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Abstract

The Multi-Objective Multi-Agent Path Finding (MO-MAPF)
problem is the problem of finding the Pareto-optimal frontier
of collision-free paths for a team of agents while minimizing
multiple cost metrics. Examples of such cost metrics include
arrival times, travel distances, and energy consumption. In
this paper, we focus on the Multi-Objective Conflict-Based
Search (MO-CBS) algorithm, a state-of-the-art MO-MAPF
algorithm. We show that the standard splitting strategy used
by MO-CBS can lead to duplicate search nodes and hence
can duplicate the search effort of MO-CBS. To address this
issue, we propose two new splitting strategies for MO-CBS,
namely cost splitting and disjoint cost splitting. Our theoret-
ical results show that, when using either splitting strategy,
MO-CBS maintains its completeness and optimality guaran-
tees. Our experimental results show that disjoint cost split-
ting, our best splitting strategy, speeds up MO-CBS by up to
two orders of magnitude and substantially improves its suc-
cess rates in various settings.

Introduction
The Multi-Agent Path Finding (MAPF) problem is the prob-
lem of finding a set of collision-free paths for a team of
agents. It is related to many real-world applications (Wur-
man, D’Andrea, and Mountz 2008; Morris et al. 2016). Solv-
ing it optimally is known to be NP-hard for various objec-
tive functions (Yu and LaValle 2013; Ma et al. 2016). In this
paper, we study a variant of the MAPF problem called the
Multi-Objective MAPF (MO-MAPF) problem (Ren, Rathi-
nam, and Choset 2022). In MO-MAPF, a solution is a set
of collision-free paths for all agents, and we consider mul-
tiple cost metrics for each solution. Many real-world ap-
plications of MAPF can be viewed as multi-objective op-
timization problems. For example, in multi-robot systems,
some interesting cost metrics are travel distance, energy con-
sumption, and risk. The objective of MO-MAPF is to find
the Pareto-optimal frontier, that is, all solutions that are not
dominated by any other solutions, where a solution Π dom-
inates another solution Π′ iff the cost of Π is no larger than
the cost of Π′ for every cost metric and the cost for at least
one cost metric is smaller.
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Solving the MO-MAPF problem is quite different from
solving classic MAPF as it tasks us with finding the Pareto-
optimal frontier, which is different from the tasks of most,
if not all, existing MAPF algorithms. There exist only a
few MO-MAPF algorithms. MO-M* (Ren, Rathinam, and
Choset 2021) generalizes M* (Wagner and Choset 2015), an
algorithm for solving MAPF optimally, to MO-MAPF. How-
ever, experimental results (Ren, Rathinam, and Choset 2022)
show that MO-M* is slower than Multi-Objective Conflict-
Based Search (MO-CBS), the other MO-MAPF algorithm,
in various domains.

MO-CBS (Ren, Rathinam, and Choset 2022) generalizes
Conflict-Based Search (CBS) (Sharon et al. 2015), which
is also an algorithm for solving MAPF optimally, to MO-
MAPF. Here, conflicts refer to collisions between agents.
In MAPF, CBS first finds a minimum-cost path for each
agent without considering conflicts. To resolve a conflict,
CBS splits into two subproblems, each with a new constraint
imposed on either one of the conflicting agents to prevent
the conflict from happening again. CBS replans for the con-
strained agent in each subproblem by finding a minimum-
cost path for it that satisfies all constraints in the subproblem.
CBS repeats the conflict resolution process until it finds a
solution. In MO-MAPF, MO-CBS is similar to CBS and re-
solves conflicts by imposing new constraints on agents. One
difference between them is that, when replanning for the
constrained agent, MO-CBS finds all Pareto-optimal paths
for it that satisfy the constraints and creates a new subprob-
lem for each of them. The resulting subproblems have the
same set of constraints and differ from each other only with
respect to the path of the constrained agent. As we will show
in this paper, these similar subproblems can lead to substan-
tial duplicate search effort.

In this paper, we dramatically speed up MO-CBS by im-
proving its splitting strategy. We propose two new splitting
strategies for MO-CBS, namely cost splitting and disjoint
cost splitting. Both cost splitting and disjoint cost splitting
impose additional constraints on the costs of the paths for
each constrained agent during splitting. Therefore, each sub-
problem is more constrained, and, when resolving conflicts
in its following subproblems, MO-CBS generates fewer sub-
problems and hence has less duplicate search effort. Our
theoretical results show that, when using either of the new
splitting strategies, MO-CBS maintains its completeness and
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optimality. Our experimental results show that the new split-
ting strategies substantially improve the success rates and
runtimes of MO-CBS in various domains. For many MO-
MAPF instances, the runtime speedups are more than 25×,
and the maximum runtime speedup is more than 125×.

Terminology and Problem Definition
In this paper, we use boldface font to denote vectors, sets
of vectors, or vector functions. We use vi to denote the i-th
component of vector or vector function v. Given two vec-
tors v and v′ of the same length N , their addition is de-
fined as v + v′ = [v1 + v′1, v2 + v′2 . . . vN + v′N ], and their
component-wise maximum is defined as comax(v,v′) =
[max(v1, v

′
1),max(v2, v

′
2) . . .max(vN , v′N )]. We say that v

weakly dominates v′, that is, v ⪯ v′, iff vi ≤ v′i for all
i = 1, 2 . . . N . We say that v dominates v′, that is, v ≺ v′,
iff v ⪯ v′ and there exists an i ∈ {1, 2 . . . N} with vi < v′i.
Given a set of vectors S, we use ND(S) = {v ∈ S | ∀u ∈
S,u ̸≺ v} to denote the set of all undominated vectors in S.

