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Abstract

Abstraction heuristics are a state-of-the-art technique to solve
classical planning problems optimally. A common approach
is to precompute many small abstractions and combine them
admissibly using cost partitioning. Recent work has shown
that this approach does not work out well when using such
heuristics for decoupled state space search, where search
nodes represent potentially large sets of states. This is due
to the fact that admissibly combining the estimates of sev-
eral heuristics without sacrificing accuracy is NP-hard for de-
coupled states. In this work we propose to use a single large
abstraction instead. We focus on merge-and-shrink and sym-
bolic pattern database heuristics, which are designed to pro-
duce such abstractions. For these heuristics, we prove that the
evaluation of decoupled states is NP-hard in general, but we
also identify conditions under which it is polynomial. We in-
troduce algorithms for both the general and the polynomial
case. Our experimental evaluation shows that single large
abstraction heuristics lead to strong performance when the
heuristic evaluation is polynomial.

Introduction
Classical planning is the problem of finding a sequence of
deterministic actions leading from a given initial state of the
world to a goal (e.g., Ghallab, Nau, and Traverso 2004). In
this paper, we are concerned with optimally solving classical
planning tasks. The dominant approach of the recent years
is the A∗ algorithm (Hart, Nilsson, and Raphael 1968) in
conjunction with admissible heuristics (Pearl 1984). There
are several ways to represent the state space: for example,
explicit state spaces keep individual states, while symbolic
state spaces use decision diagrams to represent sets of states
(e.g., Torralba et al. 2017). Decoupled search (Gnad and
Hoffmann 2018) is another alternative based on factoring
the variables of a planning task into center and leaf vari-
ables, similar to other factored planning approaches (Amir
and Engelhardt 2003; Brafman and Domshlak 2006; Fabre
et al. 2010). The main difference is that this is done so that
variables of different leaf factors are conditionally indepen-
dent. The search is then restricted to branch over global ac-
tions only and each search node consists of a center state and
a set of leaf states that is associated with an additional cost.
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For explicit search, state-of-the-art heuristics are based
on abstractions combined with saturated cost partitioning
(e.g., Seipp and Helmert 2018; Seipp, Keller, and Helmert
2020; Seipp 2021). For decoupled search, any kind of ex-
plicit state heuristic can in principle also be used to evaluate
decoupled states using a compilation of the task based on the
decoupled state to be evaluated. This has the insurmountable
drawback for abstraction heuristics that they would need
to be entirely recomputed for each state evaluation rather
than precomputing them once as usually. Recently, Sievers,
Gnad, and Torralba (2022) introduced the alternative of enu-
merating all potentially exponentially many explicit mem-
ber states represented by the decoupled state. However, this
infeasible in practice, too. They further showed that single
pattern databases (PDBs) (Culberson and Schaeffer 1998;
Edelkamp 2001) can be evaluated in polynomial time in their
size. However, admissibly combining a collection of PDBs
without losing information compared to explicitly enumer-
ating all member states is an NP-hard problem.

In this paper, to avoid the problem of admissibly combin-
ing heuristics, we consider large single abstraction heuris-
tics. In particular, symbolic PDBs (Edelkamp 2002; Kiss-
mann and Edelkamp 2011; Torralba, Linares López, and
Borrajo 2018) allow representing much larger patterns than
explicit ones, coming close to the state of the art in explicit
search (Franco and Torralba 2019). Furthermore, merge-
and-shrink heuristics (e.g., Helmert et al. 2014; Sievers and
Helmert 2021) are the most general type of abstractions and
typically reflect all variables of a task to some degree. We
show that the compact representation of the data structures
underlying symbolic PDBs and merge-and-shrink heuristics,
namely algebraic decision diagrams (ADDs) (Bahar et al.
1997) and factored mappings (FMs) (Helmert, Röger, and
Sievers 2015), comes with the price that evaluating a decou-
pled state with these data structures is an NP-hard problem.
Fortunately, we can show that when restricting the variable
order underlying the ADD or the merge strategy underlying
the FM to be compliant with the factoring used for decou-
pled search, heuristic evaluation is polynomial in the size of
the ADD or FM. Our experimental evaluation shows that re-
stricting the heuristics to be compliant with the factoring has
no negative impact on heuristic quality, and that decoupled
search with both compliant symbolic PDBs and merge-and-
shrink heuristics outperforms its explicit search counterpart.
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We have some full proofs, code, and experimental data in
an online appendix (Gnad, Sievers, and Torralba 2023).

Background
Classical Planning
A variable space is a finite set V of variables v, each with a
finite domain D(v). A partial state s assigns all variables in
vars(s) ⊆ V to a value s[v] ∈ D(v). We also view s as a set
of facts v 7→ s[v] for all v ∈ vars(s). If vars(s) = V , s is
called a state. For subset V ′ ⊆ V , we write s[V ′] to denote
the restriction of s to vars(s) ∩ V ′. We write S(V) for the
set of states (assignments) defined over V .

We consider planning tasks in the SAS+ formalism,
where a task is defined as Π = ⟨V ,A, I, G⟩. V is a variable
space. A is a finite set of actions a = ⟨pre(a), eff(a), c(a)⟩,
where pre(a) and eff(a) are partial states called precondition
and effect of a, respectively, and c(a) ∈ R+

0 is the cost of a.
I is the initial state and G is a partial state called the goal.

A transition system is defined as Θ = ⟨S,L, c, T, sI , SG⟩.
S is a finite set of states. L is a finite set of labels and c :
L 7→ R+

0 a label cost function. T ⊆ S×L×S is a transition
relation. sI ∈ S is the initial state and SG ⊆ S is the set of
goal states. A plan π for Θ is a sequence of labels leading
from sI to some goal state. The cost of π, c(π), is the sum
of the label costs.

A planning task Π as defined above induces a transition
system Θ(Π) = ⟨S,L, c, T, sI , SG⟩ as follows: S = S(V),
L = A; T = {⟨s, ℓ, t⟩ | s, t ∈ S, ℓ ∈ L, pre(ℓ) ⊆ s, t =
s[[ℓ]]}: action ℓ is applicable in s if its precondition is satis-
fied in s and its application leads to successor state t which
assigns all variables according to the effect of ℓ and leaves all
other variables unchanged; sI = I; SG = {s ∈ S | G ⊆ s}.
A plan for Π is a plan for Θ(Π). It is optimal if its cost is
minimal among all plans. Optimally solving a task means to
find an optimal plan or to show that no plan exists.

