpa, and McCluskey 2014) systems.
These modelling tools are useful for rapid development of
domains by an experienced domain modeller. In this work
we chose the Visual Studio PDDL plugin (Dolejsi et al. 2019)
to extend with our approach.

Inheritance in PDDL is used in the type hierarchy (Mc-
Dermott et al. 1998) and action inheritance has been con-
sidered previously in (Tenenberg 1989), where the motiva-
tion was on reducing the planner’s search space through ab-
straction. In their approach, abstractions are derived retro-
spectively from a complete model description. There are ap-
proaches, e.g., (Hertle et al. 2012), that support inheritance
in an alternative representation language, which is subse-
quently compiled into PDDL. Linking supporting modules
into PDDL has also been utilised in PMT (Gregory et al.
2012) and PDDL/M (Dornhege et al. 2009). However, in
these cases modularity was introduced to mitigate language
limitations, or to connect to external functions. Finally, our
work has some relation to decomposition in hierarchical task
network planning, e.g., (Nau et al. 2003), and object focused
approaches (Simpson, Kitchin, and McCluskey 2007).

Background
In this section we introduce the planning background and
two benchmark planning domains that will be used to moti-
vate our approach.

Planning Model

The description of a planning problem is separated into two
parts: the definition of the planning domain that defines the
world and its behaviours; and an explanation of the specific
problem to be solved within that world. A domain is a tu-
ple, D = ⟨T,P,A⟩, defining the sets of types, T, predicates,
P, and actions, A. Types are defined as a series of pairs of
types (indicating type inheritance), which describe a hierar-
chy, and both action and predicate arguments can be typed.
A planning problem is a tuple, P = ⟨O, sinit, g⟩, with the
set of typed objects, O, an initial state, sinit, and a goal, g,
which is a partial state. Predicates and actions are instan-
tiated over the objects of a particular problem (instantiated
predicates are called propositions). Actions are represented
by three sets of predicates: the precondition (aPRE) and the
add (aADD) and delete (aDEL) effects. An instantiated ac-
tion, a, is applicable in a state, s, when its precondition is
satisfied in s (aPRE ⊆ s), and if selected its effects are ap-
plied resulting in a new state (s′ = (s\aDEL)∪aADD). We
will use eff(a) in this work to denote the combined effects
of the action, and assume set operators that appropriately
respect the add and delete sets structure. States are sets of
propositions and the set of reachable states is defined as any
state that can be reached from sinit through repeated appli-
cation of applicable actions. A solution to a planning prob-
lem, P, is a sequence of instantiated actions (i.e., a plan),
a1, . . . , an, which when applied in sequence to sinit, leads
to a state that satisfies g.

Barman Domain The barman domain is a benchmark
domain, introduced in the seventh International Planning
Competition (IPC), which includes deterministic actions
such as fill shot, pour shot to clean shaker
and shake. The problems involve creating a selection of
drinks, requiring ingredients to be poured into shakers, mix-
ing the drink and the drink being poured out in to shot
glasses.

Driverlog Domain Driverlog is a benchmark domain in-
troduced for the third IPC. Problems involve redistributing
packages amongst a set of locations, using trucks to collect
and deliver the packages. The trucks are operated by drivers
and both drivers and trucks navigate constrained maps. The
domain includes actions to move trucks and drivers, and
pickup and drop off packages and drivers.

PDDL with Inheritance: A Monotonic
Refinement Approach

Inheritance in OOP allows for an object —a structure con-
taining code and data— to be based on an existing object
(or objects), thus sharing some implementation. This is used
in order to organise complex code, and to reduce redun-
dancy and potentially improve robustness through code shar-
ing and reuse. In this section we propose the use of inheri-
tance in the definition of actions. We define the process of
action inheritance as action refinement, which allows for re-
lated actions to share part of their representation. We exam-
ine its benefit in context dependent actions (see the ‘Case
Study’ for another example) and we describe how it is sup-
ported through an extension to the PDDL language.

Action Inheritance in Domain Modelling
We extend the definition of actions to allow each action in a
domain to inherit from an optional super action. Our inter-
pretation is that an action inherits the super action’s struc-
ture, including parameters, preconditions and effects. Inher-
itance between action a1 and its super action a0, is therefore
an explicit declaration that a1, with parameters params(a1)
preconditions prec(a1) and effects eff(a1), is a refinement
of a0.
Definition 1 (An Action Refinement). An action a1 is a re-
finement of an action a0 if params(a0) ⊆ params(a1) and
prec(a0) ⊆ prec(a1) and eff(a0) ⊆ eff(a1).