Property 1. Given three vectors v1, v2, and u, we have
comax(v1,v2) ⪯ u iff v1 ⪯ u and v2 ⪯ u.

Define the dominated region D(v) = {v′ ∈ RN | v ⪯
v′} of a vector v as the set of vectors that v weakly dom-
inates. Property 1 shows that D(comax(v1,v2)) is the in-
tersection of D(v1) and D(v2). This geometric interpre-
tation of comax is important for understanding some key
steps of our new splitting techniques.

An MO-MAPF instance is defined by a weighted directed
graph G = ⟨V,E⟩ and a set of m agents {a1, a2 . . . am},
each ai associated with a start vertex si ∈ V and a goal
vertex gi ∈ V . V is the set of vertices that the agents can
stay at, and E is the set of directed edges that the agents can
move along, each associated with an edge cost, which is a
positive vector of length N . An edge pointing from u ∈ V
to v ∈ V is denoted as ⟨u, v⟩ ∈ E. Additionally, we allow
a self-pointing edge at each vertex, which corresponds to an
agent waiting at its current vertex.

In each timestep, an agent either moves along an edge
(that is, moves to a neighboring vertex or waiting at its cur-
rent vertex) or terminates at its goal vertex (that is, waits at
the goal vertex forever and does not move again). Let N de-
note the number of cost metrics in an MO-MAPF instance.
The cost of an action is the cost of the corresponding edge if
the action is a move action along an edge and a zero vector
of length N if it is a terminate action. A path π of an agent is
a sequence of actions that leads it from its start vertex to its
goal vertex and ends with a terminate action. Its cost c(π)
is the sum of the costs of its actions. There are two types
of conflicts. A vertex conflict happens when two agents stay
at the same vertex simultaneously, and an edge conflict hap-
pens when two agents swap their vertices simultaneously. A
solution Π is a set of conflict-free paths for all agents. Its
cost c(Π) is the sum of the costs of its paths.

Given an MO-MAPF instance (respectively an MO-
MAPF instance and an agent), a solution (respectively a
path) is Pareto-optimal iff its cost is not dominated by the
cost of any other solution (respectively path); the Pareto-
optimal frontier is the set of all Pareto-optimal solutions

(respectively paths); and a cost-unique Pareto-optimal fron-
tier is a maximal subset of the Pareto-optimal frontier that
does not contain any two solutions (respectively paths) of
the same cost.

The task of the MO-MAPF problem is to find a cost-
unique Pareto-optimal frontier (of solutions). We can easily
realize different objectives by assigning different edge costs.
For example, we can use travel time, a common MAPF cost
metric, as the i-th cost metric by setting the i-th component
of every edge cost to one.

Algorithmic Background
We review two existing algorithms on which we build our
techniques, namely CBS for the MAPF problem and MO-
CBS for the MO-MAPF problem.

CBS
CBS is a complete and optimal two-level MAPF algorithm.
On the high level, CBS performs a best-first search on a Con-
straint Tree (CT). Each CT node n contains a set of con-
straints n.constraints and a set of paths n.paths, one for
each agent, that satisfy the constraints. A vertex constraint
⟨ai, v, t⟩ prohibits agent ai from using vertex v at timestep t,
and an edge constraint ⟨ai, u, v, t⟩ prohibits agent ai from
using edge ⟨u, v⟩ between timesteps t and t+1. The cost of
a CT node is the sum of the costs of its paths.

CBS starts with the root CT node, which has an empty set
of constraints and a minimum-cost path for each agent that
ignores conflicts. When expanding a CT node, CBS returns
its paths as a solution if they are conflict-free. Otherwise,
CBS picks a conflict to resolve: It splits the CT node into
two child CT nodes and adds a constraint to each child CT
node to prohibit either one or the other of the two conflict-
ing agents from using the conflicting vertex or edge at the
conflicting timestep. CBS then calls its low level to replan
the path of the newly constrained agent in each child CT
node. On the low level, CBS finds a minimum-cost path for
the given agent that satisfies the constraints of the given CT
node but ignores conflicts with the other agents.

MO-CBS
MO-CBS extends CBS to the MO-MAPF problem. Algo-
rithm 1 shows its high level. MO-CBS first calls function
INITIALIZATION to generate (potentially multiple) root CT
nodes (Line 1). Specifically, MO-CBS calls its low level to
find a cost-unique Pareto-optimal frontier Πi for each agent
ai. For each combination of paths in Π1 × Π2 . . .Πm, MO-
CBS generates a root CT node that has an empty set of con-
straints. It then inserts all root CT nodes into Open. In each
iteration, a CT node with the lexicographically smallest cost
is extracted from Open for expansion (Line 4).