A heuristic for transition system Θ with states S is a func-
tion hΘ : S → R+

0 that estimates the true cost of reaching a
goal state from a given state s, denoted as the perfect heuris-
tic h∗

Θ(s). hΘ is admissible if hΘ(s) ≤ h∗(s) for all s ∈ S.
We often drop Θ and write h if Θ is clear from context.

Merge-and-Shrink
The merge-and-shrink framework is based on transforma-
tions of transition systems to compute abstractions of a
given transition system. To represent state mappings of these
transformations, merge-and-shrink employs factored map-
pings (FMs) (Sievers and Helmert 2021). FMs over a vari-
able space V are inductively defined as follows. An FM σ
has an associated finite non-empty value set vals(σ) and
an associated table σtab. An atomic FM σ has an asso-
ciated variable v ∈ V and its table is a function σtab :
D(v) 7→ vals(σ). A merge FM σ has left and right com-
ponent FMs σL and σR and its table is a function σtab :
vals(σL)× vals(σR) 7→ vals(σ). FMs σ represent the func-
tion JσK : S(V) 7→ vals(σ). Let s ∈ S(V). For an atomic
FM σ with associated variable v, JσK(s) = σtab(s[v]). For a
merge FM σ, JσK(s) = σtab(JσLK(s), JσRK(s)).

D(vT ) A B C
0 0 1

σT

D(vP ) A B C T
0 0 1 2

σP

σT

σP 0 1 2

0 0 1 2
1 3 1 4

σTP

Figure 1: FM σTP over variable space {T, P}.

Algorithm 1: Evaluating FMs on explicit states.
Input: FM σ, state s
Output: JσK(s)

1 def FM-eval(σ, s):
2 return FM-traverse(σ, s)

3 def FM-traverse(σ, s):
4 if vars(σ) = {v} then // atomic FM
5 return σtab(s[v])

6 else
7 iL ← FM-traverse(σL, s)
8 iR ← FM-traverse(σR, s)

9 return σtab(iL, iR)

FMs can be understood as binary trees, with atomic FMs
corresponding to leaf nodes and merge FMs to inner nodes.
In this context, by descendants of σ, we denote all com-
ponent FMs in the subtree rooted by σ (including itself),
and we define vars(σ) as the set of associated variables
of all atomic descendants of σ. Consider a simple example
with V = {T, P} encoding the position of a truck and a
package in a logistics task with three locations A,B,C, i.e.,
D(T ) = {A,B,C} and D(P ) = {A,B,C,T}. The root FM
σTP is a merge FM with left and right component FMs σT

and σP , which are atomic FMs with associated variable P
and T , respectively. Figure 1 visualizes the underlying tree
structure of σTP , labeling each node with the FM it corre-
sponds to and connecting it to its table with a dashed line.

We define the size of an FM σ, ∥σ∥, and of its table σtab,
∥σtab∥, inductively as follows: if σ is atomic with associated
variable v, ∥σ∥ = ∥σtab∥ = |D(v)|. If it is a merge, then
∥σtab∥ = |vals(σL)|·|vals(σR)| and ∥σ∥ = ∥σtab∥+∥σL∥+
∥σR∥. In our example ∥σTP ∥ = 2 · 3 + 3 + 4 = 13.

Plugging state s = {vT 7→ A, vP 7→ T} into the inductive
definition of the computation of an FM, we get JσTP K(s) =
σtab
TP (JσT K(s), JσP K(s)) = σtab

TP (σ
tab
T (s[vT ]), σ

tab
P (s[vP ])) =

σtab
TP (σ

tab
T (A), σtab

P (T)) = σtab
TP (0, 2) = 2. Algorithm 1

shows an equivalent recursive procedure for evaluating a
state with an FM: the call FM-eval(σTP , s) recurses into
evaluating the left component σT in line 7, which returns
σtab
T (s[vT ]) = A in line 5 because σT is atomic. After analo-

gously computing σtab
P (s[vP ]) = T from the recursive call in

line 8, the end result σtab
TP (A,T) is returned via lines 9 and 2.

For the purpose of computing abstractions of a task Π,
merge-and-shrink maintains a factored transition system
(FTS) F , which is a set of transition systems Θi (called
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Figure 2: ADD representing a heuristic function.

factors) sharing the same labels, and a set Σ of FMs σi

mapping the states of Θ(Π) to abstract states of Θi. Ini-
tially, Initially, F contains the atomic factors correspond-
ing to the variables of Π and Σ contains atomic FMs for
these atomic factors. Both F and Σ are repeatedly trans-
formed using the four standard transformations. Merging
replaces two factors of F by their product. Shrinking ap-
plies an abstraction to some factor of F . Label reduction
applies an abstraction to the common label set of F . Prun-
ing removes some states and their transitions from a factor
of F . At any point, each factor Θi of F together with its
corresponding FM σi of Σ induces a heuristic for Θ(Π):
hM&S
i (s) = h∗

Θi
(JσiK(s)). The overall merge-and-shrink

heuristic is defined as hM&S(s) = maxi h
M&S
i (s).

A merge strategy determines the order in which the atomic
factors of Π (and thus the atomic FMs) are merged over the
course of the algorithm. It is called linear if it merges the
atomic factors one by one, leading to a degenerate chain-like
tree. Otherwise, merge strategies are called non-linear.

Symbolic Pattern Databases
Pattern databases (PDBs) are abstraction heuristics with
a simple abstraction mapping: the projection onto a sub-
set of variables called the pattern. Symbolic PDBs pre-
compute the distances by performing a symbolic backward
search (McMillan 1993; Edelkamp 2002), using reduced
ordered binary decision diagrams (BDDs) (Bryant 1986)
to compactly represent sets of states. This allows for pat-
terns containing many (or even all) variables (Kissmann
and Edelkamp 2011; Torralba, Linares López, and Borrajo
2018). To keep the computation tractable, the search can be
stopped anytime, using the resulting perimeter around the
goal as a heuristic (Anderson, Holte, and Schaeffer 2007).

The resulting heuristic can be represented as an algebraic
decision diagram (ADD) (Bahar et al. 1997). ADDs are a
variant of BDDs where there may be more than two terminal
nodes, each corresponding to a possible heuristic value. Fig-
ure 2 shows an example of an ADD representing a heuristic
h for a task with V = {x1, x2, y1, y2}. Note that in ADDs
all variables are binary, so they operate on a different set
of variables VADD. To deal with this, one can simply encode
each v ∈ V using log2(D(v)) binary variables. We leave this
conversion implicit, and assume WLOG that V = VADD.