As a consequence, a super action a0 is at least as general
as an inheriting action a1 (e.g., where a1 is applicable, then
a0 is applicable). A super action might also inherit from an
action, although the resulting chain must not contain cycles.

Context Dependent Actions
We observe that context dependent actions form natural
groups, where a set of actions each capture the effects of a
specific action under a different context. As a consequence,
it is often the case that the actions share part of their repre-
sentation. For example, the barman domain involves actions,
such as filling a shot and pouring a shot to a shaker, where
the details of the action depend on the specific context. Fig-
ure 1 presents the PDDL representation of the fill shot
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(:action fill shot
:parameters (?s - shot ?i - ingredient

?h1 ?h2 - hand ?d - dispenser)
:precondition (and (holding ?h1 ?s)

(handempty ?h2) (dispenses ?d ?i)
(empty ?s) (clean ?s))

:effect (and (not (empty ?s))
(contains ?s ?i) (not (clean ?s))
(used ?s ?i)))

Figure 1: The fill shot action from the barman bench-
mark domain. Context shared with the refill shot ac-
tion highlighted in red.

(:action base fill shot
:parameters (?s - shot ?i - ingredient

?h1 ?h2 - hand ?d - dispenser)
:precondition (and (holding ?h1 ?s)

(handempty ?h2) (dispenses ?d ?i)
(empty ?s))

:effect (and (not (empty ?s))
(contains ?s ?i)))

(:action fill shot
:super (base fill shot)
:precondition (clean ?s)
:effect (and (not (clean ?s))
(used ?s ?i)))

(:action refill shot
:super (base fill shot)
:precondition (used ?s ?i))

Figure 2: The fill shot and refill shot actions rep-
resented using a super action base fill shot.

action, which involves filling a shot with an ingredient from
a dispenser. There are two variants of the fill shot ac-
tion. The fill shot action requires that the shot glass is
clean, whereas the refill shot action requires that the
shot glass has already been used. Figure 1 demonstrates the
majority of the parameters and predicates are shared be-
tween the fill shot and refill shot actions (high-
lighted in red).

Action inheritance can therefore be used to build abstract
actions that capture core structure and conceptual hierar-
chies in the action implementation. In the barman domain
we could propose a new base fill shot action, which
captured the main impact of filling the shot (see top of Fig-
ure 2). Both the fill shot and refill shot actions
would be refinements of this action, each adding the detail
required for implementing the action in a different context.

PDDL Action Inheritance Syntax
An extension to PDDL is proposed, introducing a new :inher-
itance keyword into the PDDL requirements, and the super
keyword to be used as an optional entry in action descrip-
tions. It allows the modeller to declare that an action inherits
from a super action. The interpretation of an action a1 inher-
iting from an action a0 is that a1 is an action refinement of

Figure 3: A graph showing a partial inheritance tree for the
move action in a simple transportation domain. The boxes
indicate different modules, each of which may be associated
with problem files.

a0, and as a consequence will include all of the parameters,
preconditions and effects of a0. Figure 2 presents the use of
inheritance in PDDL (additional syntax emphasised in red) in
order to declare the fill shot and refill shot using
a super action base fill shot, which provides the core
functionality.

The declaration of inheritance between actions can be
used to create an action hierarchy, which is a directed acyclic
graph that captures the relationships between actions in the
domain. For example, Figure 3 presents part of the action
hierarchy for the actions that inherit from a basic move ac-
tion from a transportation domain. The move action freely
moves a transporter between locations, the drive truck
action adds the requirement that a driver is in the truck
and the constrained drive truck action also adds a
map.

In the current version we allow single and multilevel in-
heritance and we do not allow cyclical dependencies. We
also assume that action names are distinct. Explicit decla-
ration of the super action and the definition of inheritance
as action refinement means that any path in the action hi-
erarchy will always describe a monotonic refinement, with
predecessors always describing more general actions.