Similar to CBS, when expanding a CT node n whose
paths are not conflict-free, MO-CBS picks a conflict to re-
solve (Line 9). The splitting strategy of MO-CBS is two-
level. MO-CBS first splits a CT node into two subproblems,
each with a new constraint on either one of the conflicting
agents (Line 19). Then, for each constraint, MO-CBS calls
its low level to replan a cost-unique Pareto-optimal frontier
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Algorithm 1: MO-CBS with standard splitting
1 INITIALIZATION()
2 S← ∅
3 while Open is not empty do
4 n← Open.pop()
5 if ∃ Π ∈ S, c(Π) ⪯ c(n.paths) then continue
6 if n is conflict-free then
7 add n.paths to S
8 continue
9 conf ← a conflict in n.paths

10 children← SPLIT(n, conf )
11 foreach n′ ∈ children do
12 if ∃ Π ∈ S, c(Π) ⪯ c(n′.paths) then continue
13 add n′ to Open
14 return S
15 Function SPLIT(n, conf ):
16 children← ∅
17 foreach ai involved in conf do
18 cons ← the constraint imposed on ai

19 C′
i ← n.constraints ∪ {cons}

20 Π′
i ← LOWLEVELSEARCH(ai, C

′
i)

21 foreach πi ∈ Π′
i do

22 n′ ← n
23 n′.constraints← C′

i

24 n′.paths[i]← πi

25 add n′ to children
26 return children

for the constrained agent (Line 20). For each path in it, MO-
CBS generates a new child CT node (Lines 21-25). When
expanding a CT node whose paths are conflict-free, MO-
CBS has found a new solution and adds it to the solution set
(Line 7). MO-CBS terminates when Open is empty.

The low level of MO-CBS can be implemented with any
algorithm that computes a cost-unique Pareto-optimal fron-
tier for a given agent and given constraints. Ren, Rathi-
nam, and Choset (2022) propose to use BOA* (Ulloa et al.
2020), a state-of-the-art single-agent bi-objective (where
there are only two costs to minimize) search algorithm,
and NAMOA*-dr (Pulido, Mandow, and Pérez-de-la Cruz
2015), a single-agent multi-objective search algorithm, as
the low-level search algorithms for MO-MAPF instances
with only two cost metrics and MO-MAPF instances with
more than two cost metrics, respectively.

Example 1. Figure 1 shows an MO-MAPF instance with
two agents. In the beginning, a cost-unique Pareto-optimal
frontier for agent a1 contains paths [A,C,D] and [A,B,D]
with costs (2, 3) and (3, 1.5), respectively. A cost-unique
Pareto-optimal frontier for agent a2 contains only one path
[E,F,D,G] with cost (3, 3). Therefore, MO-CBS generate
two root CT nodes n1 and n2. We assume that MO-CBS
breaks ties in favor of CT nodes that are generated earlier
when extracting a CT node from Open.

1. MO-CBS first expands CT node n1 according to the lex-
icographical order and picks the vertex conflict between
agents a1 and a2 at vertex D at timestep 2 to resolve.
MO-CBS splits n1 with vertex constraints ⟨a1, D, 2⟩ and

⟨a2, D, 2⟩. For agent a1, MO-CBS calls its low-level
search to find a cost-unique Pareto-optimal frontier that
consists of three paths [A,C,C,D], [A,B,B,D], and
[A, I,B,D] and thus generates three child CT nodes
n3, n4, and n5, one for each path. For agent a2, MO-
CBS calls its low-level search to find a cost-unique
Pareto-optimal frontier that consists of only one path
[E,F, F,D,G] and generates child CT node n6.

2. MO-CBS expands CT node n2 and, similar to the expan-
sion of n1, generates four CT nodes n7, n8, n9, and n10.

3. MO-CBS expands CT node n3 and finds a Pareto-optimal
solution with cost (6, 7).

4. MO-CBS extracts and then prunes CT nodes n6 and n7

because their costs are both weakly dominated by the
cost of the solution found in CT node n3.

5. MO-CBS expands CT node n4 and finds a Pareto-optimal
solution with cost (7, 5.5).

6. MO-CBS extracts and then prunes CT nodes n8 and n10

because their costs are both weakly dominated by the
cost of the solution found in CT node n4.

7. MO-CBS expands CT node n5 and finds a Pareto-optimal
solution with cost (8, 4.5).

8. MO-CBS extracts and then prunes CT node n9 because
its cost is weakly dominated by the cost of the solution
found in CT node n5.

MO-CBS terminates and finds a cost-unique Pareto-optimal
frontier with three solutions.

While we focus on minimizing the sum of costs in this
paper, another interesting objective is to minimize the max-
imum cost over all agents (makespan). In fact, MO-CBS as
well as the splitting strategies that we describe later work
for makespan, too, if the costs of CT nodes are calculated
appropriately.

Cost Splitting
The following example shows that MO-CBS sometimes
generates identical CT nodes.
Example 2. Consider CT nodes n3 and n7 in Figure 1b.
Both CT nodes contain the same set of constraints and paths,
which makes these two CT nodes indistinguishable from
each other. (CT nodes n4 and n5 are indistinguishable from
CT nodes n8 and n9, respectively, too.) CT nodes n3 and n7

are both conflict-free. However, for an MO-MAPF instance
with more agents, such duplicate CT nodes can contain con-
flicts between other agents, and, to resolve these conflicts,
MO-CBS duplicates the search effort in the trees rooted in
these duplicate CT nodes.