ADDs have internal and terminal nodes. Each terminal
node is associated with a numeric constant, which in our
case represents a possible heuristic value ({0, 1, 2,∞} in our

example). Each internal node n is characterized by a variable
n.v and two children: the 0-child (represented with a dashed
edge) and the 1-child (represented with a solid edge). Given
a state s, one can compute h(s) by a single traversal of the
ADD, following the path from the root node to a terminal
node. At each internal node n, we follow the solid edge if
s[n.v] = 1 and the dashed edge when s[n.v] = 0.

ADDs are always reduced and ordered. In reduced ADDs,
two equivalent functions are always represented by the same
node and no internal node has the same child in both edges.
Ordered ADDs have a fixed variable order such that for any
two nodes, if n′ is a child of n then n.v < n′.v, according
to some total order on VADD. The size of an ADD, |A|, is
simply its number of nodes.

Decoupled Search
Decoupled state space search is a technique that decom-
poses a given planning task Π by partitioning its variables
(Gnad and Hoffmann 2018). Concretely, the variables are
partitioned into subsets that form a factoring F = ⟨C,L⟩,
where C is the (possibly empty) center factor of F and L is
its set of non-empty leaf factors, such that C∪

⋃
L∈L L = V .

This definition captures the recently introduced notion of
generalized factorings (Gnad, Torralba, and Fišer 2022). For
a variable v ∈ V , by F(v) we denote the factor in which
v is contained. Complete assignments to C, respectively an
L ∈ L, are called center states respectively leaf states. SL

is the set of all leaf states and that of a leaf L is denoted SL.
A factoring F induces a partitioning of the actions into

global actions AG and leaf actions AL. For every L ∈ L, the
leaf actions AL of L are those actions that have effects only
on L and are preconditioned by variables in C ∪L, formally
AL := {a ∈ A | vars(eff(a)) ⊆ L, vars(pre(a)) ⊆ C∪L}.
We define AL :=

⋃
L∈L AL and AG := A\AL. A sequence

of global actions πG applicable in I in the projection of Π
onto C is called a global path, a sequence of leaf actions πL

applicable in I in the projection onto L is called a leaf path.
In decoupled search, search nodes correspond to sets of

states, called decoupled states. A decoupled state sF is a pair
⟨sC(sF ), prices(sF )⟩ of a center state sC(sF ) and a pricing
function prices(sF ), where prices(sF ) : SL 7→ R0+ ∪ ∞
assigns a finite non-negative price to every leaf state reached
in sF and ∞ to unreached leaf states. We define the size of
a decoupled state as |sF | := |{sL ∈ SL | prices(sF )[sL] <
∞}|. A set of facts p is reached in a decoupled state sF ,
denoted sF |= p, if p[C] ⊆ sC(sF ) and for all L ∈ L there
exists a leaf state sL ⊇ p[L] such that prices(sF )[sL] < ∞.

Every decoupled state sF represents a set of explicit
states, its member states. These are exactly the states s where
sF |= s. The set of all member states of sF is denoted [sF ].
Every member state of sF is associated with a price, which
is the sum of the leaf state prices it consists of, formally
price(sF , s) :=

∑
L∈L prices(sF )[s[L]].

We denote the global path on which a decoupled state
sF is reached during search by πG(sF ). Along every search
path, the pricing function keeps track of the minimum cost of
reaching leaf states along πG(sF ) via compliant leaf paths
from the initial state. A leaf path is compliant with πG(sF )
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if it can be embedded into πG(sF ) and the resulting action
sequence is applicable in I in the projection of Π onto C∪L.

Decoupled heuristics estimate the remaining cost to reach
a goal state for decoupled states sF , by approximating the
minimum such cost of any member state in [sF ]. Because,
unlike explicit-state search, the cost of reaching sF only
takes into account the cost of the global actions, it is im-
portant to consider the pricing function in the heuristic, too.
We denote decoupled heuristics derived from an explicit-
state heuristic h by hF . Recently, Sievers, Gnad, and Tor-
ralba (2022) defined the so-called explicit decoupled heuris-
tic hF,ex, which evaluates a heuristic h separately for all
member states of sF and serves as our baseline; formally
hF,ex(s

F ) := mins∈[sF ] price(s
F , s) + h(s).

Complexity of Evaluating Large Abstractions
Recent work has proven that PDB heuristics can be evalu-
ated for decoupled states in polynomial time, i. e., linear in
the size of the abstract state space (Sievers, Gnad, and Tor-
ralba 2022). The abstractions we consider in this work, in
contrast, do not store a value for every abstract state but keep
a compact data structure instead. In the case of merge-and-
shrink heuristics, these take the form of factored mappings
(FM), whereas symbolic PDB heuristics are stored as alge-
braic decision diagrams (ADD).

In this section, we show that evaluating a decoupled
heuristic exactly on these data structures is NP-complete.
The proof works by a reduction from 3SAT, encoding a plan-
ning task Π, factoring F , and a compactly represented ab-
straction heuristic h such that evaluating h on a specific de-
coupled state sF yields ∞ iff the corresponding 3-CNF for-
mula is unsatisfiable. We next provide the task definition,
then show NP-completeness when an ADD is used to repre-
sent the heuristic. From this, hardness for FMs follows from
a known connection between ADDs and FMs.

The task encoding is the same as the one presented in the
proof of Theorem 1 by Sievers, Gnad, and Torralba (2022).
Given a 3-CNF formula ϕ with propositions X and clauses
{C1, . . . , Cm}, we construct a planning task Π with vari-
ables V = {vg} ∪ {vx | x ∈ X} ∪ {vLi

x , vLi
y , vLi

z , vLi |
x, y, z ∈ Ci} with domains D(v) = {u, 0, 1} (unassigned,
false, true) for v ∈ {vLi

w | w ∈ {x, z, y}, 1 ≤ i ≤ m}
and D(v) = {i, g} (initial, goal) for v ∈ {vg} ∪ {vx | x ∈
X} ∪ {vLi | 1 ≤ i ≤ m}. Initially, all variables have value
u, respectively i. The goal requires all variables except the
vLi
w ones to have value g.

For every clause Ci, there is a leaf factor Li =
{vLi

x , vLi
y , vLi

z , vLi} that contains a variable vLi
w for every

propositional variable w in Ci and vLi for book-keeping.
The center factor is C = {vg} ∪ {vx | x ∈ X}.

