
Convexity Hierarchies in Grid Networks

Johannes Blum, Ruoying Li, Sabine Storandt
University of Konstanz

{johannes.blum,ruoying.li,sabine.storandt}@uni-konstanz.de

Abstract

Several algorithms for path planning in grid networks rely on
graph decomposition to reduce the search space size; either
by constructing a search data structure on the components,
or by using component information for A* guidance. The fo-
cus is usually on obtaining components of roughly equal size
with few boundary nodes each. In this paper, we consider the
problem of splitting a graph into convex components. A con-
vex component is characterized by the property that for all
pairs of its members, the shortest path between them is also
contained in it. Thus, given a source node, a target node, and
a (small) convex component that contains both of them, path
planning can be restricted to this component without com-
promising optimality. We prove that it is NP-hard to find a
balanced node separator that splits a given graph into convex
components. However, we also present and evaluate heuris-
tics for (hierarchical) convex decomposition of grid networks
that perform well across various benchmarks. Moreover, we
describe how existing path planning methods can benefit from
the computation of convex components. As one main out-
come, we show that contraction hierarchies become up to an
order of magnitude faster on large grids when the contraction
order is derived from a convex graph decomposition.

Introduction
Fast methods for path planning in large networks usually
rely on some sort of preprocessing in which network in-
formation is gathered and stored. The main goal is to get a
significantly reduced search space size when computing the
shortest path between any source and target vertex. This is
either achieved by computing information that lead to better
heuristics to guide A* search or to restrict Dijkstra’s algo-
rithm to certain subgraphs, see e.g. (Rabin and Sturtevant
2016; Harabor and Stuckey 2018), or by encoding shortest
path information in such a way that search on the input net-
work is not needed anymore on query time at all. Examples
for the latter paradigm are compressed path data bases (Shen
et al. 2021) and labeling techniques (Delling et al. 2014).

One recurring ingredient in the preprocessing phase of
various path planning algorithms is graph decomposition.
Splitting the graph into subgraphs may allow to completely
disregard certain parts of the graph. This idea is reflected e.g.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in the dead-end heuristic (Björnsson and Halldórsson 2006)
and in the notion of swamps (Pochter et al. 2010), which
both are capable of reducing the number of nodes expanded
by A* significantly. Another way to exploit subgraphs is to
precompute certain shortest path information for each and
then combine those to accelerate path planning. One way to
do so is to precompute the shortest paths between all bor-
der nodes of each subgraph and then build an overlay graph
connecting those (Delling et al. 2017), or to globally pre-
compute shortest path distances between all border nodes
and use those to get a highly informed gate-way heuristic
(Björnsson and Halldórsson 2006). Furthermore, hierarchi-
cal techniques as contraction hierarchies (Geisberger et al.
2012) may be constructed based on recursive graph decom-
position, which results in provable search space size guaran-
tees (Bauer et al. 2016) as well as practical benefits (Dibbelt,
Strasser, and Wagner 2016).

While different decomposition techniques are used in
these preprocessing methods, the goals often align: Sub-
graphs (on one hierarchical level) should be of roughly the
same size and the number of their border nodes should be
small. In this paper, we enforce an additional subgraph prop-
erty, namely convexity. It implies that for all node pairs in a
subgraph, the shortest path between them never leaves said
subgraph. Björnsson and Halldórsson (2006) claimed that
a convex decomposition would benefit the gate-way heuris-
tic. However, their proposed decomposition algorithm does
not guarantee subgraph convexity. We will introduce several
heuristics that are capable of separating a given grid network
into convex components and discuss how existing path plan-
ning techniques can benefit from convex decompositions.

Related Work
Graph partitioning has a wide range of applications, includ-
ing scientific computing (George 1973), VLSI design (Bhatt
and Leighton 1984), task scheduling (Ababei et al. 2002),
and communication networks (Lee et al. 2018). The idea is
to split the graph into several pieces that are not connected
to each other. This can be achieved by removing a set of ver-
tices (a vertex separator, or simply separator) or edges (an
edge cut). In most cases it is desirable that the remaining
parts are of (roughly) the same size and that the number of
removed vertices or edges is small. In this work, we focus
on vertex separators. Note that for every edge cut, the set

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

52

of vertices incident to a cut edge yields a vertex separator.
In general however, vertex separators can be significantly
smaller than edge cuts. Formally, a vertex separator or edge
cut of a n-vertex graph is α-balanced for α ∈ (0, 1), if af-
ter its removal there remain only connected components of
size at most α · n. Computing an α-balanced separator of
minimum size is NP-hard (Bui and Jones 1992). Therefore
a lot of work has been carried out to develop approximation
algorithms. In their seminal work, Leighton and Rao (1988)
showed that a O(log n)-approximation can be computed in
polynomial time, which comes with an arbitrary small loss
in the balance factor. Later on, Feige and Mahdian (2006)
showed how to compute an α-balanced separator of size k
for any α ≥ 2/3 (if it exists), unless there is a (α + ε)-
balanced separator of size k′ < k, in which case the latter is
found. Their algorithm has a runtime of nO(1) ·2O(k), which
is polynomial for k ∈ O(log n).

For planar graphs, the planar separator theorem of Lipton
and Tarjan (1979) states that there is always a 2/3-balanced
separator of size O(

√
n), which can be found in linear time.

However, the constructed separator does not need to be of
minimum size. Amir, Krauthgamer, and Rao (2003) devel-
oped a constant factor approximation for the minimum bal-
anced separator of planar graphs, which comes with a small
loss in the balance factor. Interestingly, it is not known
whether computing a minimum balanced separator is NP-
hard on planar graphs (Fukuyama 2006).

