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Abstract

Since its introduction, partial satisfaction planning (PSP), in-
cluding both oversubscription (OSP) and net-benefit, has re-
ceived significant attention in the classical planning commu-
nity. However, hierarchical aspects have been mostly ignored
in this context, although several problem domains that form
the main motivation for PSP, such as the rover domain, have
an inherent hierarchical structure. In this paper, we are tak-
ing the necessary steps for facilitating this research direction.
First, we formally define hierarchical partial satisfaction plan-
ning problems and discuss the usefulness and necessity of this
formalism. Second, we present a carefully structured set of
benchmarks consisting of OSP and net-benefit problems with
hierarchical structure. We describe and analyze the different
domains of the benchmark set and the desiderata that are met
to provide an interesting and challenging starting point for up-
coming research. Third, we introduce various planning tech-
niques that can solve hierarchical OSP problems and investi-
gate their empirical behaviour on our proposed benchmark.

Introduction
The ability to produce solutions in constrained settings when
the entire goal might not be achievable is central to auto-
mated planning applications. In classical planning, it is tack-
led under the general umbrella of so-called partial satisfac-
tion planning (PSP). Two most explored problems in PSP
are the net-benefit (NB) and the oversubscription planning
(OSP) problems. The former assumes that the plan cost is
comparable to its utility and attempts at maximizing the dif-
ference (van den Briel et al. 2004) and can be efficiently
compiled into classical planning (Keyder and Geffner 2009).
The latter was originally introduced by Smith (2004), on
top of the classical planning setting, and multiple practical
methods for solving OSP were introduced since then (Mirkis
and Domshlak 2013, 2014; Muller and Karpas 2018; Katz
et al. 2019a; Katz and Keyder 2022; Speck and Katz 2021;
Garcı́a-Olaya, de la Rosa, and Borrajo 2021). The original
motivation for OSP was the rover domain, where a variety
of science targets of interest exist, but the rover can only visit
a few of them in any given command cycle. Note however
that the domain has a natural hierarchical structure that can
be exploited for efficient planning for large tasks, as the case
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is for many other real life planning applications. Nonethe-
less, the research on these two problems in partial satisfac-
tion planning has focused on the classical setting.

In this paper, we aim at filling this gap. We extend Hierar-
chical Task Network planning (HTN) (e.g., (Erol, Hendler,
and Nau 1994)) with partial satisfaction planning. In par-
ticular, we extend the HTN planning formalism with utili-
ties and define computational problems for both OSP and
NB over HTNs. The OSP problem is similar to preference-
based planning (Baier and McIlraith 2008), where the plan-
ning problem is augmented with specification of properties
that constitute a high-quality plan. The specification of high
quality plan is facilitated using the PDDL3.0 (Gerevini and
Long 2005; Gerevini et al. 2009) language, or its extensions
(e.g., PDDL3.0 extensions for HTN Planning (Sohrabi,
Baier, and McIlraith 2009)). While the general preference-
based planning can deal with complex preferences (i.e., tem-
poral properties of state trajectory), in OSP, similar to net-
benefit, utilities are over final state goals and sufficient to
be expressed as simple preferences (or soft goals). The cost
bound in OSP is not generally within the definition of a
preference-based planning problem. We note that PDDL3.0
allows expressing a net-benefit problem, as well as the over-
subscription problem; we are able to specify both the cost
bound constraint as well as the soft preferences in PDDL3.0.

OSP benchmarks are a rare commodity. The benchmarks
used in early work are not publicly available and ready to
be used. The first usable set of oversubscription planning in-
stances slightly modifying PDDL syntax was provided by
Katz et al. (2019b), and henceforth was used for the evalu-
ation of OSP planners. Later, Garcı́a-Olaya, de la Rosa, and
Borrajo (2021) proposed a benchmark set, created in a sim-
ilar manner, but instead of modifying the PDDL syntax, ex-
ploiting PDDL3.0 language (Gerevini and Long 2005). Fol-
lowing their example, we present a carefully crafted bench-
mark set of adapted planning domains. We describe the
method we used to generate the set of instances for these do-
mains and discuss the desired properties of such instances.
We focus on OSP, where utilities and costs are incompara-
ble, i.e., cannot be directed related or converted within the
model. We further focus only on totally-ordered HTN plan-
ning problems, as for them a sufficiently large set of non-
partial-satisfaction domains and problems is available due
to the IPC 2020. To extend an HTN problem to an oversub-
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scription HTN problem, we need to define two additional
components, namely preferences with their utility values
and the cost bound. While the former are defined manually
in this work, coming up with a good cost bound is a difficult
task, often hard to perform manually. We propose an auto-
mated, domain independent way to choose a cost bound for
given preferences and utilities.