Modularity
Modularity in software engineering allows a separation of
code into separate modules, which can allow organising
code into conceptual units, or providing alternative imple-
mentations for a certain aspect. In this section we consider
its use within PDDL and our proposed syntax for supporting
modularity.

Modularity in Domain Modelling
Our interpretation of modularity is to allow the definition of
a domain model to be separated into various domain model
files with explicit dependencies made between these partial
definitions. A declaration of dependency between a domain
di and di−1, means that structure defined in di−1 is available
in di. The type and predicate definitions in di are extended
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by the definitions in di−1. The action definitions in di−1 are
available for extension in di, but are not part of its domain
definition. In particular, action inheritance is through explic-
itly defining an inheritance relationship, as was described
above. We allow action definitions to declare inheritance be-
tween an action ai in domain di and an action ai−1 from do-
main di−1, where domain di is dependent on domain di−1.

Our approach to modularity allows a domain model to de-
clare a dependency for multiple domain models, where the
dependency hierarchy of a domain must be representable by
a directed acyclic graph.

Modularity in Transportation Domains Transportation
underlies many planning domains, including briefcase, zeno,
driverlog, logistics, and trucks. In (Long and Fox 2002) the
authors identified a behaviour hierarchy that explained the
existing transportation domains. This included alternative
implementations, such as dynamic and static maps, and re-
finement of behaviour, e.g., from a mobile (e.g., a truck), to
driven mobile (e.g., a truck that needs a driver). Currently,
this hierarchy is instantiated in a variety of individual do-
main models. However, several partly share the same, or
very similar structure. We observe that modularity provides
a framework for developing a series of modules that can be
combined in different ways. This allows these overlaps in
structure to be extracted into modules and reused.

The basic structure of a transportation domain can be de-
fined (e.g., consider an extended briefcase domain with ex-
plicit transporters), including actions representing moving a
transporter (a carrier), and loading and unloading to/from
the transporter. This basic structure can then be extended in
different domain modules. For example, we can define the
truckdriver domain that introduces drivers into the domain.
This extension module adds an additional constraint to the
move action (i.e., that a driver must be in the transporter),
and adds actions for a driver to board and disembark the
transporter, and to walk between locations. The truckdriver
domain can then be further extended to the driverlog domain
(see the ‘Background’ section) by adding maps to restrict
the movement of trucks and drivers. From this point we may
also extend the model with alternative cost model or tempo-
ral interpretations (e.g., see domains in the third IPC (Fox
and Long 2002)). Alternatively, the logistics benchmark do-
main, would extend the basic transportation domain with al-
ternative typed transporters with constrained maps. Figure 3
presents a graph of actions that inherit from the move action
in the transportation domain, and indicates how these are or-
ganised into different modules. This demonstrates one way
that modules can help sharing model structure, even between
different domains.

Supporting Modularity in PDDL

In order to support modularity we allow model aspects to
be organised in different domain files. We introduce a new
:modularity keyword into the PDDL requirements and we
add a dependencies entry in the PDDL definition, which is
used to connect to additional domain files. For example, the
graph in Figure 3 shows that action move is defined in a do-
main called transportation, which captures the basic trans-

Algorithm 1: ACTION COMPILER: Given an action a from
domain D recursively build compiled action â.

1: function ACTIONCOMPILER(D, a, â)
2: if super(a) then
3: D′, asuper ← findAction(super(a))
4: ActionCompiler(D′, asuper, â)
5: end if
6: params(â)← params(â) ∪ params(a)
7: prec(â)← prec(â) ∪ prec(a)
8: eff(â)← eff(â) ∪ eff(a)
9: end function

Algorithm 2: MODULE COMPILER: Given a domain model,
D with possible dependencies dep(D), returns the compiled
model D̂: in standard PDDL.

1: function MODULECOMPILER(D)
2: T̂D ← TD ∪

⋃
D′∈dep(D) T̂D′

3: P̂D ← PD ∪
⋃

D′∈dep(D) P̂D′

4: ÂD ← list()
5: for all a ∈ AD do
6: â← Action(name(a))
7: ActionCompiler(D, a, â)
8: ÂD ← ÂD ∪ {â}
9: end for

10: D̂← Domain(T̂D, P̂D, ÂD)

11: return D̂
12: end function

portation actions (e.g., move, load, unload). The truckdriver
domain extends this domain —it includes an entry (:depen-
dencies transportation.pddl ..)— and declares an inheriting
action drive truck.