There exists a multitude of heuristic approaches, which
produce good balanced separators in practice. Many of them
were designed to find small separators in road networks,
which we also expect to work well on grid graphs. Examples
are FlowCutter (Hamann and Strasser 2018), which solves a
sequence of incremental flow problems, and Inertial Flow
(Schild and Sommer 2015), which computes a flow between
the “first” and “last” vertices, based on a given embedidng.
InertialFlowCutter (Gottesbüren et al. 2019) combines both
of these ideas. PUNCH (Delling et al. 2011) and Buffoon
(Sanders and Schulz 2012) are multi-step heuristic designed
to find natural cuts in road networks. Moreover, there exist
also several partitioning heuristics for general graphs, such
as METIS (Karypis and Kumar 1998), SCOTCH (Pellegrini
and Roman 1996), or KaHIP (Sanders and Schulz 2013).

Contribution
In this paper, we first introduce the notion of balanced con-
vexity separators and convex graph decompositions. We
show that computing a balanced convexity separator of min-
imum size is NP-hard. Then we propose different heuristics
to efficiently find small balanced convexity separators in a
given grid network. As one application of convex graph de-
composition, we propose a variant of the contraction hier-
archies shortest path algorithm, which allows to prune the
search space during a query by exploiting convexity of in-
duced subgraphs. We evaluate our algorithms on different
2D pathfinding benchmark sets and show that on instances
that have small balanced convexity separators, our convex
CH variant outperforms classic CH by up to an order of mag-
nitude.

Preliminaries
We now formally define the notions of convexity and separa-
tors that will be used in the remainder of the paper. Through-
out the paper, we assume the input is given as a grid domain,
that is, a map discretized into grid cells where some cells are
traversable (or free) and others may be not (obstacles). From
that we construct a 4-connected grid network that reflects for
each cell which neighboring cells are directly reachable. All
edge costs are uniformly set to 1.

Convexity
The central graph property that we will study in the context
of grid networks is subgraph convexity.
Definition 1 (Convex Subgraph). Let G = (V,E) be a
graph and W ⊆ V a vertex set. The induced subgraph
G[W] is convex if for all s, t ∈W the shortest path inG[W]
has the same length as in the original graph G = (V,E).

Note that there also exists a stricter definition of convexity
in which the subgraph needs to contain all shortest paths be-
tween every s-t-pair and not only some shortest path. Still, as
our focus will be on path planning applications where it usu-
ally suffices to detect some shortest paths, we will use this
weaker definition of convexity throughout the paper. More-
over, the whole graph G[V] is convex by definition.

Balanced Separators and Graph Decomposition
To decompose a graph into smaller parts, we can either re-
move edges or vertices. We will focus here on the latter, i.e.
on vertex separators. The goal is to remove a small number
of vertices such the size of every resulting connected com-
ponents is below a certain threshold. This goal is captured
by the notion of an α-balanced vertex separator.
Definition 2 (Balanced Separator). Given a graph G =
(V,E) and α ∈ (0, 1), an α-balanced separator of G is
a vertex set S ⊆ V such that every connected component of
G[V \ S] has size at most α · |V |.

In a hierarchical graph decomposition of G = (V,E),
we first find a separator S in the original graph G and then
recursively do the same for the connected components of
G[V \ S]. Figure 1 shows an example of recursive decom-
position of a grid graph. The corresponding structure can be
formalized as a decomposition tree.
Definition 3 (Decomposition Tree). Given a graph G =
(V,E) and α ∈ (0, 1), an α-balanced decomposition tree T
is a rooted tree whose nodes are disjoints subsets of V . The
root of T is an α-balanced separator of G whose removal
results in connected components G1, . . . , Gd with d ≥ 2.
The children of the root are the roots of decomposition trees
of the individual components. The leaves of T correspond to
subgraphs ofG of size one (or some other cut-off threshold).

We now strive to combine the concepts of graph decom-
position and convexity by demanding that every connected
components resulting from the removal of a separator is a
convex subgraphs of G. We call such a separator also a con-
vexity separator. Moreover, we will refer to the resulting
structures as convex graph decompositions and convex de-
composition trees, respectively.

53

Figure 1: First three levels of a (convex) grid network de-
composition. Seperator nodes are marked red.

Balanced Convex Decompositions
In this section, we first study the complexity of comput-
ing an optimal α-balanced convex graph decomposition on
general graphs. Afterwards, we devise efficient heuristics to
construct a convex decomposition tree on grid networks.

NP-Hardness
We now prove that it is NP-hard to compute an optimal
convex graph decomposition, in particular to find an α-
balanced convexity separator of minimum size. To that end
we reduce from BALANCED COMPLETE BIPARTITE SUB-
GRAPH (BCBS). In this problem, the input is a bipartite
graph G = (V] U,E) and a positive integer k, and the
question is whether there are two sets V ′ ⊆ V and U ′ ⊆ U
such that |V ′| = |U ′| = k and such that their union induces
a complete bipartite graph. The proof of our theorem fol-
lows the hardness proof for balanced separators of Müller
and Wagner (1991), which however is not concerned with
convexity and only considers α = 1/2.

Theorem 4. It is NP-hard to decide whether a given graph
has an α-balanced vertex separator of size at most b, which
splits the graph into a set of convex components.

Proof. Consider an instance of BALANCED COMPLETE BI-
PARTITE SUBGRAPH, which is NP-hard (Garey and Johnson
1979). Such an instance is given by a graphG = (V]U,E)
and an integer k. Let H be the complement graph of G, let
n = |V |+ |U |, and choose α such that αn = k.

We prove that (G, k) is a yes-instance if and only ifH has
an α-balanced convexity separator of size n − 2k. Suppose
that there is a set S ⊆ V ∪ U of size |S| ≤ n − 2k, which
separates H into a set of convex connected components of
size at most αn. By construction, V ′ = V \ S and U ′ =
U \ S each induce a clique. This means that removing S
from H results in the connected components V ′ and U ′, as
otherwise there would be one single connected component
of size 2k > αn. As we have |V ′| ≤ k, |U ′| ≤ k, |S| ≤ n−
2k, and |V ′|+|U ′|+|S| = n, it follows that |V ′| = |U ′| = k.
This means thatU ′∪V ′ induce a balanced complete bipartite
subgraph in G.