In every leaf, there exist actions aLi that set vLi from i to
g and set the propositional variables to any assignment that
satisfies Ci (7 actions per clause Ci). Moreover, there exist
2|X| + 1 global actions, two per x ∈ X with precondition
pre(a0x) = {vx = i} ∪ {vLi

x = 0 | ∀Li : x ∈ Ci} and effect
eff(a0x) = {vx = g}, analogously for a1x, and a last action ag
that sets vg from i to g with additional preconditions {vLi =
g | 1 ≤ i ≤ m}. All actions have cost 0.

In decoupled search, the initial state IF has a price of 0
for all leaf states, i. e., the initial leaf states {vLi = i, vLi

x =
u, vLi

y = u, vLi
z = u} and all satisfying assignments for

x, y, z in clause Ci with the fact vLi = g.
Consider the decoupled state sF that results from apply-

ing ag to IF . In that state, all leaf states where vLi = i are
no longer reached due to the precondition vLi = g, so in all
member states of sF all variables encoding propositions are
assigned a truth value. Note that sF is solvable iff the 3-CNF
is satisfiable, as the a0x, a

1
x actions ensure that the goal val-

ues g can only be reached if all variables vLi
x , v

Lj
x , . . . that

encode the assignment to x have the same value.
Our proof works by showing that we can compactly repre-

sent a heuristic that detects sF as a dead-end using an ADD.
Theorem 1. Let A be an ADD that represents a PDB heuris-
tic h, sF a decoupled state, and B ∈ R+ ∪ {∞} a bound. It
is NP-complete to decide if hF (s

F ) < B.

Proof sketch. For membership, one can guess a state s ∈
[sF ] and check if h(s) < B in polynomial time.

For hardness, consider the planning task encoding 3SAT
described above. We construct A using a variable order
that keeps next to each other all variables encoding the
same proposition X = {x, y, z, . . . } in different clauses:
⟨vx, vL1

x , . . . , vLk
x , vy, v

Lo
y , . . . , v

Lp
y , vz, v

Lq
z , . . . , vLr

z , . . .⟩.
In A we encode the function that assigns ∞ to all states

where for some proposition x, vx = b and there are two
clauses for which x has different values (i.e. vLi

x ̸= v
Lj
x ). All

other states are assigned 0. We can bound the size of A by
2|X||C|. Basically, any cluster of variables vL1

x , . . . , vLk
x , vx

for each x ∈ X is expressed as an ADD that uses 2k ≤ 2|C|
internal nodes, as at every of the k layers, we only need
two nodes to distinguish the case where all previous vari-
ables were 0 or 1. Note that no node needs to represent the
case where two variables differ because in that case, we go
directly to the terminal node ∞. An extra node is needed
to check the value of vx, which is compensated by the
fact that the first layer only has a single node. The clusters
are independent, and therefore the corresponding ADDs are
just stacked on top of each other (Edelkamp and Kissmann
2008). Figure 2 shows an example where hADD(s

F ) = 0 iff
(x1 = x2) ∧ (y1 = y2).

Hence, all involved components, the planning task, factor-
ing, and ADD are polynomially bounded by the size of the
3-CNF formula. The claim follows since the state sF that
results from applying ag in IF is detected as a dead-end by
hF iff the formula is satisfiable.

For FMs, we remark that every ADD can be transformed
into an FM in polynomial time (Edelkamp, Kissmann, and
Torralba 2012; Torralba 2015).
Corollary 2. Let σ be an FM that represents a merge-
and-shrink heuristic h and sF a decoupled state. It is NP-
complete to decide if hF (s

F ) < B.

Merge-and-Shrink
Factored mappings (FMs), like decoupled states, are data
structures that compactly represent large sets of states. As
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we have seen in the previous section, combining them arbi-
trarily renders the evaluation of a decoupled state with an
FM an NP-complete problem. The reason is that we need to
“unpack” the decoupled state and evaluate all member states
with the FM, thus losing the compactness of the data struc-
tures. To avoid this problem, we need to ensure that decou-
pled states and FMs are “compatible”. We next introduce the
notion of compliance of FMs and factorings and then pro-
vide a dynamic-programming algorithm that evaluates FMs
for decoupled states. The algorithm works for general FMs,
but has polynomial runtime only for FMs that are compliant
with the factoring, where it caches intermediate results.

We assume that the root FM σh has merged all variables,
i. e., vars(σh) = V . This is not a restriction, as in cases
where this does not hold, i. e., vars(σh) = V ⊂ V , we can
simply redefine the factoring F = ⟨C,L⟩ for σh such that
Fσh := ⟨C ∩ V, {L ∩ V | L ∈ L, L ∩ V ̸= ∅}⟩.1

We start by defining the leaves covered by an FM:

Definition 3 (Covered Leaves by FMs, Nestedness). Let F
be a factoring. The set of leaf factors covered by an FM σ is
defined as cov(σ) := {L ∈ L | L∩vars(σ) ̸= ∅}. The set of
leaf factors fully covered by σ is defined as fc(σ) := {L ∈
L | L ⊆ vars(σ)}. The set of leaf factors partially covered
by an FM σ is defined as pc(σ) := cov(σ) \ fc(σ). The
set of leaf factors exactly covered by an FM σ is defined as
ec(σ) := fc(σ) \ (fc(σL)∪ fc(σR)) if σ is a merge FM, and
ec(σ) := fc(σ) otherwise. The nestedness of a merge FM
σ is defined as N (σ) := max(N (σL),N (σR), |pc(σL) ∪
pc(σR)|), and N (σ) := 0 for atomic FMs σ.

In words, a leaf L is covered by an FM σ if both share
some variables; L is fully covered by σ if all its variables
are contained in σ; L is partially covered if a strict subset
of its variables is contained in σ. The latter implies that the
handling of L cannot yet be finished in σ, but only in one of
its ancestors. Finally, every leaf L is exactly covered in ex-
actly one FM σ, namely the lowest FM in the tree that covers
all variables of L. Based on this, we define the nestedness of
an FM σ as the number of leaves whose handling has not
finished in the left and right component FMs. We also call
the leaves in pc(σL) ∪ pc(σR) open in σ. As we will see
below, in the worst case our algorithm has to evaluate all
combinations of leaf states belonging to open leaves in σ.
The maximum number of these leaves is exactly N (σh).

Based on these notions, we can restrict the structure of
FMs to ensure compliance with a factoring.

Definition 4 (Compliant FMs). An FM σ is compliant with
a factoring F if N (σ) ≤ 1. An FM σ is strongly compliant
with a factoring F if for all L ∈ L there exists a descendant
σ′ of σ such that cov(σ′) = ec(σ′) = {L}.

