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Abstract

Automated planning is a problem solving technique for a
wide range of scenarios and goals, which typically involves
the creation of domain and problem files in formal languages.
However, producing complete model descriptions can be
challenging and time-consuming, especially for non-experts.
Although many tools have been developed to support file edit-
ing, mistakes can still be made, such as incomplete or im-
proper specification of the initial state or the set of actions.
These errors often result in unsolvable tasks for planners,
making it impossible to generate a plan. Explaining the ab-
sence of a solution in such cases is essential to support hu-
mans in the development of automated planning tasks. In this
paper, we introduce a novel approach to repair planning mod-
els where the effects of some actions are incomplete, without
further information from the user side. We propose a compila-
tion of the unsolvable task to a new extended planning task, in
which actions are permitted to insert possible missing effects.
The solution is a plan that achieves the goals of the original
problem while also alerting users of the modifications made
to do so. Experimental results demonstrate that this approach
can effectively repair incomplete planning domains.

Introduction
Automated planning tasks are usually defined by a domain
description, which specifies all available actions and the
predicates used to describe the states; and a problem descrip-
tion that contains the initial state and the goal(s) to achieve.
Assuming a solvable and well-defined planning task, and in-
finite memory and time resources, a planner will return a
solution. However, modeling a planning task is not always
trivial, and there may be scenarios where neither complete-
ness nor correctness of the planning task specification can
be ensured (Kambhampati 2007; McCluskey, Vaquero, and
Vallati 2017). Flaws in the task model can arise due to a
noisy knowledge acquisition process, or because domain en-
gineers lack expertise in the description language or do not
have a deep knowledge of the current task, especially when
the domain is difficult to represent. These issues can result
in an incomplete specification of the initial state or actions,
rendering the planning task unsolvable.
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Providing users a comprehensive explanation about the
absence of solution and how to solve it is an important chal-
lenge for the planning community (Fox, Long, and Mag-
azzeni 2017; Chakraborti, Sreedharan, and Kambhampati
2020). Previous works have considered scenarios where ini-
tial states prevent the achievement of goals (Göbelbecker
et al. 2010; Sreedharan et al. 2019), providing explanations
and alternative initial states that render the task solvable.
However, these works assume the proper specification of
the domain and do not consider modifications to it. But just
making changes to the initial state is sometimes not enough.
For instance, forgetting to include the action effect that
cleans the glass (Figure 1) in the barman domain (Linares
López, Jiménez Celorrio, and Garcı́a-Olaya 2015) can make
the task unsolvable, but setting the glass as clean in the ini-
tial state will not solve the problem if it gets dirty again.

(:action clean-shot

:pareters (?s - shot ?b - beverage ?h1 ?h2 - hand)

:precondition (and (holding ?h1 ?s) (handempty ?h2)

(empty ?s) (used ?s ?b))

:effect (and (not (used ?s ?b)) (clean ?s)))

Figure 1: Clean shot action. If (clean ?s) is omitted, the plan-
ner will not find a plan in tasks requiring to reuse the glass.

Due to the number of potential changes to the set of ac-
tions, repairing faulty domains is not trivial (Lin and Bercher
2021). Previous works assume guidelines from users, often
in the form of a suggested valid plan (McCluskey, Richard-
son, and Simpson 2002; Simpson, Kitchin, and McCluskey
2007; Nguyen, Sreedharan, and Kambhampati 2017; Lin,
Grastien, and Bercher 2023). In contrast, in this work we
propose the use of automated planning to repair planning
tasks themselves, without additional information from the
user. We focus on errors in the domain model that render the
planning task unsolvable. Specifically, we consider missing
action effects, which can compromise the task’s solvabil-
ity. We present a compilation of the unsolvable task into a
new extended planning task that includes operators to add
or delete new facts to the current state, linking them as new
effects of the original actions. The resulting plan not only
achieves the original goals but also provides information on
how the model was repaired to make the task solvable.
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Background
Automated planning tasks define problems whose solutions
are sequences of actions, called plans, that achieve the prob-
lem goals when applied to specific initial states. We use
the first-order (lifted) planning formalism, where a classi-
cal planning task is a pair Π = ⟨D, I⟩, where D is the
planning domain and I defines a problem instance. A plan-
ning domain is a tuple D = ⟨H, C,P,A⟩; where H is
a type hierarchy; C is a set of (domain) constants; P is
a set of predicates defined by the predicate name and the
types of its arguments; and A is a set of action schemas.
If p(t) ∈ P is an n-ary predicate, and t = t1, . . . , tn are
either typed constants or typed free variables, then p(t) is
an atom. An atom is grounded if its arguments do not con-
tain free variables. Action schemas a ∈ A are tuples a =
⟨name(a), par(a), pre(a), add(a), del(a), cost(a)⟩, defin-
ing the action name; the action parameters (a finite set of
free variables); the precondition, add and delete lists; and
the action cost. pre(a) is a set of literals representing what
must be true or false in a state to apply the action. add(a)
and del(a) represent the changes produced in a state by the
application of the action (added and deleted atoms, respec-
tively). A problem instance is a tuple I = ⟨O, I,G⟩, where
O is a set of typed constants representing problem-specific
objects; I is the set of ground atoms in the initial state; and
finally, G is the set of ground atoms defining the goals.