Suppose now that there are sets V ′ ⊆ V and U ′ ⊆ U of
size k = αn each, whose union induce a complete bipartite
graph inG. It holds that inH , V ′ andU ′ induce a clique, i.e.,
a convex subgraph. This means that S = (V ∪U)\(V ′∪U ′)
is an α-balanced convexity separator of size n− 2k.

Heuristics for Balanced Convex Decompositions
Next, we try to exploit the structure of grid networks to effi-
ciently compute convex decompositions of good quality, i.e.,
with small balanced convexity separators on each level.

Guess & Check Any efficient method to decide whether
a vertex set S is an α-balanced convexity separator for a
given graph G = (V,E) and a certain balance-factor α ∈
(0, 1), allows us to search for feasible convexity separators
by exploring vertex sets in a systematic manner. Computing
the maximum α for which S is an α-balanced separator can
be accomplished in linear time by determining the connected
components C1, . . . , Cd of G[V \ S] and comparing their
size to the original graph size, i.e. α = maxdi=1 |Ci|/|V |.
But checking whether all Ci are convex is more demanding,
as we have to ensure that the shortest path distance between
all pairs s, t ∈ Ci is the same in G[Ci] and in G. Clearly, it
suffices to check this property for all pairs of border nodes
of Ci, i.e., the nodes of Ci that are adjacent to S. Still, we
need two one-to-many comparative Dijkstra runs for every
border node (one in G[Ci] and one in G). Thus the checks
become expensive if separator nodes have many neighbors
or if the network is big. In the following, we will show that
for particular choices of S, faster checks are possible.

Separators from One Shortest Path A candidate for a
convexity separator S is the vertex set of a separating short-
est path.
Definition 5 (Separating Shortest Path). A shortest path p
in a connected graph G = (V,E) is called separating if
G[V \ p] consists of more than one connected component.

Observe that in a planar graph, any shortest path, that does
not only contain boundary nodes, is separating. Given a grid
network, we can compute separating paths by first extracting
the boundary nodes of the grid network and then comput-
ing shortest paths between all of them (or a sample thereof).
Among the paths whose vertex set is a valid α-balanced con-
vexity separator, we pick one of minimum size.

The idea is that separating shortest paths are likely to pro-
duce convex connected components. Still, this is not neces-
sarily the case. Thus, we need to perform a convexity check
for each such path as described above. However, the check
might be skipped if the path does not go along the borders of
any obstacle in the grid domain as shown in the next lemma.
Lemma 6. If except for start and end node, each node in a
separating shortest path p in G has degree 4, then all con-
nected components in G[V \ p] are convex.

Proof. Assume for contradiction that there exists a con-
nected component C in G[V \ p] that is not convex and con-
sider vertices s, t ∈ C such that in G, all shortest s-t-paths
traverse vertices outside of C. Consider any such shortest
path p′ and let v be the first vertex on that path that intersects
p, and w the last. Further let u be the direct predecessor of
v in p′ and x the direct successor of w. As p is a shortest
path, the subpath between v and w on S is a shortest path as
well. Now we consider the path from u to x that runs paral-
lel to p, i.e. along the border of C with p. This path has to
exist, as all nodes in p between v and w have degree 4 which
implies that in the grid domain all of their neighboring cells
are obstacle-free. This observation also directly entails that
p has to be both x- and y-monotone in the grid domain. Fi-
nally, we observe that the path from u to x parallel to the
path from v to w (which then also has to be monotone) has

54

Figure 2: Left: A grid network where convexity checks are
not necessary for the upper connected component due to Ob-
servation 7. Right: If the red separating path gets reduced
(i.e. the dashed part is deleted), then the connected compo-
nent containing the blue path becomes convex.

cost c(u, x) ≤ c(v, w) + 2. This applies as in any monotone
path in a grid domain the direction changes along the path
to left and right alternate and hence the total sum of left and
right turns differs by at most one. For the parallel path either
the left turns safe a node and the right turns add a node or
vice versa. An additional node increases the path cost by 2.
Hence the total path costs of two parallel monotone paths in
a grid domain cannot differ by more than two. Thus, the path
from u to x via v and w has cost 2 + c(v, w) ≥ c(u, x). Ac-
cordingly, the path between u and x inside C is not longer
than the one leaving it. This contradicts the assumption that
the shortest path from u to x (and therefore the shortest path
from s to t) has to go outside of C. Thus, C is convex.

However, especially in grid domains with many obstacles,
separating shortest paths surrounded by only free cells might
not occur. Nevertheless, we might still benefit from the in-
sights provided in the lemma above for individual compo-
nents as described below.

Observation 7. Let p be a separating shortest path inG and
C a component in G[V \p]. Let B be the set of vertices in C
that are adjacent to p in G. If the nodes in B form a single
monotone path, C is convex.

An example where Observation 7 applies is provided in
Figure 2 (left). Reasons why the neighbors of p in compo-
nent C might not fulfill the property described in the obser-
vation are that either there are obstacles such that the nodes
inB form multiple paths inC or that p itself is not monotone
due to obstacles. However, in the latter case, we can always
reduce the path p to a path p∗ where we keep only the nodes
of degree 4 and for each subsequence of nodes of smaller
degree only the first and the last. This reduction removes all
parts from p that are parallel to obstacle borders and thus do
not contribute to the separation at all (as among their three
or less neighbors, two have to be in p and so at most one
neighbor is free). Accordingly, p∗ is still a separator in G.
Note that the start and end node of p might be removed as
well in case they do not have neighbors in more than one
component. As we aim for small separators, the reduction
from p to p∗ is clearly beneficial. It furthermore can help to
get convex components as shown in Figure 2 (right).