PDDL Action Inheritance Toolkit
We have developed both command line and IDE based toolk-
its for managing domain models that use inheritance and
modularity. The core functionality is a model compiler (im-
plementing Algorithms 1 and 2), which takes a domain file
(with possible dependencies to other domain files) and flat-
tens it to a single domain file with no inheritance, allowing
the model to be used by standard PDDL planners. However,
we also include standard IDE features, and useful visualisa-
tions, to assist in the design and maintenance process. In this
section we present these tools.

Compiling a Domain Model with Modularity and
Inheritance
In order to create a single domain file, suitable for standard
PDDL planners, we implement a compilation step, which
builds the model from the modules in the dependency hi-
erarchy. The pseudocode for the compilation is presented in
function ModuleCompiler in Algorithm 2). For a domain
D, the dependencies are denoted dep(D) and the compiled
domain is denoted D̂. The definition of types, predicates and

262



Figure 4: Screenshots from the extended VS Code PDDL extension.

actions within a domain file are denoted T, P, and A, while
the compiled sets are denoted T̂, P̂, and Â. For compiling
types (line 2) and predicates (line 3), the definition recur-
sively combines (set union) the definition in the current do-
main with the compiled definition from each of the domain
modules that the current domain depends on. As a result the
compiled domain includes the type and predicate definitions
from all domains in the dependency hierarchy. For each ac-
tion, a new action is created retaining the action’s name and
an empty list of parameters and empty sets of preconditions
and effects. The action is compiled (line 7) using the pro-
cedure presented in Algorithm 1. These compiled structures
are then combined to create the compiled domain model,
which is then returned (lines 10-11).

Each action is compiled (ActionCompiler in Algo-
rithm 1) by recursively building its representation by de-
scending the inheritance hierarchy (lines 2-4). If the current
action references a super action (line 2) then the function
findAction resolves the reference and returns both the
action and its module (line 3). This is achieved by examin-
ing the current domain and all domains in the dependency
hierarchy. Each of the current action’s parameters, precon-
ditions, and effects are then added (lines 6-8) to create the
compiled action representation. The approach is organised
so that structure from the more general actions is ordered
first (in particular, parameters are added in order).

Within the PDDL VS Code Extension
The VS Code PDDL extension (Dolejsi et al. 2019) pro-
vides functionality to support PDDL modelling in VS Code
in a similar manner to programming languages, such as
Python. For domain modelling this includes syntax high-
lighting, code snippets, autocompletion, hover over tooltips
and jump to definitions. These features rely on lightweight
parsing, operating on partial documents. This approach ex-
ploits the expected structure of PDDL definitions in order to
build an interpretation over a partial model description and it
is capable of maintaining key information about the model,
including types, predicates and actions.

We have built on the VS Code extension to support edit-
ing multi-module domain models that use action inheritance.
Figure 4 illustrates some of the functions that are imple-
mented, including highlighting, autocomplete and jump to

definition, and their use in the creation of the truckdriver do-
main (see ‘Modularity’). In order to support the additional
syntax, the parsing, syntax highlighting and code snippets
were extended. Supporting the autocompletes and jump to
definition required that the scope of relevant content to be
redefined to include appropriate content from relevant mod-
ules. This relies on maintaining an up-to-date interpretation
of each of the domain files that is currently in the depen-
dency hierarchy for the domain in focus. The potentially re-
cursive tree of dependencies is then descended to gather the
appropriate scope. For example, in the case of creating the
list of autocompletes for an action effect, the system builds
the list from the predicates in the current domain file and all
of the domains that the domain depends on. In the case of
autofilling the dependencies, only .pddl files in or under
the current model’s directory are suggested.

Command Line Tool
We have also developed an alternative command line ap-
proach, which includes a parser, a model compiler, and sev-
eral visualisation tools (e.g., see Figure 7). As in the VS
Code extension, the core functionality is a model compiler,
which takes a domain model file (with possible dependen-
cies to other domain files) and flattens it to a single model
with no inheritance, allowing the model to be used by stan-
dard PDDL planners. For example, Figure 1 presents the
fill-shot action, compiled from the schema in Figure 2.
This tool provides support to non-VS Code users.