Grounded actions a are obtained from action schemas
a by substituting the free variables in the parameters by
constants in O. A grounded action a is applicable in an
state s if pre(a) ⊆ s. When a grounded action is ap-
plied to s we obtain a successor state s′, defined as s′ =
(s \ del(a)) ∪ add(a). A plan π is a sequence of grounded
actions a1, . . . , an such that each ai is applicable to the state
si−1 generated by applying a1, . . . , ai−1 to I; a1 is applica-
ble in I; and the consecutive application of all actions in the
plan generates a state sn containing the goals, G ⊆ sn. The
cost of a plan is defined as cost(π) =

∑
ai∈π

cost(ai).

Problem Formulation
First, we define domains with incomplete action effects.

Definition 1 (Effect-incomplete domain). A planning do-
main D− = ⟨H, C,P,A−⟩ is effect-incomplete wrt. an un-
derlying planning domain D = ⟨H, C,P,A⟩ iff:

• There is a one-to-one correspondence between the action
schemas, such that for every pair of corresponding action
schemas, a ∈ A and a− ∈ A−,

a− = ⟨name(a), par(a), pre(a), add−(a), del−(a)⟩

where add−(a) ⊆ add(a), del−(a) ⊆ del(a); and
• There is at least one action schema in A− for which
add−(a) ⊂ add(a) or del−(a) ⊂ del(a).

For an effect-incomplete domain there always exists at
least one a− ∈ A− whose positive or negative effects are a
proper subset of the underlying action a ∈ A. The solution
consists of repairing the actions of the effect-incomplete do-
main with additional add or del effects so that the resulting
planning task is solvable.

Definition 2 (Repairing set). Given an effect-incomplete
domain D− = ⟨H, C,P,A−⟩, a repairing set R̂ =

{(R̂+
i , R̂

−
i )}i=1,...,|A−|, is a set of pairs of collections of

atoms R̂Xi = {p(t) | p ⊆ P , t ⊆ par(a−i )}, X ∈ {+,−},
to extend the positive and negative effects of every a−i ∈ A−.

The repaired domain is generated by extending the posi-
tive and negative effects of every action with its correspond-
ing repairing set.

Definition 3 (Repaired domain). Given an effect-
incomplete domain D− = ⟨H, C,P,A−⟩ and a repairing
set R̂, the repaired domain is DR̂ = ⟨H, C,P,AR̂⟩ with
add(aR̂i ) = add(a−i )∪ R̂

+
i and del(aR̂i ) = del(a−i )∪ R̂

−
i .1

We will denote the repaired domain as DR̂ = D− ⊕ R̂.
We assume that the terms in t for every p(t) in R̂ also appear
in the parameters of the action being repaired. Based on this,
we define an uninformed repairing problem as follows:

Definition 4 (Uninformed repairing problem). Given an
unsolvable planning task Π− = ⟨D−, I⟩ with an effect-
incomplete domain wrt. the underlying unknown domain of
an assumed solvable planning task Π = ⟨D, I⟩, the unin-
formed repairing problem consists of determining a repair-
ing set R̂ such that the planning task ΠR̂ = ⟨DR̂, I⟩, with
DR̂ = D− ⊕ R̂, is solvable.

The lack of information about the underlying domain D
leads to estimated reparations and many possible repairing
sets. Although our approach focuses on repairing missing
effects, it is worth noting that an excess of preconditions
(positive or negative) can also be reduced to a lack of ef-
fects (positive or negative) to satisfy them. In the remainder
of the paper we present a compilation of the uninformed re-
pairing problem into classical planning, including its theo-
retical properties, a way of biasing the search towards more
desirable repair plans, and experimental results in some do-
mains. We finish with the presentation of the related work,
the conclusions and future work.

Compilation to Classical Planning
To solve the uninformed repairing problem, we compile Π−

into a new planning task Π′ that includes additional opera-
tors to repair any action in the domain. At the operational
level, each grounded action is now divided into three stages:
(1) the application of the action, (2) any necessary repara-
tion, and (3) the closure of the action. For example, let us
consider the running example. When the planner first instan-
tiates the clean-shot action, it is incomplete and it cannot
continue without actually cleaning the glass. To fix this, a
repair operator is applied to the action, linking it with the
clean new positive effect. If no further repairs are necessary,
the current action is closed and it moves on to the follow-
ing one. This process is repeated until all goals are achieved.
Note that actions can also be closed without any reparation.

To manage this process, we reformulate the planning task
elements. We extend the original type hierarchy with new

1Note that the repairing set can be empty for some actions.
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Figure 2: Hierarchy type of the new extended planning task.

types, resulting in a new type hierarchy H′, shown in Fig-
ure 2. Types action and type (denoted in the remainder of
the paper as o act and o type, respectively) are used to pro-
vide information about the different actions and type names
present in the original domain D−. The type item (denoted
as o item) represents original domain objects and predicate
names, both of which are elements required to repair the
planning task. We use objectdomain (denoted as o obj) as an
abstract object to summarize the type hierarchy in the orig-
inal domain. We introduce then the following new domain
sets of constants: Ca of type o act to represent action names,
Ca = {name(a) | a ∈ A}; Ct of type o type to represent
the types in the original hierarchy, Ct = {ttype | type ∈ H};
and Cp of type o pred to represent the names of the predi-
cates in the original domain, Cp = {p | p(t) ∈ P}. Figure 3
shows examples of the type redefinition and the domain con-
stants for the barman domain.

(:types

action type item - object

predicate objectdomain - item

hand level beverage dispenser container - objectdomain

ingredient cocktail - beverage

shot shaker - container)

(:constants

grasp leave fill-shot clean-shot ... - action

handempty empty clean used shaked ... - predicate

t_shot t_ingredient t_shaker ... - type

...)