Separators From Two Shortest Paths While separating
the grid network with a single (reduced) separating shortest

Figure 3: Grid network with two separating shortest paths
(green and purple nodes). The red nodes enclosed by both
paths form a convexity separator as their removal results in
two convex connected components.

path is a promising approach to find small convexity sepa-
rators, convexity checks are still required. Moreover, there
could also be no separating shortest path with the desired
balance factor α. We hence discuss now how to potentially
benefit from computing two separating shortest paths.
Lemma 8. Let G be a connected graph and let p1, p2 be
two separating shortest path such that no vertex of p1 has a
neighbor in p2. Let S be the union of all connected compo-
nents of G[V \ (p1]p2)] that have neighbors in both p1 and
p2 in G. Then S is a convexity separator of G.

Proof. Consider any separating shortest path p and a con-
nected component C in G[V \ p]. Then C ∪ p is always con-
vex, as any shortest path that exits and reenters the node set
has to do that via two vertices in p; and between those the
shortest path is simply the respective subpath of p. Now if
we consider any two separating shortest paths p1, p2, where
there are no vertices in one path with a neighbor in the other,
then all components C in G[V \ (p1] p2)] that only have
neighbors in p1 become convex if the vertices of p1 are
added to the component and the same applies for compo-
nents only neighboring p2 when adding the vertices of p2.
Thus, if we remove all components that have neighbors in
both but let the vertices in p1 and p2 remain in the graph,
then the resulting graph consists of at least two connected
components and all connected components are convex.

The lemma can be applied to any 4-connected grid net-
work, as they are planar by construction. Figure 3 shows an
example of a convexity separator enclosed by two shortest
paths. The question is now how to compute separating short-
est paths with the desired properties efficiently. Of course,
we can extent our approach to find a single separating short-
est path by testing all pairs of them. However, this might be
quite time-consuming. Therefore, we now describe a heuris-
tic that aims at identifying such paths faster.

The underlying idea of our heuristic is that it would be
most beneficial in terms of separator size if S is sandwiched
by both p1 and p2, i.e., each vertex of S has a neighbor in
both p1 and p2. Hence if we find three neighboring parallel
paths where the outer two ones are shortest paths, we would
be done. To find three parallel neighboring paths efficiently,
we first apply a compression step to our input map. Here
we consider disjoint chunks of 3 × 3 grid cells and convert
them into a single grid cell. The new cell is traversable if and
only if all nine underlying cells are. Then in the new graph,
we simply search for a single shortest separating path that

55

Figure 4: Left: Input grid network with coarser cells indi-
cated by gray lines. Right: Compressed network with sepa-
rating shortest path. After decompression, the red node set
in the left image is identified as suitable convexity separator.

is balanced and convex. If such a path is found, we decom-
press it into three parallel paths in our original input grid
map and recheck whether the two outer paths are also sepa-
rating shortest paths in there. If that applies, we can output
the path inbetween as convexity separator (see Figure 4).

Separators by Hole Cutting We observe that convexity
checking often fails when the grid has internal obstacles
(holes). Note that the shortest path between two nodes next
to a convex internal obstacle usually follows the obstacle’s
border. Assume the shortest path is forced to go around an
internal obstacle and follows its border in such a way that
the shared part of the shortest path and the internal obsta-
cle’s border is less than half the border length. In this case,
removing the shortest path may cause a nonconvex parti-
tion, since the shortest path between nodes on the part of
the border which is not covered by the separating path may
overlap with the removed path. Therefore, we attempt to cut
all internal obstacles into four approximately equal parts by
removing all nodes on lines parallel to the coordinate axes
crossing the hole in the middle of the height or width of the
obstacle’s rectangular outer frame. Then we apply the bal-
ance and convexity check in order to verify the validity of
the computed cut.

Algorithm Overview Finally, we present our whole
pipeline that aims at identifying an α-balanced convexity
separator S in a given grid network G: We start by running
the KaFFPa algorithm from KaHIP (Sanders and Schulz
2013) on the input network, which is designed to find small
balanced separators, but does not take edge weights or short-
est path structures into account. If this does not result in the
desired outcome, we use the separating shortest path tech-
nique described above with the improved convexity check
methods. If this step is not successful either, we search for
two shortest separating paths with the 3 × 3 compression
method described above. If not successful, we move on to
testing simply each row and column of the grid domain in-
dividually as candidate node set S. Except for the first and
last row or column with traversable cells, these are clearly all
separators, but balance and convexity needs to be checked.
In the end, we apply hole cutting. If none of the proposed
methods work, we return S = V . Note that V indeed al-
ways constitutes an α-balanced separator with α = 0, but of
course this is not in line with our goal of finding a small set
S that decomposes the network into multiple components.

Convex Contraction Hierarchies
As one application of convex graph decomposition, we will
construct a contraction hierarchy (CH) based on a convex
decomposition tree. CH was originally developed to accel-
erate shortest path planning in road networks (Geisberger
et al. 2012), but was also demonstrated to work well on grids
(Storandt 2013). We will first briefly recap the general CH
concept and then describe how it can be constructed upon
and benefit from a given convex graph decomposition.

Classic CH
Given a weighted graph G = (V,E) with edge costs
c : E → R+, a CH data structure is supergraph of G char-
acterized as follows. Let π : V → {1, . . . , n} denote a per-
mutation of the vertices, also referred to as contraction or-
der. In the preprocessing phase, the vertices are contracted
one-by-one in the given order. The contraction of a node v
consists of the removal of v and its incident edges from the
graph, and inserting so called shortcut edges between neigh-
bors u,w of v in case the shortest path distance between
them would otherwise increase after the contraction of v.
The cost of the shortcut equals the shortest path distance be-
tween u and w. After all vertices have been contracted, the
CH-graph G+ = (V,E+) is constructed by augmenting G
with all shortcuts that were created during the contraction
phase. A shortcut (or original edge) is said to go upward
from v if π(v) < π(w) and downward from v otherwise.