Finally, we deal with the question of solving the new
problem. As there are no existing tools that can solve it,
we propose two new techniques for it. Focusing on over-
subscription planning and restricting our attention to totally
ordered HTNs, we introduce an approach based on symbolic
search, extending two previous works on oversubscription
planning (Speck and Katz 2021) and on TOHTN planning
(Behnke and Speck 2021). Further, we introduce an explicit
heuristic search approach that can use admissible heuristics
developed for ordinary HTN planning (Höller et al. 2018).

Background
We consider the HTN with preferences formalism (Sohrabi,
Baier, and McIlraith 2009) and adapt it to our notion to
our framework. An HTN planning problem with user prefer-
ences is described as Π = (V,P,A,M, s0, I,⪯) where: V
is the set of Boolean state variables1 (sometimes also called
propositions), P is the set of primitive actions described by
the action’s name, precondition, and effect, A is the set of
abstract tasks, M is the set of decomposition methods de-
scribed by the method’s name, abstract task, and method’s
task network, s0 is the initial state, I is the initial task net-
work (or initial plan), ⪯ is a preorder between plans. ⪯ is
assumed to be a reflexive and transitive relation between
plans. If π1 and π2 are plans for Π and π1 ⪯ π2 then it
is said that π1 is at least as preferred as π2 and π1 ≺ π2

is abbreviation for π1 ⪯ π2 and π2 ̸⪯ π1. While the ⪯
relation can be defined in many ways, Sohrabi, Baier, and
McIlraith (2009) proposed to described it through means
of a PDDL3.0 metric function – the metric function allows
to specify the utility of a given plan u(π) and then define
π1 ⪯ π2 ↔ u(p1) ≥ u(p2). A task network is a pair
(T,C) where T is a set of task nodes and C is a set of
constraints. A method is totally ordered if its task network
is totally ordered. A domain is a total-order domain if ev-
ery m ∈ M is totally ordered. A plan π is a solution to Π
if and only if: π is a plan for the HTN planning problem
Π′ = (V,P,A,M, s0, I) and there does not exist a plan
π′ for Π′ such that π′ ≺ π. π is a plan for the HTN plan-
ning problem Π′ if it only contains primitive actions, is ex-
ecutable in s0, and can be derived from the initial plan I by
repeatedly applying decomposition methods m ∈ M to the
abstract tasks contained in it. We denote the state reached
after executing π in s0 with γ(s0, π).

Problem Definition
In order to extend the notion of HTN planning to the partial
satisfaction setting, we need to be able to encode the utility
of a plan, and for the oversubscription setting, the bound on
plan cost.

1V and A are not part of the original definition.

Partial Satisfaction Planning with TOHTNs
We start with the net-benefit setting for fact utilities.

Definition 1 (NBHTN Planning Task) A net-benefit Hier-
archical Task Network (NBHTN) planning task Π =
⟨V ,P,A,M, s0, I, c, u⟩ consisting of eight components –
V: state variables, P: primitive actions, A: abstract tasks,
M: decomposition methods, s0: initial state, I: initial task
network, c : P → N0 primitive action cost function, and
u : S → R utility function. With S we refer to the set of all
possible states defined over V , i.e., S = 2V .

The cost function is naturally extended onto plans via
c(a1; a2; . . . ; an) =

∑n
i=1 c(ai).

The aim of net-benefit Hierarchical Task Network plan-
ning is to find a sequence of actions π that is a solution to
HTN, maximizing its net-benefit u(γ(s0, π)) − c(π). Syn-
tactically, we use HDDL (Höller et al. 2019), the base de-
scription language for HTN planning problems, to define the
HTN part of such planning tasks. We use the PDDL3.0 syn-
tax for preferences on top of HDDL to denote states s for
which u(s) ̸= 0 and the syntax for metrics to specify the
value of that utility. Throughout the paper we will use the
term preference to denote any state with u(s) ̸= 0 and call
u(s) its utility. For practical reasons, we have limited our-
selves to the case where preferences are described by single
facts, i.e., we defined a preference as a state variable v and
assigned a utility value u(v) to it. The utility of a state s is
then the sum of all utilities for facts that are contained in s.

We now move to the oversubscription setting.