Case Study: A Companion Robot
In this section we use a case study to examine the use of
inheritance and modularity in modelling a PDDL domain
model. We first introduce a project that aims to develop
a companion robot for children during painful procedures.
We introduce the scenario and overview our current sys-
tem. We then describe the model that we have developed
and how inheritance and modularity were used to organise
the model’s complexity. Finally, we describe the use of the
model’s structure in other parts of the system.

A Clinical Setting Scenario
Children regularly experience pain and distress in clinical
settings, which can produce negative effects in both the short
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(:action do activity
:parameters (?a - activity)
:effect (done activity ?a))

(:action do calming activity
:super (do activity)
:precondition (calming ?a)
:effect (hascalmed))

(:action calm during anxiety management
:super (do calming activity)
:precondition
(and

(amrequirescalming)
(amperforminganxietymanagement))

:effect
(and

(not (amrequirescalming))
(amrequiresanxietyretest)))

Figure 5: Example PDDL actions for the do activity ac-
tion and two refinement (inheriting) actions.

Figure 6: Part of the action hierarchy for the do activity
action.

term (e.g., fear, distress, inability to perform procedures) and
the long term (e.g., needle phobia, anxiety) (Stevens et al.
2011). Recent studies have demonstrated that social robots
can be used to manage child pain and distress during medical
procedures (Ali et al. 2019; Trost et al. 2019). We are part of
a team developing a social robot underpinned by a planning
system to be used in this setting (Foster et al. 2020; Lindsay
et al. 2022). The scenario presents a significant challenge
for a social robot: the system must coexist with multiple hu-
mans engaged in numerous high-priority and dynamic tasks.
The robot behaviour must be sensitive to the situation, as in-
appropriate behaviour may impact patient safety and well-
being.

To address these challenges, we underpin the robot’s be-
haviour with an automated planning system that uses ob-
served social signals, together with the robot’s state, to se-
lect appropriate behaviour: the planner makes high-level de-
cisions as to which spoken, non-verbal, and task-based ac-
tions should be taken next by the system. Within this context,
the robot must be able to adapt to different roles throughout
the interaction, including mediator (e.g., introducing or ex-
plaining parts of a procedure), an assistant (e.g., performing
actions alongside humans), and tutor/interviewer (e.g., in the
debrief phase). The planning model must represent knowl-
edge and constraints from the robot, the medical setting and

the interaction, adding to the complexity of its representa-
tion.

Our System Overview
Our system architecture is composed of several components,
including social signal processing, an interaction manager, a
planning system, and a robot platform. The target robot plat-
form is the SoftBank NAO, which is a humanoid robot with
25 degrees of freedom, which enables it to move and per-
form a large variety of actions. At the centre of the architec-
ture is the interaction manager, which ensures synchronised
transitions between the internal states of the system/robot.
The interaction manager integrates the information from the
social signal components to estimate the affective state. It
also makes requests of the planning module, which is used
during the interaction to determine the next action based on
the current state and the goal. Finally, the social stimuli mod-
ule interprets high-level actions and generates specific sig-
nals for each communication channel, whether through syn-
thesised speech or non-verbal communication through ges-
tures and body language.

The Planning Model
The planning model underpins the interaction, and splits
the interaction into six stages: from introduction and pre-
procedure, optional site check, through the procedure, de-
brief and goodbye. The model includes actions that repre-
sent robot behaviour scripts (e.g., dancing, providing infor-
mation or meditation), and sensing actions (e.g., for anxiety
and engagement levels, or for user preferences). The model
also captures procedural knowledge, which includes strate-
gies for anxiety management, making a plan with the user
for diversion during the procedure, and managing the so-
cial interaction. An example of this procedural knowledge
is demonstrated by the (do activity meditation)
action. This action can be performed as a straightforward
diversion during the interaction (e.g., see top of Figure 5).
However, it also can form a component of the anxiety man-
agement procedure –a procedure that combines certain spe-
cific interventions with monitoring of social signals, with an
aim of managing the patient’s anxiety. In this case, the action
has additional conditions and effects to ensure it is carefully
placed within the procedure (e.g., see bottom of Figure 5).