Figure 3: Reformulated types and constants in Π′.

We also introduce two groups of new predicates that re-
place the original ones. The first group (Paccess) contains
predicates to access the elements of the original task and the
second group (Pcontrol) contains control predicates for the
repairing task. Paccess includes:

• functor(o pred), that allows to define facts to rep-
resent predicate names. Possible examples are func-
tor(handempty), functor(clean), etc.

• type(o obj,o type), that allows to define facts to ac-
cess the type and super-types of every object in the orig-
inal domain. Examples are (type shaker01 t shaker) and
(type shaker01 t container).

• pred ⟨n⟩(o pred,o type1, . . . ,o typen), represent-
ing that there is a n-ary predicate defined in the origi-
nal domain, also containing the predicate symbol and the
types involved. (pred 2 contains t container t beverage)
means that there is a predicate of arity 2 to represent that
a container contains a beverage.

• in state ⟨n⟩(o pred,o obj1, . . . ,o objn) represents
that the fact (o pred, o obj1, . . . , o objn) is true in a
state. In this way we can group propositions with the
same arity n. For instance the grounded atoms (clean
shot01) and (empty shot01), with arity 1, can be repre-
sented by the same predicate in state 1. Then, if the
shot is clean or empty in the current step the new task
represents (in state 1 clean shot01) and (in state 1 empty
shot01). This lets us generalize the task, allowing the re-
pair operators to add or remove any fact from the current
state grouped by arity.

• goal ⟨n⟩(o pred,o obj1, . . . ,o objn) represents that
(o pred, o obj1, . . . , o objn) is a goal of the task.

• add eff(o pred,o act), denotes that a predicate name
appears in the add effects of an action. For instance,
(add eff holding grasp).

• del eff(o pred,o act), similarly, denotes that a predi-
cate name appears in the del effects of an action.

The new control predicates, Pcontrol, are:

• checked(o act), denoting that an action has been al-
ready added to the plan, repaired or not. No previously
checked actions can be repaired.

• current action(o act), used to control which is the
current action in course, to repair it if needed.

• patched(o act), indicating that action has been fixed
at least once.

• fix(o act,o pred), meaning that an action has been re-
paired and the predicate involved.

• used(o item), for repairing the action with the objects
currently in use.

• open, indicating that the reparation is allowed.

• fixed, denoting that an action has been fixed with at least
one of the add effects involved in a fix.

• add added(o pred,o act), representing that a func-
tor has been already used to repair an action as a new
positive effect.

• del added(o pred,o act), to denote that a predicate
has been used to repair an action as a new negative effect.

The new extended planning task is Π′ = ⟨D′, I ′⟩, where
D′ = ⟨H′, C′,P ′,A′⟩. H’ is the described new hierarchy
(see Figure 2); the constants include the original constants
and the new ones: C′ = C ∪ Ca ∪ Ct ∪ Cp; the predicates
definition includes the new access and control predicates:
P ′ = Paccess ∪ Pcontrol; and A′ is new set of actions
schemes, defined as A′ = Aα ∪ Aϕ ∪ Aψ+

∪ Aψ− ∪ Aω ,
where Aα consists of actions generated from the original
domain actions, but compiled to match the new object rep-
resentation. The remaining sets of actions are used for repair
purposes, as explained below.2

2The extended planning task requires of negative preconditions
and forall effects. We consider classical planning extended with
that additional expressivity incorporated in ADL (Pednault 1989).
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ACTIONS FROM ORIGINAL ACTIONS (Aα) There is an
action αa ∈ Aα for every action a ∈ A, defined as:

name(αa) =name(a)

par(αa) =par(a)

pre(αa) ={in state ⟨n⟩(p, t) | p(t) ∈ pre(a)}∪
{¬open}

add(αa) ={in state ⟨n⟩(p, t) | p(t) ∈ add(a)}∪
{current action(a), open}∪
{used(x) | x ∈ par(a)}

del(αa) ={in state ⟨n⟩(p, t) | p(t) ∈ del(a)}
cost(αa) =0

where p(t), t ⊆ par(a) ∪ C, denotes any atom in the action
preconditions or effects. To adapt to the new object repre-
sentation, predicates are replaced by their in state ⟨n⟩ re-
formulation, where n is the arity of the original predicate.
Additionally, effects now include information about the cur-
rent action being executed and the objects involved in that
action. Finally, we introduce an open flag fact to indicate
that an action can be repaired after it has been applied. While
this fact is present in the state, no other action in Aα can be
applied. Figure 4 provides an example of this compilation.

(:action clean-shot

:parameters (?s - shot ?b - beverage ?h1 ?h2 - hand)

:precondition (and (in_state2 holding ?h1 ?s)

(in_state1 handempty ?h2)

(in_state1 empty ?s)

(in_state2 used ?s ?b)

(not (open))

:effect (and (not (in_state2 used ?s ?b))

(current_action clean-shot)

(used ?s) (used ?b)

(used ?h1) (used ?h2) (open)))

Figure 4: Clean shot action compiled for the reparation task.
The positive effect clean ?s is omitted.