In a CH graph G+, for any pair of vertices s, t ∈ V there
exists a shortest path s = v0, v1, . . . , v` = t with the same
cost as a shortest s-t-path inG, such that all edges {vi, vi+1}
are upward from vi up to a certain value of i and there-
after all downward from vi. This allows for fast shortest path
computation with a bidirectional Dijkstra run from s and t,
which only relaxes upward edges from the current vertex.

The search space size and thus the query time crucially
depend on the chosen contraction order. Identifying an opti-
mal contraction order poses an NP-hard problem (Milosavl-
jević 2012). The most successful heuristic for determining
a good contraction order is based on the notion of edge dif-
ference (ED). The ED of a vertex v is the number of edges
that will be inserted upon contraction of v minus the num-
ber of currently incident edges. Contracting vertices with
small ED first is supposed to keep the number of shortcuts
in G+ low, which is beneficial for both space consumption
and query times. Note that the ED values of the neighbors
of the contracted vertex have to be updated to stay truthful.
While ED-based contraction orders work remarkably well
in practice, a contraction order based on balanced separator
decompositions was proposed by Bauer et al. (2016), origi-
nally to study theoretical properties of CH. It was later con-
firmed that this also leads to competitive results in practice
(Dibbelt, Strasser, and Wagner 2016). In the following, we
will discuss decomposition-based contraction in more detail
and in particular the impact of a convex decomposition.

CH on Convex Separator Decompositions
Given a (convex) decomposition tree of the input graph
G = (V,E), the CH-graph G+ = (V,E+) is constructed

56

Figure 5: Search space of an s-t-query with restriction to
the convex subgraph GS (blue nodes; size 12) and without
restriction (blue and red nodes; size 72). The subgraph GS

is indicated by the light blue area.

by contracting vertices based on a bottom-up traversal of the
tree. This means that the vertices contained in the top-level
separator are contracted last, the vertices in the second-level
separators second to last, etc. Within every separator, ver-
tices might be contracted in arbitrary order. In our imple-
mentation, we order the vertices within one separator by ED.

Consider now a convex graph decomposition T . For clar-
ity, we call a separator of T also a bag. We can associate
every bag S with the subgraph GS induced by S and its de-
scendants in T . It follows immediately that for every bag S
of T , the subgraph GS is convex.

Given two vertices s and t, we can use the standard CH
query algorithm in order to compute a shortest s-t-path in
G+ (and thus in G), i.e., we perform a bidirectional run of
Dijkstra’s algorithm, which only follows edges pointing up-
wards in the vertex hierarchy. However, we can observe that
it suffices to restrict the query to the smallest convex sub-
graph GS that contains both s and t. As Figure 5 shows, this
restriction to GS can lead to a substantial reduction of the
search space, if s and t are close to each other in the de-
composition tree and GS is small. It is easy to see that the
separator S associated withGS is the lowest common ances-
tor of the bags Ss and St containing s and t, respectively, in
the convex separator decomposition. Therefore, when per-
forming an s-t-query, we first identify the bags Ss and St

and compute their lowest common ancestor S. In the sub-
sequent execution of Dijkstra’s algorithm we have to effi-
ciently check for every considered edge whether it leaves
the subgraph GS . To that end we proceed as follows. In the
beginning of the preprocessing we rename the vertices with
numbers from 1 to n such that for every bag S, the vertices
of the associated induced subgraph GS form a contiguous
interval. This can be achieved through a post-order traver-
sal of the convex separator decomposition and visiting the
vertices within every bag in arbitrary order. Then we store
for every bag S the interval the corresponds to the vertices
of GS . Throughout the execution of Dijkstra’s algorithm we
can now simply check in constant time whether a considered
edge leaves GS or whether it needs to be considered.

Further Applications
There are further planning technqiues that might benefit
from a convex separator decomposition. While for CH we
explicitly used the hierarchical decomposition to guide the
preprocessing, in other approaches we might only need a
single separator that splits the graph into a set of convex
connected components. Given some upper bound U on the
component size, we can easily extract a suitable separator
from a given convex separator decomposition by cutting off
the lower levels of the decomposition tree that separate com-
ponents which are already smaller than U , and then taking
the union of all nodes in the levels above. Note that cutting at
any level still yields a set of convex connected components.

For the implementation of the gateway heuristic
(Björnsson and Halldórsson 2006), a decomposition method
based on edge cuts was described. The boundaries between
different areas are called gateways. In the preprocessing
phase, distances between gateways are precomputed. In fact,
four different distances are stored, depending on whether the
gateway will be used to enter or exit the area and whether
passing through the area is allowed or not. That information
is used on query time to guide A* search. Now, instead of de-
termining the areas based on edge cuts in the corresponding
grid network, one could also use a trimmed convex tree de-
composition as discussed above. Then, the gateways would
be formed by the separator vertices between two areas and
would hence serve both of them at the same time, potentially
decreasing the overall space consumption. Furthermore, if
we decompose a grid network with a separating shortest
path, the resulting components are not necessarily convex
(as discussed above) but each component combined with the
separating shortest path is indeed convex. Thus, if we split
the network recursively by separating shortest paths and use
them also to define the gateways, we expect to get quite ac-
curate distance lower bounds. This observation could also be
beneficial for other methods that use shortest path distances
to separators to inform A* search, e.g., the differential sepa-
rator heuristic described by Chen and Gotsman (2021).