In a compliant FM, merging variables of different leaves
cannot be interleaved, so at most one leaf can be open at the
same time, although fully covered leaves can be interleaved.
A strongly compliant FM must fully merge all variables in
each leaf before merging variables from another leaf. Center
variables can always be merged at any point. Note that, for

1We further assume that every variable v ∈ V is associated to
exactly one atomic descendant of σh.

every factoring where leaves contain a single variable, ev-
ery FM is strongly compliant. We further remark that strong
compliance implies compliance, so it is a special case.

Proposition 5. Let F be a factoring and σ an FM. If σ is
strongly compliant with F , then σ is compliant with F .

We now have all ingredients to present our algorithm
for evaluating a decoupled state sF with an FM σh. Sim-
ilarly to how Algorithm 1 evaluates explicit states, the de-
coupled variant recursively traverses the FM. However, as
a decoupled state represents a set of explicit states, the al-
gorithm needs to compute a set of values Vσh

rather than
a single one. Here, Vσh

is the subset of values vals(σh)
that the member states s of sF are mapped to by σh, i.e.,
Vσh

= {σtab
h (s) | s ∈ [sF ]}. In fact, the algorithm not only

computes the set of values Vσh
, but a price mapping Pσh

which maps each v ∈ Vσh
to the minimum price p of any

member state s mapped to v.
Algorithm 2 shows the function FM-eval for evaluating

decoupled state sF with FM σh. It initializes partial state s
to the center state of sF (line 2), which will be augmented
by different combinations of reached leaf states of sF dur-
ing the traversal. FM-eval then computes the price map-
ping Pσh

explained above, by calling handle-FM (line 3),
explained below. The returned heuristic is computed as the
minimum over the sum of v (which in σh is the heuristic
value) and the minimum price p corresponding to v (line 4).

Next, we provide an overview of an execution trace of
the algorithm. Function handle-FM (ignore the cache for
the moment) deals with the given FM σ in the sense that
it computes the price mapping Pσ for σ. It does so using
two auxiliary functions: if σ exactly covers at least one leaf
(line 10), that means that we can compute all combinations
of reached leaf states of sF for those leaves Lec . This is done
recursively by the function enum-ec-leaves, which pro-
ceeds to calling FM-traverse-dec for each such com-
bination. If σ does not exactly cover any leaf, the algo-
rithm directly proceeds with calling FM-traverse-dec
(line 12). Finally, FM-traverse-dec is the decoupled
counterpart of FM-traverse of Algorithm 1 and as such
terminates recursion if σ is atomic and otherwise recursively
calls handle-FM for the component FMs of σ.

The function enum-ec-leaves takes a parameter Lec ,
initially set to the exactly covered leaves of the given FM σ.
Each recursive call deals with one leaf L of Lec by iterating
over its reached leaf states in sF (lines 19 and 20), extending
partial state s accordingly and entering recursion (line 21).
Thereby it computes all combinations of reached leaf states
across Lec . For each reached leaf state, the price mapping
Pσ , initialized to infinity for all values of the FM (line 18),
is updated by minimizing, for each value, the sum of the
price of the reached leaf state sL plus the price p computed
recursively for the remaining leaves in Lec (lines 22 and 23).
This ensures that the returned price mapping Pσ maps value
v ∈ vals(σ) to the minimum price of any member state
s′ ∈ [sF ] that is compatible with s and that is mapped to v
by σtab. Note that multiple member states can be mapped to
the same value due to shrinking, which is why the algorithm
minimizes the price over these in line 23. Recursion ends
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Algorithm 2: Evaluating FMs on decoupled states.
Input: FM σh, decoupled state sF

Output: JσhK(sF )
1 def FM-eval(σh, s

F):
2 s← sC(sF ) // s is a partial state

3 Pσh ← handle-FM(σh, s
F , s)

4 return min
v 7→p∈Pσh

v + p // heuristic + price

5 def handle-FM(σ, sF , s):
6 V ← vars(σ) ∩

⋃
L∈pc(σ) L // cache vars

7 if s[V ] ∈ cacheσ then
8 return cacheσ[s[V ]]

9 if ec(σ) ̸= ∅ then
10 Pσ ← enum-ec-leaves(σ, sF , s, ec(σ))
11 else
12 Pσ ← FM-traverse-dec(σ, sF , s)

13 cacheσ[s[V ]]← Pσ

14 return Pσ

15 def enum-ec-leaves(σ, sF , s,Lec):
16 if Lec = ∅ then

// all v ∈
⋃

L∈ec(σ) L are defined in s

17 return FM-traverse-dec(σ, sF , s)

18 Pσ ← {v 7→ ∞ | v ∈ vals(σ)} // init. map
19 let L ∈ Lec ; L′

ec ← Lec \ {L}
20 for sL ∈ SL : prices(sF )[sL] <∞ do
21 P ′

σ ← enum-ec-leaves(σ, sF , s ∪ sL,L′
ec)

22 for v 7→ p ∈ P ′
σ do

23 Pσ[v]← min(Pσ[v], p+ prices(sF )[sL])

24 return Pσ

25 def FM-traverse-dec(σ, sF , s):
26 Pσ ← {v 7→ ∞ | v ∈ vals(σ)} // init. map
27 if vars(σ) = {v} then // atomic FM
28 Pσ[σ

tab(s[v])]← 0
29 else // merge FM
30 PσL ← handle-FM(σL, s

F , s)

31 PσR ← handle-FM(σR, s
F , s)

32 forall vL 7→ pL ∈ PσL do
33 forall vR 7→ pR ∈ PσR do
34 v = σtab(vL, vR)

35 Pσ[v]← min(Pσ[v], p
L + pR)

36 return Pσ

if Lec is empty, in which case algorithm execution contin-
ues with FM-traverse-dec (line 17), with partial state s
defined on the variables of all exactly covered leaves of σ.

The function FM-traverse-dec traverses the FMs
similarly to the explicit-state case. If σ is atomic, it looks
up the value of the variable v in s and maps σtab(s[v])
to price 0 in line 28 (recall that the leaf state prices are
taken into account by enum-ec-leaves). For merge
FMs, FM-traverse-dec enters recursion to handle the
two components σL and σR (lines 30 and 31). After return-
ing, the function multiplies out the computed values vL and
vR, looks up the corresponding value v in σtab, and stores in

Pσ the minimal sum of the prices pL and pR (lines 32 to 35).
We next explain the functionality of the cache. The cache

is needed to ensure polynomial-time computability for com-
pliant FMs, but is not required for strongly-compliant FMs.
There is a separate cache for every FM σ, all of which are
being reset for every new decoupled state sF .