FIX ACTION (Aϕ) This repair operator selects a predicate
symbol and links it as a new effect of any action. The opera-
tor takes two parameters: a, which is a variable of type o act
representing the action to be repaired, and p, which is a vari-
able of type o pred representing the predicate to be added
as a new effect. It follows the next action scheme:

par(ϕ) =(a, p)

pre(ϕ) ={current action(a), functor(p),
¬checked(a), open}

add(ϕ) ={fix(a, p), patched(a)}
del(ϕ) =∅
cost(ϕ) =Cϕ

This operator can only be applied to an action that is cur-
rently open and has not been checked (i.e., added to the plan)
previously. Once an action has been used in the plan, it can-
not be linked to new effects. The repair operator updates

the state to indicate that the action has been patched with
a predicate symbol p ∈ Ct. This operator has an associated
cost, which will be used as a bias to minimize the number of
reparations made in the domain.

After a predicate symbol is linked to an action as a new
effect, we include the following two actions to establish
whether the effect will be positive or negative.

ADD-FIX ACTIONS (Aψ+
) These operators perform the

reparation as a positive effect by matching the predicate
symbol with its parameters and adding it to the state with the
appropriate objects. The number of objects required depends
on the arity n of the predicate being added. For example,
a predicate clean may require a single object of type shot,
whereas other predicates may require a larger number of ob-
jects. Accordingly, for each arity n we define a repair action
ψn that takes the following parameters: variables a and p of
type o act and o pred, respectively; n variables, x1, . . . , xn,
of type o obj, representing domain objects; and n variables,
y1, . . . , yn of type o type, representing their types.

par(ψ+n) =(a, p, x1, . . . , xn, y1, . . . , yn)

pre(ψ+n) ={current action(a), fix(a, p), functor(p),
pred ⟨n⟩(p, y1, . . . , yn)}∪
{type(xi, yi) | 1 ≤ i ≤ n}∪
{used(xi) | 1 ≤ i ≤ n}
{¬del added(p, a)}
{¬in state ⟨n⟩(p, x1, . . . , xn)}

add(ψ+n) ={in state ⟨n⟩(p, x1, . . . , xn)} ∪ {fixed}∪
{add added(p, a)}

del(ψ+n) =∅
cost(ψ+n) =0

DEL-FIX ACTIONS (Aψ− ) These operators follow a simi-
lar action scheme as the ADD-FIX operators, but they remove
atoms from the current state. This simulates a negative effect
of the action to which it was linked. We add a precondition
to ensure that a predicate previously fixed as a positive ef-
fect cannot become a negative effect for the same action.
DEL-FIX actions have an associated cost. This penalty is
necessary because we generally prefer to add facts to the
state rather than delete them. For example, if an action has
(not (blocked ?path)) as precondition, it is more desirable to
search for another path instead of deleting the obstacle.

par(ψ−n) =(a, p, x1, . . . , xn, y1, . . . , yn)

pre(ψ−n) ={current action(a), fix(a, p), functor(p),
pred ⟨n⟩(p, y1, . . . , yn)}∪
{type(xi, yi) | 1 ≤ i ≤ n}∪
{used(xi) | 1 ≤ i ≤ n}
{in state ⟨n⟩(p, x1, . . . , xn)}
{¬add added(p, a)}

add(ψ−n) ={fixed} ∪ {del added(p, a)}
del(ψ−n) ={in state ⟨n⟩(p, x1, . . . , xn)}
cost(ψ−n) =Cψ−

156



CLOSE ACTION (Aω ) The application of a close action
concludes the reparation of an action. It deletes the informa-
tion about the current action and the objects used, and up-
dates the action as already checked. The close action scheme
has a single parameter a of type o act and a forall effect to
remove the used predicates, where x is of type o item:

par(ω) =(a)

pre(ω) ={current action(a)} ∪ {open}
add(ω) ={checked(a)}
del(ω) ={forall(x, used(x))}∪

{current action(a)} ∪ {open}
cost(ω) =0

In summary, the new action schemes A′ = Aα ∪ Aϕ ∪
Aψ+

∪ Aψ− ∪ Aω , are defined as Aα = {αa | a ∈ A},
with an action for every action in the original domain; Aϕ =
{ϕ}, the FIX ACTION scheme; the ADD-FIX action schemes
Aψ+

= {ψ+n
| n arity of p(t) ∈ P}; the DEL-FIX action

schemes Aψ− = {ψ−n | n arity of p(t) ∈ P}, both with an
action scheme for each arity of the predicates in the original
domain; and the CLOSE ACTION scheme Aω = {ω}.

PROBLEM INSTANCE (I ′) The problem instance is com-
piled as I ′ = ⟨O, I ′,G′⟩. Predicates in Paccess are instanti-
ated to represent static domain information about the origi-
nal predicates and actions, and the in state ⟨n⟩ reformula-
tion of the original initial state. I ′ is then defined as follows,
where the function all(H, o) returns all types (primitive type
and all super-types) of an object in a type hierarchy:

I ′ ={in state ⟨n⟩(p, t) | p(t) ∈ I}∪
{functor(p) | p ∈ P}∪
{pred ⟨n⟩(p, ttype1 , . . . , ttypen) | p ∈ P}∪
{type(o, ttype) | o ∈ O, ttype ∈ all(H, o)}∪
{goal ⟨n⟩(p, t) | p(t) ∈ G}∪
{add eff (p, name(a)) | p(t) ∈ add(a), a ∈ A−}∪
{del eff (p, name(a)) | p(t) ∈ del(a), a ∈ A−}

The set of goals is replaced by the in state ⟨n⟩ reformu-
lation of the goals of the original problem. Figure 5 shows a
partial example of the compiled problem.