Definition 2 (OSHTN Planning Task) An oversubscrip-
tion Hierarchical Task Network (OSHTN) planning task
Π = ⟨V ,P,A,M, s0, I, c, u, b⟩ consisting of nine com-
ponents. The first eight components are as in NBHTN
planning, and the last component is a cost bound b ∈ N.

The aim of a OSHTN planning task is to find a sequence
of actions π, such that c(π) is below the cost bound b and
among these, the one with maximal utility u(γ(s0, π)). In
contrast to net-benefit planning – where it is possible to
weigh costs and utilities against each other – oversubscrip-
tion planning does not allow for any comparisons between
costs and utilities. In (hierarchical) OSP planning, the cost
bound b is a hard limit on the maximally allowed cost for a
plan. The objective is then to maximise the utility of a plan
– irrespective of its cost, provided it is below the cost bound.
That is, the plan with the higher utility is always preferred,
as opposed to the net-benefit planning, where the relative
difference must be considered.

Task and State Utilities
We first discuss an alternative way to introduce utilities for
HTN planning by assigning utilities to tasks and motivating
the decision to assign utilities to states rather than tasks.

As in previous works that considered utilities for clas-
sical planning (Smith 2004; Mirkis and Domshlak 2013,
2014; Katz and Mirkis 2016; Muller and Karpas 2018; Katz
et al. 2019a; Katz and Keyder 2022; Speck and Katz 2021;
Garcı́a-Olaya, de la Rosa, and Borrajo 2021), we just de-
fined the utility of a plan to be the utility of its end state. For

43



HTNs, however, it also seems natural to define utilities on
tasks or actions. This modelling seems to be, at first glance,
more in line with the spirit of HTN planning – as objectives
in HTN planning are encoded as tasks to perform.

However, both types of models are compilable into the
other. Utility over tasks can be represented by utility over
states by adding to the state representation the information
about how often each task was executed, which is tracked by
additional actions in the model. This is possible, if all tasks
with non-zero utility have a non-zero implied minimal cost –
otherwise an infinite utility might be reachable at zero cost.
The utility function is then based on this state information.
Utility over states can be represented by utility over tasks by
adding tasks in the form of primitive actions whose precon-
ditions assert that a state yielding utility has been reached
and that can only be executed at the end of a plan, i.e., af-
ter all other actions. These actions then carry the utility of
their associated states. The latter is similar to the compila-
tions of Keyder and Geffner (2009) and Katz et al. (2019a).
Clearly, such a compilation may lead to an increase in the
size of the model. We leave a detailed theoretical analysis
to future work.

We use the PDDL3.0 syntax for specifying utilities. It
syntactically allows for specifying both state and task util-
ities (Gerevini and Long 2005; Gerevini et al. 2009). We
found the formalisation using state utilities more natural and
easier to handle within planners and thus used it. However,
some of the benchmark domains we present (transport, bar-
man, and robot) are at their core modelling task utilities.

Complexity Theoretic Results
Next, we prove that both net-benefit and oversubscription
planning in the totally-ordered HTN setting (Definitions 1
and 2) are EXP-time complete and thus no more difficult
than determining plan existence on its own. Note that for
this, we need to consider the decision problem variant, i.e.,
we ask whether the maximum reachable utility is higher or
equal to some bound UB .

Theorem 1 Both Net-benefit and Oversubscription Hierar-
chical Task Network planning are EXP-time complete, if the
underlying HTN planning problems are totally-ordered.

Proof: Hardness stems from total-order HTN planning be-
ing a special case of NBHTN planning and of OSHTN plan-
ning and from total-order HTN planning being EXP-time
complete (Erol, Hendler, and Nau 1994). In what follows,
we show for OSPHTN and the proof for NBHTN is analo-
gous. Consider any total-order HTN planning problem, one
can then create an OSHTN planning problem by assigning
each action cost 0 and each state variable a utility of 1. If this
problem has a maximum achievable utility of at least 1, then
the original total-order HTN planning problem is solvable.

For membership, we can adapt the proof of Erol, Hendler,
and Nau (1996). Given an OSHTN planning task, we first
need to 2-regularise the problem (Höller et al. 2014; Behnke
and Speck 2021). This means, that we replace all methods
with more than two subtasks by a set of new methods that
contain at most two subtasks. This process also introduces
new abstract tasks – but only linearly many. As a result, we

have obtained an equivalent, but at most linearly larger plan-
ning problem Π = ⟨V ,P,A,M, s0, I, c, u, b⟩. Any algo-
rithm that is exponential in |Π| is also only exponential in
the size of the original problem.