We now describe cost splitting, which generates fewer CT
nodes than the standard splitting strategy and still retains the
completeness and optimality guarantees of MO-CBS. For
each CT node n, MO-CBS with cost splitting maintains a
cost lower bound n.lb = [n.lb1, n.lb2 . . . n.lbm], that con-
sists of m vectors of length N , one for each agent. It also
modifies the INITIALIZATION and SPLIT functions in Algo-
rithm 1.
Definition 1. A path πi of agent ai is compatible with a CT
node n iff:
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Figure 1: An example MO-MAPF instance with two agents. (a) shows the graph for this MO-MAPF instance. The self-pointing
edges are not shown, and all of them have cost (1, 1). Except for c(⟨B,D⟩) = c(⟨A, I⟩) = (2, 0.5), c(⟨C,D⟩) = (1, 2), and
c(⟨I,B⟩) = (1, 0.5), all shown edges have cost (1, 1). si and gi, i ∈ {1, 2}, denotes the start and goal vertices of agent ai,
respectively. (b) shows the CTs of MO-CBS for this MO-MAPF instance. Blue boxes represent CT nodes. The label inside each
CT node denotes the name of the CT node, the paths for agents a1 (in red) and a2 (in blue), and the corresponding path costs
inside the parentheses. For ease of presentation, we show each path as the sequence of traversed vertices. The label next to each
CT node is its cost.

2 3 4
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n1 . lb1
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(4,2.5)
(5,1.5)

(4,3)
(3,4)

(2,3)

Figure 2: An example of cost splitting. Each marker corre-
sponds to a vector of length two. The x- and y-coordinates
correspond to the first and the second component of each
vector, respectively.

1. n.lbi ⪯ c(πi) and
2. πi satisfies all constraints of CT node n.

A solution is compatible with a CT node iff all its paths are
compatible with the CT node.

Each vector in the cost lower bound n.lbi, i = 1, 2 . . .m,
specifies that n “considers” only solutions whose path cost
for agent ai is weakly dominated by (conceptually, “lower-
bounded” by) n.lbi.

In INITIALIZATION, MO-CBS with cost splitting initial-
izes the cost lower bound of each agent in each root CT
node to the cost of its path. For example, the cost lower
bounds of CT nodes n1 and n2 in Figure 1b are initialized to
[(2, 3), (3, 3)] and [(3, 1.5), (3, 3)], respectively. The green
triangle in Figure 2 represents n1.lb1, and the green region
in Figure 2 represents the dominated region of n1.lb1. Con-
ceptually, CT node n1 only considers solutions whose path
costs for agent a1 are inside this green region.

Property 2. Any solution is compatible with at least one
root CT node.

Algorithm 2: Cost splitting
1 Function SPLIT(n, conf ):
2 children← ∅
3 foreach ai involved in conf do
4 cons ← the constraint imposed on ai

5 C′
i ← n.constraints ∪ {cons}

6 Π′
i ← LOWLEVELSEARCH(ai, C

′
i)

7 LBi ← ND({comax(n.lbi, c(π)) | π ∈ Π′
i})

8 foreach lb ∈ LBi do
9 n′ ← n

10 n′.constraints← C′
i

11 n′.lbi ← lb
12 n′.paths[i]← a path π ∈ Π′

i such that
comax(n.lbi, c(π)) = lb

13 add n′ to children
14 return children

Proof. Any combination of the cost-unique Pareto-optimal
frontiers of all agents corresponds to a root CT node, so any
solution is weakly dominated by the paths and thus the cost
lower bounds of at least one root CT node. Since root CT
nodes do not have any constraints, the statement holds.

Algorithm 2 describes the SPLIT function of cost split-
ting. For each agent ai involved in the conflict and the cor-
responding constraint consi, cost splitting calls its low level
to replan a cost-unique Pareto-optimal frontier Π′

i that sat-
isfies the constraints n.constraints ∪ {consi} (Line 6). It
then computes a set of vectors (Line 7)

LBi = ND({comax(n.lbi, c(π)) | π ∈ Π′
i}).

For each cost vector lb ∈ LBi, cost splitting creates a
child CT node whose cost lower bound for agent ai is lb
(Line 11), and whose path of agent ai is the correspond-
ing path in Π′

i (Line 12). We define the splitting strategy
in this way because (1) it guarantees that MO-CBS does
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not exclude any compatible solution during CT node split-
ting, as indicated by Property 3, and (2) it eliminates some
duplicate search effort that the standard splitting strategy
may spend, as shown in Example 3. Recall that D(v) de-
notes the dominated region of a vector v. Each vector in
{comax(n.lbi, c(π)) | π ∈ Π′

i} corresponds to a domi-
nated region that is the intersection between D(n.lbi) and
D(π) for some π ∈ Π′

i. For any solution compatible with
n, its cost for agent ai must lie in at least one of these dom-
inated regions. This still holds after removing those domi-
nated vectors (via the ND function).