The final domain model is organised into 13 modules
(see Figure 7). The compiled domain declares 34 actions, of
which 30 use at least a single layer of inheritance. Through-
out the modules there are 52 inheritance declarations, and
the action hierarchy has a maximum depth of five. The aver-
age number of predicates involved in action declarations in
the compiled model is 7.62, while it is 3.32 in the modules,
providing a measure of how inheritance is impacting on the
complexity of the representation.

Utilising Action Inheritance in Model Authoring
During the design of the model it became apparent that the
relatively small number of NAO, web-server and internal
actions, each had several interpretations during the interac-
tions, leading to action models with considerable repetition
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Figure 7: A graph illustrating the inheritance between different modules in our companion robot domain model.

between them. As an example, we can consider actions used
in the anxiety management procedure, which is defined in
the anxietymanagement module, and brings together
the testing and management of the patient’s anxiety level.
This intervention requires refinements to testing, and robot
activity actions that ensure their use in the required way
for the intervention. For example, the intervention can in-
clude the calm during anxiety management action,
which is part of the action hierarchy for the robot activity ac-
tion (see Figure 6). Figure 6 presents a fragment of the action
hierarchy for the robot activity actions (do activity),
and identifies five actions, which are used in different con-
texts within plans in our domain. In the original model
these actions each repeated parts of their representation. This
made debugging the model challenging as changes had to be
copied to all of the relevant actions, and identifying the im-
portant differences between actions was not always obvious.

We have used action inheritance in our model, allow-
ing the sharing of action representation, and improving the
model’s organisation. Figure 5 demonstrates the use of in-
heritance in three actions in the do activity action hi-
erarchy. These actions demonstrate how inheritance can be
used to build up abstraction layers. The use of inheritance
also has practical implications on how the modeller inter-
acts with the representation: firstly changes to the model can
be implemented at a single layer in the hierarchy, and those
changes impact on all of the inheriting actions directly; sec-
ondly, the size of the part of the precondition and effect de-
scribed at each level is often small (e.g., see ‘The Planning
Model’), simplifying the comparison between different ac-
tions, which can assist in debugging.

Using Modularity in Model Authoring
During modelling we used separate domain files to separate
out certain aspects of the model. The domain model is di-

vided into 13 modules (see Figure 7). At the bottom are the
basic behaviours (e.g., do activity in Figure 5). Build-
ing on these basic behaviours are interventions (such as the
anxiety management procedure), and their associated ac-
tions (e.g., see calm during anxiety management
in Figure 5), that combine the behaviours towards some pur-
pose. Each of the stages of the medical procedure has its
own domain file, which refine actions from the lower levels
to ensure that certain requirements for the stage are fulfilled.
For example, during the preprocedure the robot will have a
number of goals, such as establishing a diversion plan with
the patient (an agreement of how the robot can help during
the procedure), and managing their social signals (e.g., per-
forming an appropriate intervention if they are anxious). The
support for modularity has allowed us to organise the rep-
resentation and develop individual aspects of the procedure
separately. It allows the potentially complex structure that is
necessary to constrain parts of the procedure to be isolated
to relevant modules. This has simplified debugging and has
made reading the PDDL more manageable.

Using the Model in Planning
The compilation process (Algorithm 2) was used to compile
the modules into a single domain model in standard PDDL.
Problem models were then defined for the individual scenar-
ios, and solved using a standard planner.

Exploiting the Hierarchy in a Robot System
The motivation for using inheritance in the description of ac-
tions was to support the modelling process. Although not the
main motivation, we have found the action hierarchy —an
output of the use of inheritance in the PDDL model— use-
ful in our current companion robot project system. We now
consider how the hierarchy has led to more concise code and
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improved robustness in the action selection and interaction
manager components.

Exploiting Levels of Granularity for Defining Behaviour
The action selection and implementation component of our
robot system takes the planning actions and selects appro-
priate low-level behaviours to be executed on the robot. As a
consequence, each time a new action is implemented, which
is often simply to reflect a new context, the component needs
updated to include an appropriate mapping for the action.

Of course, in many cases, including e.g., context depen-
dent actions, the mapped behaviours will often be the same.
The hierarchy therefore provides a natural structure, allow-
ing the robot behaviours to be associated with actions at dif-
ferent levels of the hierarchy. For example, in the barman
domain, an appropriate behaviour could be attached to the
base fill shot action (see Figure 2), as the required
behaviour will be the same whether the shot glass is used
or clean.