The cache for an FM σ is indexed by a set of facts over the
variables V (line 6). These are exactly the variables whose
corresponding atomic FMs are “below” σ, but which have
been set in a merge FM “above” σ. These variables have a
fixed assignment until handle-FM returns from σ, but in-
fluence the price mapping Pσ computed for σ. Thus, if Pσ

has been computed for a specific s[V ], there is no point in
recomputing that value again in a different call to σ for the
same fact set s[V ]. To understand why the cache is neces-
sary at all, observe that the function handle-FM is called
at least once for every descendant of σh. It is called exactly
once for σh itself, but up to |[sF ]| times for every other
FM. The number of calls is exactly |[sF ]| if all leaves are
exactly covered in σh, i. e., ec(σh) = L. This is because
enum-ec-leaves will recursively enumerate all member
states of sF , call FM-traverse-dec for each of them,
which then calls handle-FM on all FMs. With the cache,
the value is only computed once for every s[V ] and looked
up in the cache for subsequent calls to handle-FM on σ,
which can save exponentially many recomputations.

For compliant σh, N (σ) ≤ 1 for all descendants σ and
thus, if ec(σ) = {L} then pc(σ) = ∅ because pc(σL) ∪
pc(σR) = pc(σ) ∪ ec(σ). Hence, there are no cache vari-
ables in σ, so its price mapping is computed only once and
cached for subsequent calls. With compliant σh, for every
leaf L ∈ L there exists a descendant σ of σh such that the
price mapping Pσ computed in σ for the decoupled state
sF does only depend on the reached leaf states of L in
sF . So there is no need to evaluate any FM with different
combinations of reached leaf states across leaves, and the
cache ensures that Pσ is only computed once, even though
handle-FM might be called often on σ.

Proposition 6. Algorithm 2 runs in time O(∥σh∥ ·
|sF |N (σh)).

Proof sketch. The number of recursive calls to the
handle-FM function for each FM node σ is bounded
by the number of entries in the cache, which is bounded
by O(|sF ||pc(σ)|). Each call has a number of recursive
calls that end up in FM-traverse-dec. The number
of such calls is bounded by O(|sF ||ec(σ)|). Therefore, the
total number of recursive calls for each σ is bounded
by O(|sF ||ec(σ)|+|pc(σ)|) = O(|sF |N (σh)), as pc(σL) ∪
pc(σR) = pc(σ) ∪ ec(σ).

The amount of work within each of those calls (e.g.
lines 22–23 and 32–35), is bounded by the number of en-
tries in σ. ∥σh∥ is the total number of entries in all tables, so
it also accounts for the fact that every evaluation of σh has
to visit every descendant of σh.

This shows that the runtime is exponential in the nest-
ing in the general case, traversing the entire FM tree with
every member state in the worst case. With compliant σh
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(N (σh) ≤ 1), the runtime is linear in the size of σh and the
evaluated decoupled state sF . For strongly-compliant FMs
(e.g., factorings with singleton leaf factors L = {v}), no
cache is needed to achieve polynomial runtime. This is the
case because every FM where |ec(σ)| > 1 is visited exactly
once by the algorithm (as ec(σ′) = ∅ for all its ancestors).

Symbolic Pattern Databases
Symbolic Pattern Databases precompute the heuristic stored
in the form of a decision diagram. Here, we assume that
the heuristic has already been encoded as an ADD, hADD.
We start by defining compliant variable orderings. Then, we
will show that this is a sufficient condition for evaluating the
heuristic for a decoupled state in polynomial time.
Definition 7 (Compliant ADDs). A variable ordering is
compliant with a factoring F if:

∀v<v′<v′′(F(v) = F(v′′) ̸= C) =⇒ F(v′) ∈ {F(v), C}

In compliant ADDs, all variables of a leaf are placed next
to each other, possibly interleaved by center variables. This
naturally induces an order on the leaves. We now introduce
two approaches to evaluate ADD heuristics.

Evaluation via ADD Operations
Our first approach leverages the ability of applying opera-
tions to ADDs for which existing libraries have highly op-
timized implementations (Somenzi 1997). As the heuristic
is already encoded as an ADD hADD, we encode the pricing
function of sF as an ADD pADD, too. Then, hADD + pADD

simply returns an ADD that represents the mapping from ex-
plicit states to their price plus heuristic value. We minimize
this sum by returning the lowest value of any terminal node.

It is well-known that the sum operation on ADDs runs
in time O(|pADD||hADD|) if both ADDs are represented un-
der the same variable ordering. Thus, the procedure runs in
polynomial time if and only if the size of pADD, when using
the same variable ordering as hADD, is polynomial.

As expected from Theorem 1, for non-compliant variable
orderings we have no guarantees on the size of pADD. If the
variable ordering is compliant, however, we can bound pADD

by the number of leaf states SL and the number of possible
different price sums for any combination of leaf states across
leaves. Formally, these combinations are given by:

Prices(sF ) = {
∑
L∈L′

prices(sF )[sL] | sL ∈ SL,L′ ⊆ L}

Hence, the ADD size for pricing functions is polynomial:
Proposition 8. The ADD encoding pADD of the pricing func-
tion of sF using a compliant variable ordering has size
bounded by O(|VADD||SL||Prices(sF )|).

Proof sketch. Ignoring the center variables, pADD is ob-
tained from summing up the pricing function of each leaf,
whose size is bounded by the number of leaf states. Note
that the prices of different leaves are independent, and all
variables of a leaf are contiguous in the variable ordering.
So, after processing a leaf, the variable assignments are irrel-
evant (like in the example in Figure 2, where no information

of x is relevant in the subtrees of y or z) and the only in-
formation passed to the next leaf is the price. Therefore, we
only need to copy the same subtree once per possible price
of the leaf states above in the variable ordering. Finally, the
center variables have a fixed value, so they can increase the
number of nodes at most by a factor of |VADD|.

Note that |Prices(sF )| is polynomially bounded on unit-
cost tasks, but not when the prices of leaf states are arbi-
trary. Overall, this is a viable method whenever the variable
ordering of hADD is compliant with the variable ordering for
domains where leaf states do not have very diverse prices.

Still, one can do better by exploiting the structure of the
pricing function in a more direct way. One option is to use
decision diagrams that guarantee a polynomial size for any
pricing function (e.g. EVMDDs, Ciardo and Siminiceanu
2011). Instead, we next propose an algorithm that uses the
pricing function directly, avoiding the need for compiling it
into a decision-diagram representation.