The decision procedure we propose will incrementally
construct a set R of 4-tuples ⟨s, t, s′, c⟩. If ⟨s, t, s′, c⟩ ∈ R,
then either t is a primitive action of cost c that is applied to
state s yields state s′, or t is a abstract task that can be de-
composed into a plan of cost c that if executed in state s will
yield the state s′. I.e., R contains all the reachability infor-
mation of the problem. After we have computed this set, we
will iterate over all tuples of the form ⟨s0, I, s′, c⟩ where c
is less than the cost bound b. We then evaluate the utilities u
in s′ and return true, if a utility of at most UB is reachable.
Doing so is linear in the size of |R|.

Next, we determine the maximum size of R. Both s and s′

are states of which there are 2|V| many. The task t can either
be a primitive action or an abstract task, of which there are
|P ∪ A|. Lastly, c can be integer between 0 and b. Of these
there are b+1 many. Since b will be encoded logarithmically
in the input, there are up to 2|b| up to many possible values
for c, if |b| is the length of the description of b in the input.
Thus in total, R contains at most (2|V|)2 · |P ∪ A| · 2|b| =
|P ∪ A| · 22|V|+|b| tuples.

What remains to show is that R can be computed in ex-
ponential time. Given the 2-regularised problem, we iterate
over all states s ∈ S and actions a ∈ P that are applicable in
s, compute the state s′ resulting from applying a in s and add
⟨s, a, s′, c(a)⟩ to R. From this on, the algorithm proceeds in
rounds. In every round we iterate overall ⟨s,A, s′, c⟩ ∈ R.
We then iterate over all elements ⟨s′, B, s′′, c′⟩ ∈ R such
that a method decomposing a task C into A and B ex-
ists. We can then apply this method backwards and add
⟨s, C, s′′, c + c′⟩ to R. We repeat this algorithm until a fix-
point has been reached. As we have to add at least one tu-
ple each round, there are at most |R| rounds. In each round
we may iterate over all pairs of tuples in R. Thus, the over-
all runtime is bounded by (|R|3) = O(|P ∪ A|326|V|+3|b|),
which is only exponential. □

Benchmark Construction
Here, we describe how our benchmark set was constructed.
We start with the existing benchmark set introduced for the
International Planning Competition (IPC) 2020. We only
considered domains from the total-order track, as more do-
mains and planning algorithms are available for total-order.

Identifying Domains That Need Adaptation
In classical OSP, every cost-bounded applicable sequence of
actions is a plan. As such, every reachable state, is a possible
final state of a plan. Thus it is often the case that for each fact
f there is both a plan for which f is true in the final state of
the plan, and one for which f is false in the final state of the
plan. Therefore, it is plausible to define utilities over all facts
in the problem.

In contrast to the classical OSP, in OSHTN planning we
still have to solve the underlying HTN planning problem,
i.e., refine the initial plan. As such, not all states reachable
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via repeated application of actions is also a possible final
state for the problem. In fact, for HTN planning problems,
the set of possible final states is often much smaller than
the set of reachable states via action progression. As a re-
sult, it is often the case that there are facts f that are true
in any final state. For example in the IPC domain transport,
the facts describing the location of each package will always
be set to the target location enforced by the initial plan. It is
not sensible to define preferences over such facts, as mak-
ing them true is unavoidable. Defining preferences, there-
fore, only makes sense for the facts that can be true in one
final state and false in some other final state. We call these
facts flexible goal facts. We thus need to identify domains
and problem instances with a sufficient set of flexible goal
facts. To determine this, we used an exhaustive search. Given
the set of states S∗ that can be reached as states after com-
pleting the problem’s initial plan (i.e. as goal states in the
HTN sense), we can compute

(⋃
S∈S∗ S

)
\
(⋂

S∈S∗ S
)
.

To perform this exhaustive search, we used a BDD-based
HTN planner (Behnke and Speck 2021), which allowed us
to easily compute the required intersection. This procedure
worked for some of the problems in the IPC benchmark set,
while for a significant number of other problems from the
IPC benchmark set, this computation failed due to time or
memory exhaustion.

Based on the results of this computation, we have iden-
tified three domains that can be taken as is and extended
with the additional components: Rover, Satellite, and Snake.
For Rover, the flexible goal facts include the location of the
rovers and which rover has taken which soil sample or im-
age. For Satellite, these are the final direction to which the
satellite is pointing and which instruments are currently on
and calibrated. For Snake, these are the cells which are oc-
cupied by the snake’s body.