G′ ={in state n(p, t) | p(t)} ∈ G}

(:init

(functor clean)

(pred_1 clean t_container)

(type t_container shot01)

(in_state1 clean shot01)

(in_state1 empty shot01)

(add_eff contains fill-shot)

(del_eff used clean-shot)

...)

(:goal (in_state2 contains shot01 cocktail4))

Figure 5: Partial example of the compiled problem.

We define the total cost of a solution as the sum of the
reparations made in the domain and include a metric in the
problem instance to minimize this value. Our aim is to solve
the uninformed repairing problem and find the minimum re-
pairing set R̂ so that ΠR̂ is solvable. Figure 6 shows a part
of an expected solution for the extended planning task in the
barman domain, where the repair actions are highlighted.

(clean-shot shot01 ingredient01 left right)

(fix clean-shot clean)

(add-fix-1 clean-shot clean t_container shot01)

(close clean-shot)

(fill-shot shot01 ingred2 left right dispenser2)

(close fill-shot)

(pour-shot-used-shaker shot01 ingred2 shaker1 left l1 l2)

(close pour-shot-to-used-shaker)

(clean-shot shot01 ingred2 left right)

(add-fix-1 clean-shot clean t_container shot01)

(close clean-shot)

Figure 6: Excerpt of the solution plan.

The clean-shot action is repaired with the clean functor,
which is after used to apply the reparation with the proper
object. We can obtain the repairing set R̂ from this plan by
extracting the repaired action and the predicate used. If the
compilation is performed on a fully specified task, the result-
ing plan will achieve the goals without requiring any repairs.

Theoretical Properties
The compiled task Π′ is complete and sound.
Theorem 1 (Completeness). Given an uninformed repair-
ing problem with unsolvable task Π− = ⟨D−, I⟩ with
D− = ⟨H, C,P,A−⟩, there is always a solution π′ for the
extended task Π′.

Proof. When an action a−i ∈ A− is applied, it introduces
the artificial open proposition, allowing the application of a
FIX action. This action can select any predicate symbol in
P to fix a−i . Actions ADD-FIX and DEL-FIX are applicable
if a−i has been fixed, adding or removing the predicate p(t)
used in the reparation from the state. The arguments of p(t)
are parameters of the current action, t ⊆ par(a−i ). CLOSE
action updates the action as checked and closes the phase
to repeat the process with a−i+1. Successive applications of
these repair actions over A− can add fixes for all predicates,
potentially adding or deleting any subset of facts in the cur-
rent state, including the goals.

Theorem 2 (Soundness). Given an uninformed repairing
problem with unsolvable task Π− = ⟨D−, I⟩ with D− =

⟨H, C,P,A−⟩, the repaired set R̂ obtained from any solu-
tion to the extended task Π′ makes the planning task ΠR̂ =

⟨DR̂, I⟩, with DR̂ = D− ⊕ R̂ solvable.

Proof. Plans for Π′ are composed of the original (compiled)
actions in A− (Aα), interleaved with actions to repair and
close them (Aϕ,Aψ+ ,Aψ− ,Aω) if needed. We keep the
original set of goals, so any plan for Π′ is a plan for ΠR̂.
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Bias for Domain Reparation
There are many changes to a domain that can make the plan-
ning task solvable. However, some of these modifications
can sometimes be undesirable. To guide the reparation pro-
cess, we impose restrictions on the set of repair operators,
increasing the cost of the least restrictive. We have identified
four main problems related to the planning task reparation,
which we list below along with proposed solutions.

Goals. ADD-FIX actions are defined with zero cost, so it
would be trivial to make the task solvable by adding the goal
predicate as effect of an action. To address that, we dupli-
cate ADD-FIX actions for each arity n, ψ+n. These actions
have the same parameters and effects as the corresponding
ψ+n action, but they differ in preconditions and costs. We
penalize the application of ψ+

g
n when the proposition being

repaired is a goal, in order to avoid making the problem too
simple to solve.

pre(ψ+
g
n) =pre(ψ+n) ∪ {goal ⟨n⟩(p, x1, . . . , xn)}

costψ+
g
n) =Cg

Common ADD-FIX actions ψ+n that consider not-goal
atoms maintain zero cost, so a plan that repairs the clean-
shot action and then prepares the cocktail will have a lower
cost than a plan that adds the goal directly.

Adding deleted atoms. In some cases, fixing an action by
adding an effect that already coincides with a del effect can
be incorrect. For example, the action that fills the shot al-
ready includes a (not (clean ?s)) effect, so adding the same
effect as a positive would create a conflict. Therefore, we in-
form the problem with current action effects and introduce
two types of FIX ACTIONS: ϕ− and ϕ+. Both types have the
same general scheme for fix actions, but we restrict in pre-
conditions this kind of reparation.

pre(ϕ−) = pre(ϕ) ∪ {¬del eff (p, a)}
However, in some domains it is necessary to delete infor-

mation to update it (for example, the position of an object):

pre(ϕ+) = pre(ϕ) ∪ {del eff (p, a)}
To prioritize these actions, we set cost(ϕ+) > cost(ϕ−).