Evaluation via ADD Traversal
Algorithm 3 performs the lookup by traversing a com-
pliant ADD. The function ADD-trav-dec(n, sp,Lrel)
computes mins∈[sF ],sp⊆s

∑
L∈Lrel

prices(sF )[s[L]]+hn(s),
where hn is the heuristic represented by node n of the ADD,
sp is a partial state specified for center variables and leaves
whose leaf states are enumerated by an ancestor node, and
Lrel are the relevant leaves whose prices should be added.
The result is the desired value when called from line 3 with
the root node of hADD, taking into account all leaves (Lrel =
L), and not constraining any leaf variable (sp = sC(sF )).

Lines 4-11 basically correspond to the lookup of an ex-
plicit state sp, as described in the background. However, sp
is initially only defined over center variables. Therefore, the
ADD traversal may reach a node n whose variable n.v has
undefined value in sp, i.e., n.v belongs to a leaf L = F(n.v)
which has not appeared in the path from the root node to n.
In that case (line 15), the algorithm enumerates all reached
sL ∈ SL, extending sp and doing a separate traversal for
each to compute the minimal price plus heuristic value.

We avoid the enumeration of all member states by
dynamic programming, storing a value cache[n] =
mins∈[sF ]

∑
L∈L≥(n) prices(s

F )[s[L]] + hn(s), where
L≥(n) corresponds to all leaves below n.v in the variable
ordering: L≥(n) := {L ∈ L | ∃v ∈ L s.t. v ≥ n.v}. This
value can be cached because it is independent of sp and
Lrel . As the variable ordering is compliant, the subtree
beneath n is independent of all variables above n.v and the
value of hn only depends on variables from C ∪ L≥(n).
Thus, the prices of leaf states from other relevant leaves
Lrel \ L≥(n) can be added separately in line 19.

The value of cache[n] is independent of sp because sp
has always value sC(sF ) on center variables, and when-
ever cache[n] is used sp has the same value (undefined)
on all variables from leaves L≥(n). This is so because,
in compliant variable orderings, it is always the case that
v < n.v =⇒ F(v) ̸∈ L≥(n)\{F(n.v)} for all variables v
and nodes n, so in all calls to ADD-trav-dec sp is unde-
fined on L≥(n) \ {F(n.v)}. Finally, cache[n] is only used
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Algorithm 3: Evaluating ADDs on decoupled states.
Input: Decoupled state sF , ADD hADD compliant with F
Output: hADDF (sF )

1 def ADD-eval(hADD, s
F):

2 sp ← sC(sF ) // sp is a partial state
3 return ADD-trav-dec(hADD.root-node, sp, L)

4 def ADD-trav-dec(n, sp, Lrel):
5 if is terminal(n) then
6 cache[n]← n.value

7 else if sp[n.v] is defined then
8 if sp[n.v] = 0 then
9 return ADD-trav-dec(n.0-child, sp, Lrel)

10 else
11 return ADD-trav-dec(n.1-child, sp, Lrel)

12 else if n is not in cache then
13 L← F(n.v)
14 cache[n]←∞
15 for sL ∈ SL : prices(sF )[sL] <∞ do
16 sp[v]← sL[v] for all v ∈ L
17 h←ADD-trav-dec(n, sp, L≥(n) \ {L})
18 cache[n]← min(cache[n], prices(sF )[sL]+h)

19 return cache[n] +
∑

L∈Lrel\L≥(n)

min
sL∈SL

prices(sF )[sL]

whenever sp is undefined for F(n.v) as otherwise sp[n.v] is
defined in line 7.
Proposition 9. Algorithm 3 runs in time
O(|hADD||VADD||SL||L|).

Proof sketch. The main source of calls to the
ADD-trav-dec function is the loop in line 15. However,
as the results are stored in a cache, the number of such calls
is bounded by |hADD| · maxL∈L |SL|. All other sources
of calls to the ADD-trav-dec function have at most a
single recursive call. Therefore, this can increase the total
number of calls at most by a factor of |VADD|, the height of
the tree. Each call of the ADD-trav-dec function takes
time O(|L|) due to line 19, and the loop in line 15 is already
accounted for when considering the number of recursive
calls.

The algorithm could be adapted to support non-compliant
orders simply by changing the key of the cache to be depen-
dent on the value of s on leaves in L≥(n). Of course, the
running time would not be polynomially-bounded anymore,
as there are exponentially many possible such assignments.

Experiments
We evaluate our algorithms on the optimal suite of the Au-
toscale benchmark set (Torralba, Seipp, and Sievers 2021).
Our implementation is based on the decoupled search plan-
ner by Gnad and Hoffmann (2018), which builds on the Fast
Downward framework (Helmert 2006). We conducted ex-
periments on a cluster of Intel Xeon Gold 6130 CPUs using
Downward Lab (Seipp et al. 2017), with runtime and mem-
ory limits of 30min and 3.5GiB per run.

As a factoring strategy for decoupled search, we pick the
best configuration reported by Gnad, Torralba, and Fišer
(2022), called bM80s. For merge-and-shrink (M&S) heuris-
tics, we report results for the sbMIASM merge strategy
(Sievers, Wehrle, and Helmert 2016), using bisimulation
shrinking (Nissim, Hoffmann, and Helmert 2011), and ex-
act label reduction (Sievers, Wehrle, and Helmert 2014).
We limit the size of FM tables to 50.000 entries. We ex-
perimented with other strategies, but found this to per-
form best in terms of total coverage, and show the same
trends. For a better analysis of the differences between com-
pliant and non-compliant FMs, we use a random linear
merge strategy in one of our plots, because sbMIASM of-
ten produces strongly compliant FMs. For symbolic pattern-
database heuristics (sPDB), abstractions are computed with
Gamer PDBs (Kissmann and Edelkamp 2011), using the
symbolic search enhancements by Torralba et al. (2017)
and the CUDD 3.0.0 library (Somenzi 1997). We also ex-
perimented with a full perimeter (Kissmann and Edelkamp
2011), but found Gamer PDBs to perform better and show
the same picture with respect to how evaluating decoupled
states affects the performance. We use a runtime limit of
15min to compute heuristics.

For both types of heuristics, we use two variants to com-
pute the abstraction: a general computation that does not
take into account the factoring (g), and a compliant variant
(c) that implies polynomial-time computability, and allows
us to use the ADD traversal for sPDBs. For c, we restrict
the merge strategy to first fully merge each leaf factor L be-
fore merging any other variable into an intermediate factor
that partially includes L. For sPDBs, we force all variables
in a leaf to be contiguous in the variable order. In both cases,
this is slightly more restrictive than the definition of strongly
compliant FMs and compliant variable orders, since center
variables are never interleaved with leaf variables. However,
the changes had little effect on the final heuristic, so we did
not further investigate different compliant strategies.