In order to implement the action selection, the component
first reads the hierarchy information, which is stored within
a central parameter server. It is static (generated from the do-
main model), so it can be read once and used throughout the
interaction. When required to select a behaviour the compo-
nent ascends the action hierarchy stopping at the first action
that has a mapped behaviour. This can reduce redundancy,
while allowing refinement of behaviours where necessary.

Robustness to Missing Action Specification The inter-
action manager brings together the other components of the
system. As part of its role, it makes calls to parts of the sys-
tem (e.g., a planner, a web-server and sensors) and makes
internal updates, which can impact on the planner’s state. As
with the action selection component, we have exploited the
action hierarchy when defining these behaviours. For exam-
ple, the required steps for the anxiety test action (a sensing
action that determines whether the patient’s anxiety level is
OK) is associated with a base level action, and context de-
pendent refinements (e.g., an anxiety test during the anxiety
management procedure) use the same behaviour.

As a consequence, when the system is run with a new re-
fining action, even if it has not been explicitly specified in
the system, the system can still operate, and provide some
functionality. For example, when developing a particular
scenario a base action wait, which idles until it receives
an input, was extended with an action that provided two op-
tions (continue or abort). When the new action was selected
by the planner, the system implemented a typical wait action
and was able to continue. The specialised behaviour could
then be attached later. The use of the hierarchy is therefore
providing some robustness, allowing the specification of de-
fault behaviours, which can catch actions that have not been
associated with more specific behaviour.

Discussion
The extension provides modelling support, and has mini-
mal impact on performance: compilation is trivial (domi-
nated by parsing), and the model combines the structures
defined in the modules (no additional structure is required

for the compilation). Of course, the modeller may choose
to make a more complete representation of each abstraction
layer. However, modern planners are typically effective at
identifying and removing redundant and irrelevant structure
during preprocessing.

Another aspect of OOP that might be worth considering is
encapsulation, which might be used in e.g., privacy preserv-
ing planning (Maliah, Shani, and Brafman 2016). In partic-
ular, we may wish to declare certain actions and predicates
as private, so that they are hidden from inheriting classes.
Options for the syntax would include special private/pub-
lic modal operators in domain definitions, or dedicated slots
for visibility. Similarly, supporting a distinction for predi-
cate declarations between being visible (can be used in de-
pendent domain precondition) and modifiable (can be used
in dependent domain effects) might be worthwhile.

It might also be useful to declare types, actions and do-
mains, as abstract or final. Within the context of the cur-
rent work, the main use of declaring these elements abstract
would be in indicating the modeller’s intention (e.g., that
these elements should not be associated with objects, plans
and problems respectively), rather than to force structure on
inheriting structures. We currently support actions to be de-
clared as abstract, meaning that they are omitted from the
compiled domain (but can still be inherited from). For ex-
ample, base fill shot in Figure 2 can be declared as
an abstract action using abstract-action.

Conclusions and Future Work
In this work we have considered the use of inheritance be-
tween action descriptions and modularity in the Planning
Domain Definition Language (PDDL). We proposed an in-
terpretation of action inheritance as action refinement, and
the definition of domain models as a collection of separate
modules. We used benchmark domains to demonstrate how
inheritance and modularity can be used to support sharing
representation in different domain models and in different
actions in the same domain. An extension to PDDL was pro-
posed to allow inheritance between planning actions and de-
pendencies to be defined between domain model modules.
We have built tools (both command line and as part of the
VS Code PDDL extension) to support modelling, and to en-
able these domains to be compiled to standard PDDL do-
mains. We presented a case study in which we are using a
planning model to underpin action selection in a robot com-
panion system. We demonstrated how our approach has sup-
ported the organisation of knowledge and constraints relat-
ing to different aspects of the scenario, and allowed the de-
scription of planning actions to be refined through inheri-
tance, removing redundancy and improving the legibility of
the actions. The resulting action hierarchy has also proven
useful within other parts of the robot system, making its im-
plementation more concise and robust. In the future we will
consider how other types of inheritance and other organisa-
tional techniques from software engineering can be utilised
to impact on the PDDL authoring process and whether the
structure introduced through the use of modularity and in-
heritance can be exploited in planning or related processes
e.g., organising explanation content (Lindsay 2019).
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