Property 3. Any solution that is compatible with a CT node
is compatible with at least one of its child CT nodes.
Proof. The two constraints for resolving a conflict ensure
that every solution satisfies at least one of them (because,
otherwise, the solution is not conflict-free). Therefore, we
need to prove only that any solution Π that is compatible
with CT node n and satisfies the new constraint imposed
on agent ai is compatible with at least one child CT node in
nodesi, where nodesi is the set of child CT nodes generated
after replanning for agent ai. Let πi be the path of agent
ai in solution Π. Because every CT node in nodesi differs
from CT node n only in the path, constraint, and cost lower
bound of agent ai, according to Definition 1, we only need
to prove that there exists a child CT node in nodesi that πi

is compatible with.
Since Π′

i is a cost-unique Pareto-optimal frontier of agent
ai (Line 6), there exists a path π∗ ∈ Π′

i such that c(π∗) ⪯
c(πi). With n.lbi ⪯ c(πi) (because Π is compatible with
n) and Property 1, we have comax(n.lbi, c(π

∗)) ⪯ c(πi).
Since comax(n.lbi, c(π

∗)) ∈ {comax(n.lbi, c(π)) |
π ∈ Π′

i}, there exists a vector in LBi that weakly dom-
inates comax(n.lbi, c(π

∗)), which in turn weakly dom-
inates c(πi). Therefore, πi is compatible with the corre-
sponding child CT node.

Example 3. Consider CT node n1 in Figure 1b. Recall that,
in INITIALIZATION, the cost lower bounds of root CT nodes
n1 is initialized to n1.lb = [(2, 3), (3, 3)]. When replanning
for agent a1 with new constraint ⟨a1, D, 2⟩, the cost-
unique Pareto-optimal frontier consists of three paths π

(1)
1

= [A,C,C,D] (with cost (3, 4)), π(2)
1 = [A,B,B,D] (with

cost (4, 2.5)), and π
(3)
1 = [A, I,B,D] (with cost (5, 1.5)).

For these three paths, we have comax(n1.lb1, c(π
(1)
1 ))

= (3, 4), comax(n1.lb1, c(π
(2)
1 )) = (4, 3), and

comax(n1.lb1, c(π
(3)
1 )) = (5, 3), respectively. Since

(5, 3) is weakly dominated by (4, 3), cost splitting does
not generate a child CT node for π

(3)
1 . Intuitively, if cost

splitting generated a child CT node for π
(3)
1 , it would

correspond to CT node n5, every path that is compatible
with n5 would also be compatible with n9. Therefore, it is
not necessary to generate n5. Cost splitting generates two
child CT nodes for only π

(1)
1 and π

(2)
1 , which correspond

to CT nodes n3 and n4 in Figure 1b. Note that the path of
a1 (π(2)

1 with cost (4, 2.5)) in CT node n4 is not compatible
with CT node n4 because n4.lb1 = (4, 3) does not weakly

dominate c(π
(2)
1 ) = (4, 2.5). As we will show later, this

does not affect the optimality and completeness of MO-CBS.
The red and blue crosses in Figure 2 represent n3.lb1 and
n4.lb1, respectively. The red and blue regions in Figure 2
represent the dominated regions of n3.lb1 and n4.lb1,
respectively. The dominated regions of n3.lb1 and n4.lb1

are both subsets of the dominated region of n1.lb1. Cost
splitting still needs to generate CT node n4 to ensure that it
does not miss a solution whose path cost for a1 is weakly
dominated by (4, 3) but not (3, 4).

Consider CT node n2, we have comax(n2.lb1, c(π
(1)
1 ))

= (3, 4), comax(n2.lb1, c(π
(2)
1 )) = (4, 2.5), and

comax(n2.lb1, c(π
(3)
1 )) = (5, 1.5), which do not weakly

dominates each others. Thus, cost splitting generates three
child CT nodes for π

(1)
1 , π(2)

1 , and π
(3)
1 , which correspond

to CT nodes n7, n8, and n9 in Figure 1b. Overall, MO-CBS
with cost splitting generates one fewer CT node (namely, CT
node n5) than MO-CBS with standard splitting.

Property 4. When splitting a CT node, MO-CBS with cost
splitting never generates more child CT nodes than MO-CBS
with standard splitting.
Proof. The property holds because, according to Line 7 of
Algorithm 2, the size of LBi (that is, the number of CT
nodes that MO-CBS with cost splitting generates) is at most
the size of Π′

i (that is, the number of CT nodes that MO-CBS
with standard splitting generates).

Disjoint Cost Splitting
In Example 3, any path of agent a1 whose cost is weakly
dominated by (3, 3) is compatible with both CT nodes n1

(with n1.lb1 = (2, 3)) and n2 (with n2.lb1 = (3, 1.5)).
Hence, CT nodes n1 and n2 can still lead to the same solu-
tion and thus result in duplicate search effort. In this section,
we describe our second splitting strategy for MO-CBS, dis-
joint cost splitting, which further reduces duplicate search
effort of MO-CBS and ensures that, when splitting a CT
node, any solution that is compatible with the CT node is
compatible with exactly one of its child CT nodes.

In addition to maintaining a cost lower bound, MO-CBS
with disjoint cost splitting also maintains a cost upper bound
n.UBi for each agent ai in each CT node n, that consists of
a set of cost vectors that are weakly dominated by n.lbi. It
also modifies Definition 1 as well as the INITIALIZATION
and SPLIT functions used by Algorithm 1 as follows.

Definition 2. A path πi of agent ai is UB-compatible with a
CT node n iff:

1. πi is compatible with CT node n and
2. ∀ ub ∈ n.UBi ub ̸⪯ c(πi).

A solution is UB-compatible with a CT node iff all its paths
are UB-compatible with the CT node.