In Table 1, we show coverage results (number of
solved instances) for all algorithms, distinguishing between
explicit-state (Expl.) and decoupled search. Best coverage
in a domain is highlighted in bold. First, observe that indeed
there is almost no difference between the general and com-
pliant data structures in explicit-state search, so the restric-
tion does not have a large impact on heuristic quality. This
is confirmed when comparing the sizes of the search spaces,
which we cannot show due to space limitations.

We consider two evaluation algorithms of decoupled
states for M&S: enumeration of the all member states
(Enum.), which computes the explicit decoupled heuris-
tic, and the dynamic programming approach from Algo-
rithm 2 (DP). The explicit-state enumeration generally per-
forms quite bad and is not competitive with explicit-state
search. There is also only little difference between the g and
c variants, confirming that the heuristic quality is very sim-
ilar. The dynamic programming algorithm clearly benefits
from enforcing FMs to be strongly compliant. On many do-
mains, though, we do not see a major difference in terms
of coverage, because sbMIASM, by chance, produces many
(strongly) compliant FMs. We further discuss this below.
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Merge-and-Shrink Symbolic PDBs
Ex. S. Dec. Search Ex. S. Decoupled Search

Enum. DP Enum. AOps DP
Domain g c g c g c g c g c g c c
Agri 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Child 30 9 9 9 9 9 9 11 11 11 11 11 11 11
Data 30 10 10 9 9 9 9 13 13 13 13 13 13 13
Depo 30 13 13 13 13 13 13 12 12 12 12 12 11 12
Drive 30 12 12 5 5 10 10 6 6 5 5 5 5 5
Elev 30 8 8 10 10 9 9 9 9 10 10 9 9 9
Floor 30 6 6 6 6 6 6 7 7 5 5 5 5 5
Grid 30 14 14 14 14 14 14 27 27 26 25 25 27 26
Hiki 15 7 7 5 5 5 5 6 6 6 6 6 6 6
Logi 30 14 14 13 13 14 14 15 15 13 13 14 14 14
Mico 30 5 3 5 5 5 5 9 8 7 7 9 8 8
NoM 30 11 11 7 7 24 24 7 7 7 7 15 15 16
Open 30 6 6 4 4 4 4 6 6 4 4 4 4 4
Orga 15 2 2 2 2 1 2 5 5 3 4 4 4 4
ParcP 27 20 20 7 7 12 20 9 9 7 7 6 8 27
Path 30 9 9 9 9 9 9 9 9 6 6 6 6 6
Rove 30 2 2 4 4 4 4 13 12 13 12 13 12 12
Sate 30 21 21 14 14 20 20 18 19 12 12 18 19 19
Scan 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Tidy 22 6 6 6 6 6 6 7 7 6 6 6 6 6
TPP 30 4 4 5 4 17 17 2 3 5 5 7 14 27
Tran 30 14 14 11 11 11 11 16 16 15 15 15 15 16
Wood 28 4 5 5 5 5 7 8 7 7 7 9 8 9
Zeno 30 14 14 13 13 16 16 11 10 12 11 15 15 16∑

621 211 210 176 175 223 234 226 224 205 203 227 235 271

Table 1: The table shows coverage (number of solved in-
stances) on our benchmark set. Best coverage is highlighted
in bold face, separately for M&S and sPDBs.

For sPDBs we consider the evaluation based on ADD
operations (ADDOps, or AOps in short), and the dynamic-
programming variant from Algorithm 3 (DP). The picture is
similar as for M&S: there is little difference when enforcing
compliant orders (g vs. c) in the explicit search and state-
enumeration configurations, but compliant orders are bene-
ficial for ADDOps. The DP algorithm leads to a significant
gain in coverage, showing the advantage of the specialized
algorithm.

We further illustrate the advantage of the optimized al-
gorithms in the runtime plots in Figure 3. The plots show
per-instance data comparing only the search time, so ex-
cluding the construction of the heuristic. The plot in the
top compares the ADDOps algorithm using general (x-axis)
and compliant variable orders (y-axis), showing a signifi-
cant speed-up for compliant orders. For M&S with sbMI-
ASM (middle plot), the two variants behave almost identi-
cally. Looking at the FMs produced by the strategy shows
that most have very low nestedness and many of them are
actually strongly compliant. Therefore, we show the same
evaluation for a random linear merge strategy (bottom plot),
which at least sometimes produces FMs with higher nested-
ness. This is indicated by the different point shapes in that
plot. We observe that for instances in which the FMs are not
strongly compliant anyway, forcing them to be so indeed
leads to a speed-up of up to several orders of magnitude.
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Figure 3: Per-instance search-time plot for M&S with sbMI-
ASM (top left) and random linear merging (top right), and
ADDOps (bottom), comparing general to compliant FMs,
respectively ADDs.

We confirmed that this is actually due to an optimized com-
putation because the number of decoupled state evaluations
varies only very little.

Conclusion

In this paper, we introduced merge-and-shrink heuristics
and symbolic pattern databases for decoupled search. We
showed that evaluating these heuristics on decoupled states
is NP-hard in general, i.e., when the compact representa-
tions of the heuristics and decoupled states do not comply.
However, when restricting the FMs underlying merge-and-
shrink heuristics or the ADDs underlying symbolic PDBs so
that they are compliant with the factoring used for decoupled
search, heuristic evaluation takes polynomial time. Our ex-
periments demonstrate that these compliant heuristics solve
significantly more tasks than their explicit counterparts.

In future work, we want to investigate how multiple ab-
straction heuristics can be combined efficiently in a better
way, possibly using cost partitioning. Another interesting di-
rection is the combination of merge-and-shrink heuristics
tailored to detecting unsolvability (Hoffmann, Kissmann,
and Torralba 2014) with decoupled search to prove planning
tasks unsolvable. Finally, we want to investigate how state
compression methods beyond those studied in this work re-
late and can be made compatible to each other.
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Gnad, D.; Torralba, Á.; and Fišer, D. 2022. Beyond Stars - Gen-
eralized Topologies for Decoupled Search. In Proc. ICAPS 2022,
110–118.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System. JAIR,
26: 191–246.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating Lower
Bounds in Factored State Spaces. JACM, 61(3): 16:1–63.
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Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S. 2017.
Efficient Symbolic Search for Cost-optimal Planning. AIJ, 242:
52–79.
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