Experimental Results
We implemented the previously described decomposition
and planning algorithms in C++ and performed experiments
on a single core of an AMD Ryzen 7 3700X processor
(clocked at 3.6 GHz) with 128 GB main memory. KaHIP
2.10 was compiled using Clang 11.0.0 with OpenMPI 1.4.1.

Data Sets
We evaluated our algorithms on different 2D pathfinding
benchmark sets from the Moving AI map repository (Sturte-
vant 2012). Experiments were conducted on both artifi-
cial and non-artificial maps, in particular on the benchmark
sets ‘Baldurs Gate II’ (scaled to 512 × 512), ‘street maps’,
‘mazes’, ‘random maps’, and ‘room maps’. Furthermore, we
generated a benchmark set ‘pixel’1 by taking the pixels of
six images as grid points. The number of instances and the
number of nodes of each benchmark set is shown in Table 1.

1available at https://doi.org/10.5281/zenodo.7733466

57

Benchmark #instances min. |V | max. |V |
Baldurs G. II 75 17 587 231 469
mazes 60 131 071 232 929
room maps 40 206 527 254 122
random maps 70 53 642 235 910
street maps 90 47 331 798 264
pixel 6 26 507 4 347 591

Table 1: Sizes of the used benchmark sets.

ka
ffp

a
sp

cu
t

ex
lin

e
stl

ine

ho
lec

ut
0%

50%

100%

ka
ffp

a
sp

cu
t

ex
lin

e
stl

ine

ho
lec

ut

102

103

Figure 6: Left: Success rates of heuristic algorithms in find-
ing a 2/3-balanced convexity separator for the 75 instances
of ‘Baldurs Gate II’. Right: Average separator sizes in the
18 instances of ‘Baldurs Gate II’, on which all algorithms
found a valid convexity separator. The used heuristics were
KaFFPa (algorithm for balanced min cut node partition from
KaHIP), spcut (separators from single shortest path), exline
(separators from two shortest paths), stline (separators from
a row or column), and holecut (separators by hole cutting).

In every instance we have |E|/|V | ≈ 2, except for a few
‘mazes’ instances where |E|/|V | ≈ 1.

Evaluation of Decomposition Methods
We first evaluated the performance of each heuristic algo-
rithm for determining the first layer α-balanced convexity
separators, where α = 2/3. In the implementation of separa-
tors from a single shortest path, we compare the differences
in the ‘Baldurs Gate II’ instances with and without prun-
ing the nodes on the shortest path that do not contribute to
the partition graph. The experimental results show that the
method of the trimmed shortest path finds a balanced con-
vexity separator on the first level on four more instances than
the untrimmed shortest path within a time out of 60 seconds.
Additionally, the separator sizes are smaller on almost all in-
stances. Figure 6 shows that most of the separators found by
KaFFPa in the ‘Baldurs Gate II’ instances do not guaran-
tee convexity, but have the smallest size among the quali-
fied convexity separators compared to other algorithms. The
first four algorithms are able to find much smaller separators
than hole cutting. However, hole cutting finds valid convex-
ity separators in almost all instances. It only fails in six out of
75 instances due to the absence of internal obstacles in these
six instances. The other four algorithms found valid convex
separators in these six instances easily. We design our de-
composition pipeline based on the size of the separator, and

0% 20% 40% 60%
average balance ratio

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

av
er

ag
e

se
pa

ra
to

rs
iz

e
ra

tio kaffpa
spcut
exline
stline
holecut

Figure 7: Average balance ratio and relative separator size
for the top five levels of each convex separator decomposi-
tion for Baldurs Gate II.

the algorithm runs in the order KaFFPa, spcut, exline, stline
and holecut. Each method has a timeout of 60 seconds. It
stops once a balanced convexity separator is found.

The pipeline is able to find a valid 2/3-balanced convex
decomposition, whose leaves have size at most 10, for every
instance in our benchmark sets. On average it takes three
minutes to construct the convex decomposition for ‘Baldurs
Gate II’ and ‘maze’, five minutes for ‘room maps’, eight
minutes for ‘random maps’, and more than 20 minutes for
‘street maps’ and ‘pixel’. KaFFPa found valid balanced con-
vexity separators in an average of over 90% of the decom-
position subgraphs per instance.

Figure 7 shows the average ratio of the size of every sep-
arator and the size of the subgraph it separates, the average
balance factor, both for the top five levels of each convex
separator decomposition for ‘Baldurs Gate 2’. We can ob-
serve that the size of the separators found by hole cutting is
relatively large and splits the graph into smaller partitions. In
contrast, the other methods find relatively small separators.

On the pixel instances, the pipeline could, despite compa-
rably long running times, always find a small balanced con-
vexity separator. In over 97%, this separator could already
be found by KaFFPa. In Figure 8, separators of the top five
levels on the world map is illustrated. Since the world map
only contains a small amount of holes of small sizes, the
separator can in almost all cases be chosen as a straight line
cutting the current component through its center.

Evaluation of Convex Contraction Hierarchies
We evaluated the described convex CH approach on the five
different Moving AI benchmarks. For every instance, we
constructed a classic CH with an ED-based contraction or-
der, and a convex CH based on a convex separator decom-
position computed with the previously described pipeline.
Within every bag of the decomposition, we used ED to deter-
mine the contraction order. We first describe our results for
‘Baldurs Gate II’. Given the separator decomposition as an
input, we could compute the CH graph of every instance in at
most 31 seconds. Our convex CH approach introduced more
shortcuts than classic CH: On average, the ratio E+/E be-

58

Figure 8: 2/3-balanced convexity separators on the top five
levels in a pixel instance.