In INITIALIZATION, MO-CBS with disjoint cost split-
ting finds a cost-unique Pareto-optimal frontier Πi for each
agent ai and generates a root CT node for each combina-
tion of the paths in Π1 × Π2 . . .Πm. Let [π1

i , pi
2
i . . . π

|Πi|
i ]

denote the paths of Πi sorted in a predetermined order. For
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Figure 3: An example of disjoint cost splitting. Each marker
corresponds to a vector of length two. The x- and y-
coordinates correspond to the first and the second compo-
nent of each vector, respectively.

a root CT node n with path πj
i for agent ai, n.UBi is ini-

tialized to ND({comax(c(πj
i ), c(π

k
i )) | k = 1, 2 . . . j −

1}). For example, consider the cost upper bounds of CT
nodes n1 and n2 in Figure 1b. If we sort the paths of
Π1 in lexicographic order with respect to their path costs
(that is, path π1

1 = [A,C,D] comes before path π2
1 =

[A,B,D]), then n1.UB1 is set to ∅, and n2.UB1 is set to
ND({comax(c(π2

1), c(π
1
1))}) = {(3, 3)}. Both n1.UB2

and n2.UB2 are set to ∅ because the Pareto-optimal fron-
tier for agent a2 contains only one path. The grey triangle
and diamond in Figure 3 represent n2.lb1 and n2.UB1, re-
spectively. The grey region in Figure 3 represents the set of
vectors that are weakly dominated by (3, 2) (n2.lb1) but not
weakly dominated by (3, 3) (the only vector in n2.UB1).
Conceptually, CT node n2 only “considers” solutions whose
path costs for agent a1 are inside this grey region. It does
not need to consider any solution with a path cost for a1
weakly dominated by (3, 3) because such a solution has al-
ready been considered by CT node n1.
Property 5. Any solution is UB-compatible with exactly one
root CT node.
Proof. Given a solution Π, for i = 1, 2 . . .m, we use πi, to
denote the path for agent ai in Π and πji

i the first path in the
sorted sequence of Πi with c(πji

i ) ⪯ c(πi) during the ini-
tialization. We prove that Π is only UB-compatible with the
root CT node n generated for combination πj1

1 , πj2
2 . . . πjm

m .
We first prove that Π is UB-compatible with n. We have

n.lbi = c(πji
i ) ⪯ c(πi) for every agent ai (the first

condition of Definition 1 holds). Since n, as a root CT
node, has no constraint, the second condition of Definition 1
and hence the first condition of Definition 2 hold. For all
k = 1, 2 . . . ji − 1, we have c(πk

i ) ̸⪯ c(πi) and hence
comax(c(πji

i ), c(πk
i )) ̸⪯ c(πi). Therefore, no vector in

n.UBi weakly dominates c(πi), and the second condition
of Definition 2 holds. Thus, Π is UB-compatible with n.

We then prove that there does not exist another root CT
node n′ that Π is UB-compatible with. If n′ exists, then there
must exist some agent ai for which CT nodes n and n′ have
different paths. Let π′

i denote the path for agent ai in CT
node n′. Since πi is UB-compatible with both root CT nodes
n and n′ and the cost lower bounds are equal to the path costs

Algorithm 3: Disjoint cost splitting
1 Function SPLIT(n, conf ):
2 children← ∅
3 foreach ai involved in conf do
4 cons ← the constraint imposed on ai

5 C′
i ← n.constraints ∪ {cons}

6 Π′
i ← LOWLEVELSEARCH(ai, C

′
i)

7 LBi ← ND({comax(n.lbi, c(π)) | π ∈ Π′
i})

*8 UB← n.UBi

9 foreach lb ∈ LBi do
10 n′ ← n
11 n′.constraints← C′

i

12 n′.lbi ← lb
13 n′.paths[i]← a path π ∈ Π′

i such that
comax(n.lbi, c(π)) = lb

*14 n′.UBi ← ND({comax(n′.lbi,v) | v ∈
UB})

*15 if n′.lbi ∈ n′.UBi then continue
16 add n′ to children

*17 add lb to UB
18 return children

in root CT nodes, c(π) ⪯ c(πi) holds for both π = πji
i

and π = π′
i, and thus c′ = comax(c(π′

i), c(π
ji
i )) ≺ c(πi)

holds. Furthermore, since πji
i is the first path in the sorted

sequence of Πi with c(πji
i ) ⪯ c(πi), π′

i comes after πji
i in

this sorted sequence. As a result, c′ is either in n′.UBi or
dominated by a vector in n′.UBi, πi and thus solution Π are
not UB-compatible with n′; a contradiction is found.

Algorithm 3 shows the SPLIT function for disjoint cost
splitting. Algorithm 3 is similar to Algorithm 2 but with a
few changes. We highlight these changes by using “*” be-
fore line numbers. For each agent ai involved in the con-
flict, disjoint cost splitting generates a set of cost lower
bounds LBi and creates a child CT node for each vec-
tor in LBi (Lines 9-17). Disjoint cost splitting uses vari-
able UB to store n.UBi (Line 8) and all cost lower
bounds of the CT nodes that have been generated (Line 17).
When generating a CT node n′, MO-CBS sets n′.UBi to
ND({comax(n′.lbi,v) | v ∈ UB}) (Line 14). If n′.UBi

contains n′.lbi, then there does not exist a path for agent ai
(and hence a solution) that is UB-compatible with CT node
n′. In such case, CT node n′ is pruned (Line 15).