Repair effects in the same action. The planner is likely to
include all necessary positive effects in a single action with-
out considering other actions. To promote the use of the rest
of the actions, the set of FIX ACTIONS is further specialized
to cover different combinations of delete effects and whether
the action has already been fixed or not. This results in four
fix actions:

• Actions ϕ−0 : the predicate symbol used to repair the ac-
tion does not appear also as a negated effect and the ac-
tion was not repaired before:

pre(ϕ−0 ) = pre(ϕ−) ∪ {¬patched(a)}

• Actions ϕ−1 : the predicate symbol used to repair the ac-
tion does not appear also as a negated effect, but the ac-
tion has already been repaired before:

pre(ϕ−1 ) = pre(ϕ−) ∪ {patched(a)}

• Actions ϕ+0 : the predicate symbol is a negated effect of
the action, and the action has not been repaired before:

pre(ϕ+0 ) = pre(ϕ+) ∪ {¬patched(a)}

• Actions ϕ+1 : the predicate symbol to repair the action ap-
pears as a negated effect and the action was repaired be-
fore:

pre(ϕ+1 ) = pre(ϕ+) ∪ {patched(a)}

The different costs are distributed as cost(ϕ+1 ) >
cost(ϕ+0 ) > cost(ϕ−1 ) > cost(ϕ−0 ). By using the four de-
fined types of fix actions with different costs, we want to
prevent the situations identified as undesirable and to pro-
mote the use of all available domain actions.

Use of repaired actions. To avoid excessive use of fixed
actions in the plan, we penalize their usage. We limit the ap-
plicability of CLOSE ACTIONS ω to only those cases where
the action has not been patched before:

pre(ω) = pre(ω) ∪ {¬patched(a)}

Additionally, we introduce a new action ωp for the oppo-
site scenario, where the action being closed is a fixed action:

pre(ωp) = pre(ω) ∪ {patched(a)} ∪ {fixed}

For them Cω = 0 and Cωp > 0.
Our objective is to minimize the cost of reparations, while

also penalizing the use of repaired actions. By incorporat-
ing these diverse costs, we aim to find refined reparations
that closely align with the underlying domain, which corre-
sponds to the user’s mental model.

After considering the aforementioned bias, the result-
ing set of action schemes A′ is Aα ∪ Aϕ ∪ Aψ+

∪
Aψ− ∪ Aω , where Aα = {αa | a ∈ A}, Aϕ =

{ϕ−0 , ϕ
−
1 , ϕ

+
0 , ϕ

+
1 },Aψ+

= {ψ+n
, ψ+

g
n | n arity of p(t) ∈

P},Aω = {ω, ωp}.

Experiments
We evaluate our approach to provide repair suggestions for
an effect-incomplete planning domain D−. To do so, we
assume the existence of an underlying planning task Π =
⟨D, I⟩ and compare the resulting solutions.

We select seven domains from the International Plan-
ning Competition (IPC): TRANSPORT, BLOCKSWORLD,
SATELLITE, CHILDSNACK, GOLDMINER, ROVERS and
BARMAN, which have 3, 4, 5, 6, 7, 9 and 12 actions, re-
spectively. For each domain, we use a PDDL problem gen-
erator3 to create 10 problem instances of increasing diffi-
culty (Seipp, Torralba, and Hoffmann 2022). We then gener-
ate 4 different effect-incomplete tasks for each problem by
incrementally deleting random effects from the domain ac-
tions. We ensure that each deleted effect made the task un-
solvable. In total, we obtain 40 effect-incomplete planning
tasks for each domain, with a maximum of 4 deleted effects
per task.

3https://github.com/AI-Planning/pddl-generators
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We solve the generated tasks using the proposed compi-
lation and extract the corresponding repairing set R̂ from
the resulting plan. We use Fast-Downward (Helmert 2006)
planning system, in satisficing and optimal configurations.
For the satisficing configuration, we use lama (Richter and
Westphal 2010). For the optimal configuration, we use seq-
opt-lmcut. The experiments were run on an Ubuntu machine
with Intel(R) Xeon(R) CPU X3470 running at 2.93GHz
16GB memory and a time limit of 30 minutes.

Metrics. We assume the underlying domain D to deter-
mine the quality of the solution using precision and recall as
metrics, typically used to measure differences between do-
main models (Davis and Goadrich 2006). Precision = tp

tp+fp
computes the number of the reparations correctly placed in
the model (true positives) taking into account the number
of reparations appearing in the generated model that should
not appear (false positives). Recall = tp

tp+fn is similar but for
false negatives, i.e. it computes the fixes that should appear
in the generated action model but are missing. We consider
two different ways of computing these metrics, M1 and M2:

• In M1 a reparation is a true positive if the predicate-
action pair is correct (i.e., if the predicate clean is added
as an effect in the clean-shot action).

• In M2 a reparation is a true positive if the predicate is
correct (i.e., if the predicate clean is added as an effect in
any action).

Note that M1 is more restrictive, as it requires to add
the predicate as effect to the correct action compared to
the underlying domain. We empirically established the fol-
lowing costs to bias the search towards more desirable
plans: cost(ω+) = 5, cost(ϕ−0 ) = 30, cost(ϕ+0 ) = 50,
cost(ϕ−1 ) = 250, cost(ϕ+1 ) = 450, cost(ψgn) = 150. This
cost setting have been applied to all domains.

The coverage is presented in Table 1, where cardinal num-
bers used to label the columns (#1, #2, etc.) represent the
number of effects removed from the domain. For each do-
main and number of removed effects, we generate 10 tasks,
except for the BLOCKSWORLD domain. In that case, it was
not possible to remove 3 and 4 effects simultaneously and
still ensure that each of them would make the task unsolv-
able. Therefore, the total number of tasks in this domain is
9, as indicated to the right of the slash.