 0

 0.5

 1

 1.5

 2

B
a
tc

h
 1

B
a
tc

h
 2

B
a
tc

h
 3

B
a
tc

h
 4

B
a
tc

h
 5

B
a
tc

h
 6

B
a
tc

h
 7

B
a
tc

h
 8

B
a
tc

h
 9

B
a
tc

h
 1

0

 0

 5000

 10000

 15000

 20000

a
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 /

 m
s

a
v
e
ra

g
e
 s

e
a
rc

h
 s

p
a
ce

 s
iz

e

query time (classic CH)
query time (convex CH)

search space (classic CH)
search space (convex CH)

Figure 9: Query times and search space sizes for classic and
convex CH on an instance of Baldurs Gate II.

tween the number of CH edges and original edges was about
1.5 for classic CH, whereas it was about 1.9 for convex CH.
Still, despite introducing more shortcuts, the convex CH out-
performs the classic approach w.r.t. query performance. For
every instance, we performed 10 000 shortest path queries
between randomly chosen vertex pairs. We grouped these
queries into 10 batches, where the first batch contains the
1000 queries with the smallest distance, and the last batch
contains the 1000 queries between the furthest query pairs.
By doing so, we aim to measure the impact of restricting
every query to a convex subgraph, as the shortest path dis-
tance between two vertices correlates with their distance in
the convex separator decomposition. On average the con-
vex CH queries were a factor of 8.6 faster than then clas-
sic CH queries. With increasing query distance, the speedup
dropped: For the first batch, the average speedup was 14.8,
whereas for the last batch it was 6.6. This is also illustrated
in Figure 9, which contains a plot of search space sizes and
query times of an instance with a speedup of 68.7 for the
first batch.

Note that in our experimental setup, the CH query algo-
rithm always explores the full search space, and does not
stop once the shortest path is found, in order to measure the
pruning effect of our approach. When we added such a stop-
ping criterion, convex CH still outperformed classic CH, but
the average speedup dropped to 6.2.

Table 2 also shows the preprocessing times and query

Benchmark preprocessing query speedup
conv. trad. avg. min. max.

Baldurs G. II 31 s 2520 s 8.6 1.9 68.7
mazes 9 s 406 s 3.3 1.0 12.7
room maps 13 s 293 s 1.6 0.6 4.3
random maps 187 s 276 s 0.9 0.6 1.2
street maps 387 s 15 483 s 23.3 0.7 149.2

Table 2: Maximum preprocessing time and query speedup
of convex CH and classic CH for different benchmark sets.
Note that the preprocessing time for convex CH does not
include the time to compute the separator decomposition.

speedups on the remaining benchmark sets. On every bench-
mark set, our approach significantly outperformed the clas-
sic approach w.r.t. preprocessing time. From the street maps
benchmark set we only evaluated 51 of the 90 instances, as
the classic preprocessing took up to several hours for larger
instances. On every benchmark, the convex CH approach in-
troduced more shortcuts than classic CH, comparable to the
results on ‘Baldurs Gate II’. On ‘mazes’, ‘room maps’, and
‘street maps’, our approach lead to average query speedups
between 1.6 and 23.3, the best speedup with a value of
149.2 was achieved on an instance of ‘street maps’ for batch
1. On some instances of ‘mazes’, convex CH did not pro-
vide any speedup over classic CH. However, in the respec-
tive instances, the ratio |E|/|V | was almost 1, so both ap-
proaches exhibited very small search spaces and the search
space pruning of convex CH had no big impact. On some
instances of ‘room maps’ and ‘random maps’ as well as one
instance of ‘street maps’, our pipeline only found relatively
large convexity separators and as a consequence the queries
of convex CH were actually slightly slower than classic CH.
But on average across grid domains, we observe that exploit-
ing a convex decomposition is clearly worthwhile in terms
of preprocessing and query time.

Conclusions and Future Work
We have demonstrated that grid networks can be recursively
decomposed into convex components via carefully chosen
balanced separators. Furthermore, we have shown that con-
traction hierarchies benefit from a given convex decompo-
sition and the explicit knowledge that the search space can
be restricted to the smallest convex component that contains
both source and target. The proposed methods can also be
applied to planarized octile grids (note that planarization
does not change the shortest path structures in such net-
works at all). A more challenging task would be to trans-
fer the proposed concepts to road networks, though. Here,
the techniques custom-tailored to grids (as e.g. the straight
line method) are not applicable and separating shortest paths
are more difficult to find as road networks are not necessar-
ily planar (and planarization here indeed changes shortest
paths). However, it would be very interesting to see whether
the speed-ups achieved for contraction hierarchies in grids
would also manifest in road networks.