For each of these domain and problem files, we do not
remove or modify existing components, we only add pref-
erences, utilities, and a cost bound. In particular, we keep
the problem’s initial task network, which enforces that only
a subset of all sequences of actions are valid plans. In each
of these domains, there are instances where our approach
was not able to fully explore the search space. Luckily, in
these domains, the variability in the final state follows a hu-
man understandable pattern, following which we were able
to extrapolate what the set of final states would look like
for these larger instances from the smaller ones. This al-
lowed us to create preferences for these, more challenging
instances, as well. For each flexible goal fact, we created a
preference on it, and assigned that preference a utility, ran-
domly chosen uniformly out of [1, 20] ([1, 100] for satellite
only). In what follows, we describe the modifications made
to the other three domains.

Modified Domains
The problems of the Barman, BlocksWorld, and Transport
domains of the IPC 2020 admit exactly one final state – that
is they fix both the goal and non-goal facts to one particular
valuation. As such they cannot plausibly be used as an OS-
HTN planning domain without further modifications. Fur-
ther the final state in the Robot domain only differs in the

final location of the robot, which does not offer much vari-
ability for an OSHTN problem.

BlocksWorld The IPC 2020 domain BlocksWorld en-
codes in its initial plan which blocks have to be put onto
which other blocks via abstract tasks. The model admits only
one single state after executing the whole HTN. We intro-
duced variability by allowing to forgo each of the block-
putting tasks, by introducing a new method for them that de-
composes them into the empty task sequence. For each such
block-putting task, we added a corresponding preferences
and selected its utility uniformly at random from [1, 20].

Barman In the Barman domain, the initial plan in the IPC
instances requires making of a fixed set of cocktails – we
have made the making each of these cocktails optional. The
preferences are then on creating a cocktail, per available
cocktail. These preferences may reflect the net revenue from
the cocktail. The utility for each preference has been se-
lected uniformly at random from 10 to 10 times the number
of cocktails. Further we randomly select 30% of the ingre-
dients to be special and increase the utility of cocktails that
contain special ingredients by 100.

Robot The state-based goal of the Robot domain requires
certain objects to be placed in certain rooms. The HTN struc-
ture of the domain is a loop-structure using which execution
can be ended at any time. We thus transferred the original
state-based goals of the Robot domain into preferences, cre-
ating one preference per goal fact. The utilities were uni-
formly at random from [1, 20].

Transport In the IPC version of Transport, the initial plan
requires delivering a set of packages to a set of given loca-
tions. We modified the domain so that any package can be
derived to any location. The preferences are then specified
on package location. For each package we randomly select a
set of possible target location and generate a preference for
each package being at each of these locations. The utility of
such a preference is the length of the shortest path from the
initial package location to that location.

Over all seven domains for which we have generated
problem instances with preferences and utilities, we have
generated 220 instances in total.

Cost Bound
So far, we have only described how to generate the pref-
erences and utilities for OSHTN planning problems. Both
for OSHTN and for classical OSP, it is often unclear how
to select the cost bound in a domain specific manner, once
the preferences and their utilities are selected. We propose
to compute a reasonable interval of cost bounds and then to
select cost bounds for the actual benchmark instances.

Reasonable Interval of Cost Bounds We consider a cost
bound to be reasonable for the benchmark if it potentially
poses an interesting computational problem. We thus argue
that any cost bound that is high enough to achieve the maxi-
mum overall achievable utility is not interesting – as an OSP
planner in these cases can simply attempt to satisfy a set
of preferences that achieve the maximum possible utility.
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This would make an OSHTN/OSP problem with such a cost
bound equivalent to a simple HTN/classical planning prob-
lem, which is not desired – even if an OSHTN/OSP planner
would still need to prove this equivalence.