Table 2 shows the metric scores for the optimal and sat-
isficing configurations. Total times are not included in the
table, but we provide a summary of them in the text. For
the optimal configuration, the total coverage is 55.03%, with
50.32% of the solved tasks taking less than 3 seconds to
solve, while 24.14% exceeded one minute. In terms of the
metrics, for M1 the average precision and recall are higher
than 0.75 in 59.26% and 55.56% of the cases, respectively.
ForM2, the average precision and recall are higher than 0.75
in 85.19% and 66.67% of the cases, respectively. This higher
precision in M2 indicates that the correct predicate is often
repaired in other actions. For the satisficing configuration,
the total coverage is 89.56%, with 67.47% of the solved
tasks taking less than 3 seconds to report the best plan in
the given time, and only 17.26% exceeding one minute. For

#1 #2 #3 #4
Domain Opt. Sat. Opt. Sat. Opt. Sat. Opt. Sat.

TRANSPORT 6 8 5 6 6 6 4 6
BLOCKS 10 9 10 10 8/9 9/9 7/9 9/9

SATELLITE 7 10 6 10 5 10 4 10
CHILDSNACK 4 10 2 10 1 10 0 9
GOLDMINER 10 10 10 10 10 10 10 10

ROVERS 5 10 5 10 4 10 4 9
BARMAN 4 9 2 7 3 7 1 5
Coverage 46 66 40 63 37 62 30 58

#Tasks 70 70 69 69

Table 1: Coverage results for the benchmark configuration.

M1 the average precision and recall are higher than 0.75 in
32.14% and 42.86% of the cases, respectively. For M2, they
are higher than 0.75 in 67.86% and 75% of the cases, respec-
tively.

Solving the compiled repair task is more difficult for do-
mains with a higher number of actions, as is the case of
ROVERS and BARMAN. Since there are many potential ways
to repair the domain, both precision and coverage decrease.
The low scores in GOLDMINER are due to the fact that
problems in this domain have a single goal, which is a 0-
arity predicate. During the experiments, when we randomly
deleted effects from actions, the action that achieves the goal
was broken in most cases (as if the user had forgotten to in-
clude actions that generate the goal). Therefore, the cheaper
plan consisted of just adding the goal as an effect, even if
there were more actions broken.

Regarding planner’s performance, the optimal configura-
tion, as expected, produces higher precision but lower cov-
erage. To address the issue of unwanted reparations, we use
a cost-based compilation method, which introduces a bias in
favor of plans that are more likely to avoid them. However, it
is important to note that optimal plans do not guarantee opti-
mal reparations. If rapid responses are a priority and the pre-
cision in terms of the predicate-action pair is not a concern,
then the satisficing configuration may be a feasible option,
as M2 using this configuration also reports good results.

To evaluate the performance of our approach when neg-
ative effects are missing, we conducted some experiments
in the TIDYBOT domain, in which it is necessary to remove
facts from the state to achieve the goals. We observed that
del-fix reparations are more likely to be applied when it is
inevitable to delete a fact to achieve the goals. Otherwise,
reparations will be made by adding positive effects to any of
the domain actions.

Related Work
Previous works addressed similar problems in an effort to as-
sist users in designing planning tasks. Some approaches rely
on a properly specified domain and problem and also assume
an initial plan, which is later modified or improved in col-
laboration with humans. This is known as mixed-initiative
planning (Veloso, Mulvehill, and Cox 1997; Howey, Long,
and Fox 2004; Chakraborti et al. 2017; Lin and Bercher
2021). When the planning task is unsolvable and there is
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#1 #2 #3 #4
Conf. Domain P R P R P R P R

Opt.

TRANSPORT
1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.10 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

BLOCKS
0.90 ± 0.32 0.90 ± 0.32 0.95 ± 0.16 0.95 ± 0.16 0.88 ± 0.17 0.88 ± 0.17 0.82 ± 0.17 0.71 ± 0.22
1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.16 0.95 ± 0.16 0.96 ± 0.15 0.96 ± 0.12 0.87 ± 0.17 0.83 ± 0.22

SATELLITE
1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

CHILDSNACK
1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 - -
1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 - -

GOLDMINER
0.30 ± 0.42 0.40 ± 0.52 0.10 ± 0.21 0.10 ± 0.21 0.10 ± 0.21 0.07 ± 0.14 0.10 ± 0.21 0.05 ± 0.11
0.30 ± 0.42 0.40 ± 0.52 0.70 ± 0.42 0.40 ± 0.21 0.90 ± 0.21 0.33 ± 0.00 0.90 ± 0.21 0.25 ± 0.00

ROVERS
0.20 ± 0.45 0.20 ± 0.45 0.90 ± 0.22 0.90 ± 0.22 0.71 ± 0.34 0.67 ± 0.38 0.50 ± 0.33 0.31 ± 0.13
0.80 ± 0.45 0.80 ± 0.45 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.33 0.75 ± 0.32 0.83 ± 0.19 0.56 ± 0.13

BARMAN
0.50 ± 0.58 0.50 ± 0.58 0.25 ± 0.35 0.25 ± 0.35 0.61 ± 0.10 0.56 ± 0.19 0.00 ± 0.00 0.00 ± 0.00
0.50 ± 0.58 0.50 ± 0.58 0.50 ± 0.00 0.75 ± 0.35 1.00 ± 0.00 0.89 ± 0.19 1.00 ± 0.00 0.50 ± 0.00

Sat.