Property 6. Any solution that is UB-compatible with a CT
node is UB-compatible with either exactly one of its child
nodes or two of its child nodes that have different con-
straints.
Proof. Similar to the proof of Property 3, we only need to
prove that any solution Π that is UB-compatible with CT
node n and satisfies the new constraint imposed on agent
ai is UB-compatible with exactly one child node in nodesi,
where nodesi is the set of child CT nodes generated after re-
planning agent ai. We use πi to denote the path for agent ai
in solution Π. From the proof for Property 3, there exists at
least one vector in LBi that weakly dominates c(πi). Let n′

be the CT node generated for the first such vector in the in-
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ner iteration of SPLIT (Lines 9-17). When node n′ is created,
every vector in UB is some vector in LBi that comes before
n′.lbi and hence does not weakly dominates c(πi). We have
that ub ̸⪯ c(πi) for all ub ∈ n′UBi because every ub is
the comax between n′.lbi and some vector in UB.

Therefore, path πi is UB-compatible with CT node n′.
Since CT node n′ has the same constraints, cost lower
bound, and cost upper bound as its parent CT node for all
agents except ai, solution Π is UB-compatible with CT node
n′, too.

Then, we prove that there exists exactly one such child
CT node. Because CT node n′ is the first child CT node
of n that Π is UB-compatible with, we only need to con-
sider those nodes n′′ generated after n′ with n′′.lbi ⪯
c(πi). Together with n′.lbi ⪯ c(πi), we have c′ =
comax(n′.lbi, n

′′.lbi) ⪯ c(πi). Since c′ is either in
n′′.UBi or dominated by a vector in n′′.UBi, πi and thus
solution Π are not UB-compatible with n′′.

Example 4. Consider CT node n2 in Figure 1b. When re-
planning for agent a1 with new constraint ⟨a1, D, 2⟩, dis-
joint cost splitting generates three child CT nodes that corre-
spond to CT nodes n7, n8, and n9 in Figure 1b. From Exam-
ple 3, we have n7.lb1 = (3, 4). When generating CT node
n7, UB consists of (3, 3) from n2.UB1. Therefore, n7.UB1

is set to ND({comax(n7.lb1, (3, 3))}) = {(3, 4)}. CT
node n7 is then pruned because n7.lb1 ∈ n7.UB1. The red
and blue crosses in Figure 3 represent n8.lb1 and n9.lb1,
respectively. The red and blue regions in Figure 3 are two
disjoint regions corresponding to the sets of path costs for
agent a1 that CT nodes n8 and n9 consider, respectively.
CT node n7 can be safely pruned because n7.lb1 is outside
the grey region. Overall, MO-CBS with disjoint cost split-
ting generates two fewer CT nodes (namely, CT nodes n5

and n7) than MO-CBS with standard splitting.

Theoretical Results
We now prove the completeness and optimality of MO-CBS
with either of our splitting strategies. Our proof follows the
proof by Ren, Rathinam, and Choset (2022). Let PO be a
cost-unique Pareto-optimal frontier for a given MO-MAPF
instance, S be the current solution set, S = {c(Π) | Π ∈
S} be their costs, and PO | S = {Π | Π ∈ PO, c(Π) ̸∈ S}
be the solutions in PO whose costs have not been found so
far. Note that a solution is compatible with a CT node if it is
UB-compatible with the CT node.

Lemma 1. Any CT node that a solution in PO | S is com-
patible with is not pruned on Lines 5 or 12 in Algorithm 1.

Proof. Suppose that a solution Π ∈ PO | S is compat-
ible with a CT node n. For each agent ai and its corre-
sponding path πi in Π, we have n.lbi ⪯ c(πi) (from Def-
inition 1) and c(n.paths[i]) ⪯ n.lbi (because n.lbi is
calculated by taking the comax of c(n.paths[i]) and an-
other cost vector). We thus have c(n.paths[i]) ⪯ c(πi) and
hence c(n.paths) ⪯ c(Π). Since Π is Pareto-optimal with
c(Π) /∈ S, there is no solution in S whose cost weakly dom-
inates c(Π) and thus c(n.paths). Hence, CT node n is not

pruned.

Lemma 2. Every solution in PO | S is compatible with at
least one CT node in Open in the beginning of every iter-
ation (that is, before Line 4 gets executed) of Algorithm 1.

Proof. We prove this lemma by induction. Properties 2 and
5 show that the lemma holds after INITIALIZATION (Line 1
of Algorithm 1). We assume that this lemma holds before
the k-th CT node is extracted from Open. When the k-th CT
node n is extracted, for every solution Π ∈ PO | S, there
are three cases: (1) If Π is not compatible with CT node n,
then, based on the assumption, it is compatible with one CT
node in Open; (2) If Π is compatible with CT node n and
n.paths is conflict-free, then c(n.paths) = c(Π) because
c(n.paths) ⪯ c(Π) and Π is Pareto-optimal. After MO-
CBS adds n.paths to S (Line 7), Π is not in PO | S any-
more; or (3) If Π is compatible with CT node n and n.paths
is not conflict-free, n is not pruned and hence expanded ac-
cording to Lemma 1, and Π is still compatible with at least
one child CT node that is added to Open according to Prop-
erties 3 and 6. Therefore, the lemma holds.