59

References
Ababei, C.; Selvakkumaran, N.; Bazargan, K.; and Karypis,
G. 2002. Multi-objective circuit partitioning for cutsize
and path-based delay minimization. In Pileggi, L. T.; and
Kuehlmann, A., eds., Proc. ICCAD 2002, 181–185. ACM /
IEEE Computer Society.
Amir, E.; Krauthgamer, R.; and Rao, S. 2003. Constant fac-
tor approximation of vertex-cuts in planar graphs. In Lar-
more, L. L.; and Goemans, M. X., eds., Proc. STOC 2013,
90–99. ACM.
Bauer, R.; Columbus, T.; Rutter, I.; and Wagner, D. 2016.
Search-space size in contraction hierarchies. Theoretical
Computer Science, 645: 112–127.
Bhatt, S. N.; and Leighton, F. T. 1984. A Framework for
Solving VLSI Graph Layout Problems. J. Comput. Syst. Sci.,
28(2): 300–343.
Björnsson, Y.; and Halldórsson, K. 2006. Improved heuris-
tics for optimal pathfinding on game maps. In Laird, J.; and
Schaeffer, J., eds., Proc. AIIDE 2006, volume 2, 9–14. AAAI
Press.
Bui, T. N.; and Jones, C. 1992. Finding Good Approximate
Vertex and Edge Partitions is NP-Hard. Inf. Process. Lett.,
42(3): 153–159.
Chen, R.; and Gotsman, C. 2021. Efficient fastest-path com-
putations for road maps. Comput. Vis. Media, 7(2): 267–281.
Delling, D.; Goldberg, A. V.; Pajor, T.; and Werneck, R. F.
2017. Customizable Route Planning in Road Networks.
Transp. Sci., 51(2): 566–591.
Delling, D.; Goldberg, A. V.; Razenshteyn, I. P.; and Wer-
neck, R. F. F. 2011. Graph Partitioning with Natural Cuts.
In Proc. IPDPS 2011, 1135–1146. IEEE.
Delling, D.; Goldberg, A. V.; Savchenko, R.; and Werneck,
R. F. 2014. Hub Labels: Theory and Practice. In Gudmunds-
son, J.; and Katajainen, J., eds., Proc. SEA 2014, volume
8504 of LNCS, 259–270. Springer, Springer.
Dibbelt, J.; Strasser, B.; and Wagner, D. 2016. Customizable
contraction hierarchies. ACM J. Exp. Algorithmics, 21: 1–
49.
Feige, U.; and Mahdian, M. 2006. Finding small balanced
separators. In Kleinberg, J. M., ed., Proc. STOC 2006, 375–
384. ACM.
Fukuyama, J. 2006. NP-completeness of the Planar Separa-
tor Problems. J. Graph Algorithms Appl., 10(2): 317–328.
Garey, M. R.; and Johnson, D. S. 1979. Computers and in-
tractability:: A Guide to the Theory of NP-Completeness.
Geisberger, R.; Sanders, P.; Schultes, D.; and Vetter, C.
2012. Exact Routing in Large Road Networks Using Con-
traction Hierarchies. Transp. Sci., 46(3): 388–404.
George, A. 1973. Nested Dissection of a Regular Finite El-
ement Mesh. SIAM J. Numer. Anal., 10(2): 345–363.
Gottesbüren, L.; Hamann, M.; Uhl, T. N.; and Wagner, D.
2019. Faster and Better Nested Dissection Orders for Cus-
tomizable Contraction Hierarchies. Algorithms, 12(9): 196.
Hamann, M.; and Strasser, B. 2018. Graph Bisection with
Pareto Optimization. ACM J. Exp. Algorithmics, 23.

Harabor, D.; and Stuckey, P. 2018. Forward Search in Con-
traction Hierarchies. In Bulitko, V.; and Storandt, S., eds.,
Proc. SOCS 2018, 1, 55–62. AAAI Press.
Karypis, G.; and Kumar, V. 1998. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs. SIAM
J. Sci. Comput., 20(1): 359–392.
Lee, J.; Kwak, J.; Lee, H.; and Shroff, N. B. 2018. Find-
ing minimum node separators: A Markov chain Monte Carlo
method. Reliab. Eng. Syst. Saf., 178: 225–235.
Leighton, F. T.; and Rao, S. 1988. An Approximate Max-
Flow Min-Cut Theorem for Uniform Multicommodity Flow
Problems with Applications to Approximation Algorithms.
In Proc. FOCS 1988, 422–431. IEEE Computer Society.
Lipton, R. J.; and Tarjan, R. E. 1979. A Separator Theorem
for Planar Graphs. SIAM J. Applied Mathematics, 36(2):
177–189.
Milosavljević, N. 2012. On optimal preprocessing for con-
traction hierarchies. In Winter, S.; and Müller-Hannemann,
M., eds., Proc. IWCTS 2012, 33–38. ACM.
Müller, R.; and Wagner, D. 1991. α-Vertex separator is NP-
hard even for 3-regular graphs. Computing, 46(4): 343–353.
Pellegrini, F.; and Roman, J. 1996. SCOTCH: A Soft-
ware Package for Static Mapping by Dual Recursive Bipar-
titioning of Process and Architecture Graphs. In Liddell,
H. M.; Colbrook, A.; Hertzberger, L. O.; and Sloot, P. M. A.,
eds., Proc. HPCN 1996, volume 1067 of LNCS, 493–498.
Springer.
Pochter, N.; Zohar, A.; Rosenschein, J. S.; and Felner, A.
2010. Search space reduction using swamp hierarchies. In
Proc. AAAI 2010.
Rabin, S.; and Sturtevant, N. R. 2016. Combining Bounding
Boxes and JPS to Prune Grid Pathfinding. In Schuurmans,
D.; and Wellman, M. P., eds., Proc. AAAI 2016, 746–752.
AAAI Press.
Sanders, P.; and Schulz, C. 2012. Distributed Evolutionary
Graph Partitioning. In Bader, D. A.; and Mutzel, P., eds.,
Proc. ALENEX 2012, 16–29. SIAM / Omnipress.
Sanders, P.; and Schulz, C. 2013. Think Locally, Act Glob-
ally: Highly Balanced Graph Partitioning. In Bonifaci, V.;
Demetrescu, C.; and Marchetti-Spaccamela, A., eds., Proc.
SEA 2013, volume 7933 of LNCS, 164–175. Springer.
Schild, A.; and Sommer, C. 2015. On Balanced Separators
in Road Networks. In Bampis, E., ed., Proc. SEA 2015, vol-
ume 9125 of LNCS, 286–297. Springer.
Shen, B.; Cheema, M. A.; Harabor, D. D.; and Stuckey, P. J.
2021. Contracting and compressing shortest path databases.
In Biundo, S.; Do, M.; Goldman, R.; Katz, M.; Yang, Q.;
and Zhuo, H. H., eds., Proc. ICAPS 2021, 322–330. AAAI
Press.
Storandt, S. 2013. Contraction Hierarchies on Grid Graphs.
In Timm, I. J.; and Thimm, M., eds., Proc. KI 2013, volume
8077 of LNCS, 236–247. Springer, Springer.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. IEEE Trans. Comput. Intell. AI Games, 4(2): 144 – 148.

60