TRANSPORT
1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.13 1.00 ± 0.00 0.88 ± 0.14 1.00 ± 0.00 0.97 ± 0.08 1.00 ± 0.00
1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.13 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

BLOCKS
0.89 ± 0.33 0.89 ± 0.33 0.95 ± 0.16 0.95 ± 0.16 0.62 ± 0.27 0.67 ± 0.29 0.73 ± 0.17 0.64 ± 0.22
1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.16 0.95 ± 0.16 0.75 ± 0.20 0.76 ± 0.25 0.89 ± 0.17 0.76 ± 0.20

SATELLITE
0.87 ± 0.28 1.00 ± 0.00 0.72 ± 0.37 0.90 ± 0.21 0.78 ± 0.29 0.90 ± 0.16 0.91 ± 0.16 0.98 ± 0.08
0.88 ± 0.25 1.00 ± 0.00 0.95 ± 0.16 1.00 ± 0.00 0.94 ± 0.12 0.97 ± 0.11 0.98 ± 0.06 1.00 ± 0.00

CHILDSNACK
0.73 ± 0.37 0.90 ± 0.32 0.63 ± 0.34 0.80 ± 0.26 0.44 ± 0.30 0.67 ± 0.27 0.46 ± 0.17 0.75 ± 0.22
0.85 ± 0.34 0.90 ± 0.32 0.87 ± 0.22 0.90 ± 0.21 0.73 ± 0.28 0.83 ± 0.24 0.85 ± 0.19 0.92 ± 0.18

GOLDMINER
0.30 ± 0.42 0.40 ± 0.52 0.10 ± 0.21 0.10 ± 0.21 0.10 ± 0.21 0.07 ± 0.14 0.10 ± 0.21 0.05 ± 0.11
0.30 ± 0.42 0.40 ± 0.52 0.70 ± 0.42 0.40 ± 0.21 0.90 ± 0.21 0.33 ± 0.00 0.90 ± 0.21 0.25 ± 0.00

ROVERS
0.60 ± 0.52 0.60 ± 0.52 0.65 ± 0.41 0.60 ± 0.39 0.47 ± 0.32 0.47 ± 0.32 0.35 ± 0.16 0.33 ± 0.13
0.83 ± 0.36 0.90 ± 0.32 0.85 ± 0.34 0.85 ± 0.34 0.67 ± 0.26 0.63 ± 0.25 0.81 ± 0.19 0.64 ± 0.13

BARMAN
0.28 ± 0.43 0.44 ± 0.53 0.25 ± 0.24 0.43 ± 0.35 0.50 ± 0.40 0.57 ± 0.32 0.23 ± 0.22 0.40 ± 0.38
0.62 ± 0.46 0.78 ± 0.44 0.33 ± 0.19 0.64 ± 0.38 0.63 ± 0.36 0.81 ± 0.26 0.54 ± 0.27 0.78 ± 0.22

Table 2: Average Precision (P) and Recall (R) scores for optimal (Opt.) and satisficing (Sat.) configurations. Cardinal numbers
in the columns indicate the number of removed effects from the domain. Empty cells indicate that no plan was found in the
given time window. For each domain, the first and second lines represent the results for metrics M1 and M2, respectively.

no suggested plan, some works focus on generating expla-
nations for the unsolvability of a given planning problem.
One approach is to identify unreachable subgoals (Sreedha-
ran et al. 2019), derived from abstract and solvable mod-
els using planning landmarks (Hoffmann, Porteous, and Se-
bastia 2004). Another approach, based on counterfactuals
theory (Ginsberg 1985), enables authors to explain why a
plan fails and how to solve it, but only considers changes to
the initial state (Göbelbecker et al. 2010). Planning with in-
complete domains or approximate domain models (Garland
and Lesh 2002; McCluskey, Richardson, and Simpson 2002;
Simpson, Kitchin, and McCluskey 2007; Nguyen, Sreedha-
ran, and Kambhampati 2017) considers domains that are not
properly specified, but assumes that the model is filled with
annotations or statements about where it has been incom-
pletely specified. Helping users in the modelling of planning
tasks has also been addressed through learning approaches,
which entails the generation of planning models from a set
of plan traces from several plan executions (Aineto, Celor-
rio, and Onaindia 2019; Lamanna et al. 2021). Related work
in HTN domains solves the case when there is no valid de-
composition tree via task insertion, including subtasks to re-
fine incomplete methods (Xiao et al. 2020).

Conclusions and Future Work
In this work we present an approach based on automated
planning to repair unsolvable planning tasks caused by miss-
ing action effects. We propose a compilation of the unsolv-
able task into a new extended task, which includes opera-
tors to repair domain actions by linking them to new positive
or negative effects. The solution is a plan that achieves the
original goals and incorporates the modifications needed to
make the task solvable. The repair process is guided using
a cost-based approach that penalizes undesired reparations.
Our method is able to generate appropriate reparations in a
few seconds in most of the scenarios, making it potentially
helpful to support users in designing planning tasks and a
significant advancement in the field of explainable planning.

One strength of our approach is that it can obtain a fairly
accurate reparation without requiring additional information
from the user, only a domain and a single problem. However,
this may also have the drawback of generating reparations
that are over-fitted to the given problem, compromising the
ability to generalize. We believe that incorporating multiple
problem instances or automatically generating problems to
identify possible flaws in the domain pose interesting chal-
lenges that can motivate future research.
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