Our Lemma 2 corresponds to Lemma 3 by Ren, Rathi-
nam, and Choset (2022). The following theorem combines
Theorems 1 and 2 by Ren, Rathinam, and Choset (2022) and
shows that (disjoint) cost splitting maintains the optimality
and completeness of MO-CBS. The proofs for Theorems 1
and 2 by Ren, Rathinam, and Choset (2022) apply here if
combined with our Lemma 2 and hence are omitted.

Theorem 1. MO-CBS with (disjoint) cost splitting finds a
cost-unique Pareto-optimal frontier for a given MO-MAPF
instance in finite time, if it exists.

Experimental Results
In this section, we evaluate cost splitting and disjoint cost
splitting. The variants of MO-CBS are MO-CBS, MO-CBS-
c, and MO-CBS-dc, where c adds cost splitting and dc adds
disjoint cost splitting. We implemented all MO-MAPF algo-
rithms in Python. They share the same code base as much
as possible.1 We ran experiments on a server with an AMD
EPYC 7742 CPU. We limited the memory to 16 GB and set
the time limit for solving each MO-MAPF instance to 1,000
seconds.

We use three different cost metrics:

1. (random-bi-obj) Every edge is assigned a 2-dimensional
cost vector with each component being an integer ran-
domly sampled from {1, 2}.

2. (random-tri-obj) Similar to random-bi-obj except that
every edge is assigned a 3-dimensional cost vector.

3. (time-energy) Every vertex is assigned an integer indi-
cating its height. Travel time and its energy consumption,
where moving upward from a vertex of height i to a ver-
tex of height j costs j − i units of energy, and the edge
treaverses otherwise costs one unit of energy. The height

1Source code and detailed usage is available on
https://github.com/mepear/MOMAPF
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Figure 4: Success rate results for MO-CBS variants on different grid maps with different combinations of objectives.

Figure 5: Average runtimes (in seconds) over MO-MAPF instances that are solved by all MO-CBS variants on different grid
maps with different combinations of objectives.

of a vertex is proportional to vertex’s distance to its dis-
tance from the center point of the map, which creates a
hill-like height map.

We use four grid maps from the MAPF benchmark (Stern
et al. 2019),2 namely empty-16-16, maze-32-32-2, random-

2 https://movingai.com/benchmarks/mapf.html
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Figure 6: Runtimes (in seconds) of MO-CBS and MO-CBS-
dc on all MO-MAPF instances. The x- and y-coordinate of
a dot corresponds to the runtime (in seconds) of MO-CBS
and MO-CBS-dc on an MO-MAPF instance, respectively.

MO-CBS MO-CBS-c MO-CBS-dc
random-bi-obj 5.28 3.42 2.72
random-tri-obj 16.31 6.34 3.60
time-energy 4.06 2.92 2.52

Table 1: Average branching factors for each MO-MAPF al-
gorithm and each cost metric.

32-32-20, and room-32-32-4. For each cost metric and grid
map, we vary the number of agents from 1 to 15 and, for
each number of agents, average over 25 “random scenarios”
from the benchmark.

Figure 4 shows the success rates, that is, the percentages
of MO-MAPF instances that an algorithm solves within the
time limit, for different cost metrics, maps, and numbers of
agents. In most cases, MO-CBS-dc has higher success rates
than MO-CBS-c, and they both have higher success rates
than MO-CBS. Figure 5 shows the average runtimes. For
each combination of cost metrics and number of agents the
average runtime of an algorithm is taken over all MO-MAPF
instances solved by all three algorithms. In some cases, MO-
CBS-c and MO-CBS-dc have much smaller runtimes than
MO-CBS. Figure 6 shows the runtimes (in seconds) of MO-
CBS and MO-CBS-dc for all instances individually. MO-
CBS-dc has smaller runtimes than MO-CBS for almost all
instances with a maximum speed-up of more than 125 times.
In general, the speed-ups achieved by new splitting strate-
gies increase with the number of agents, although this is not
always the case.

Table 1 shows the average branching factors, that is, the
average numbers of child CT nodes that are returned by the
SPLIT function when expanding a CT node, for different
combinations of cost metrics and splitting strategies. In all
cases, MO-CBS-dc has smaller branching factors than MO-
CBS-c, and they both have smaller branching factors than
MO-CBS. The comparison of random-bi-obj and random-
tri-obj shows that the branching factors achieved by cost
splitting and disjoint cost splitting increase with the number
of metrics. This is because, with more cost metrics, the cost-
unique Pareto-optimal frontiers for each agent are larger, and
cost splitting or disjoint cost splitting becomes more impor-

tant for reducing numbers of generated child CT nodes.

Conclusions
We proposed two splitting strategies for MO-CBS, namely
cost splitting and disjoint cost splitting, both of which speed
up MO-CBS without losing its optimality or completeness
guarantees. Our experimental results showed that disjoint
cost splitting, our best splitting strategy, speeds up MO-CBS
by up to two orders of magnitude and substantially improves
its success rates in various settings. Future work includes im-
proving MO-CBS with CBS enhancements, such as adding
heuristics (Felner et al. 2018) and symmetry breaking (Li
et al. 2019).
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