We thus propose to find the minimal cost needed for
achieving the maximal achievable utility. We then set the
upper bound of the interval of reasonable costs to this value
minus one – as to exclude the edge case where the cost nar-
rowly suffices to obtain the maximum utility. To compute the
minimal cost cu needed for achieving the maximal achiev-
able utility u∗, we propose to transform the utilities to costs,
using a transformation suggested by Katz et al. (2019a). In
particular, we use their soft-goal compilation. This transfor-
mation adds actions payp that achieve a preference, while
paying a penalty – the cost equal to the utility of that pref-
erence. While the transformation suggested by Katz et al.
(2019a) has two cost functions, the original one c and the
utility based one c′, we combine them into a single cost func-
tion, multiplying the utility based cost c′ by a large constant:
c + Mc′. For a large enough M (we use M = 10, 000),
when losing any utility is more expensive than the cost of
achieving preferences, the optimal cost of solving the trans-
formed task will allow us to derive the desired value, simply
by taking the cost modulo M . For each preference p, we
thus add one abstract task checkp to the model that has two
methods: one that decomposes checkp into an empty task
network and one that decomposes it into the action payp.
We then add all checkp tasks to the initial plan I and add
ordering constraints that they occur after all other original
tasks in I. Note that this compilation also bears similarities
to the encoding for classical net-benefit planning into classi-
cal planning proposed by Keyder and Geffner (2009). Both
it and the encoding by Katz et al. (2019a) are based on the
idea of forgo (pay) and collect (check) actions. Adapting the
encoding we just presented to the Net-Benefit setting only
requires adapting the action costs to the ones proposed by
Keyder and Geffner (2009). Such an encoding can be used
as a baseline for future research on Net-benefit HTNs.

For the lower bound of the interval of reasonable costs, we
argue that an instance in which it is impossible to achieve
any non-zero utility, i.e., where it is impossible to satisfy
any preference, is not interesting. Thus, we use the mini-
mum cost c>0 needed to satisfy any preference with non-
zero utility as the lower bound. For the upper bound, we
don’t use the value itself, but the next larger value, as the
bound for the interval of reasonable costs. We again com-
pute the bound c>0 using a model transformation. We add
a primitive action checkp for every preference p and set its
precondition to p and its effects to ∅. We then add a new
abstract task Check that has one decomposition method per
preference p, each generating the action checkp. Lastly, we
add the Check task to the initial plan and constraints that it
follows the original tasks in that plan.

Computing the Bounds for the Benchmark
So far, we only described what the bounds should be and
how to obtain them via model transformation. We still
need to solve the resulting planning problems to obtain the
bounds. Note that we need to solve these problems optimally

in order to obtain the exact bounds. Only a few HTN plan-
ners support action costs and optimal planning.

We use the pandaPI progression planner (Höller et al.
2020) using A∗. For optimal planning, we use the admissible
LM-Cut heuristic (Helmert and Domshlak 2009). It his only
applicable to classical planning, i.e., to states and not pro-
gression search states in HTN planning. The pandaPI plan-
ner uses the RC model transformation (Höller et al. 2020) to
compute an approximation of the HTN progression search
state, resulting in a classical planning problem and a classi-
cal state that the LM-Cut heuristic can be evaluated on. This
approximate model contains actions that encode the HTN
model’s primitive actions as well as actions that encode the
HTN model’s decomposition. We have set the cost of these
method actions in the RC model to zero s.t. the resulting es-
timate is admissible for HTNs and thus a cost-optimal plan-
ner. We further used the optimal symbolic planner (HTN-
BDD) by Behnke and Speck (2021). We ran those planners
for four hours per instances and a memory limit of 32GB.

Using these two planners, we could compute cu for 58 out
of the 220 generated instances. pandaPI A∗ LM-Cut solved
54 instances, while HTN-BDD solved 35. For c>0, we suc-
ceeded in 179 instances, with pandaPI A∗ LM-Cut solving
all of them and HTN-BDD solving 174. For the barman do-
main, we were further able to analytically determine the op-
timal cost to achieve the maximum preference. Of the 30 in-
stances in this domain, only 7 were already optimally solved
by the optimal HTN planners. The other 23 instances could
not be solved optimally by any planner, but since we can
analytically compute the optimal cost, we have obtained op-
timal bounds for 23 further instances.

Given the low coverage of optimal planners in these do-
mains, we decided to forgo the requirement of exact bounds
in instances where we can’t compute the bounds exactly. In-
stead, we tried to estimate the values of cu and c>0 as best as
possible – using satisficing planners. We employed pandaPI
with greedy A∗ (weight 2) together with the FF (Hoffmann
and Nebel 2001) and ADD heuristics (Bonet and Geffner
2001). We further used totSAT (Behnke, Höller, and Bi-
undo 2018) and HTN2STRIPS (Alford et al. 2016). Note
that there is a version of totSAT that can find guaranteed op-
timal plans (Behnke, Höller, and Biundo 2019). This version
of the planner is not maintained anymore and does not cor-
rectly parse the input language we use for our transforma-
tion and was as thus discarded. It would, have also suffered
from the issues we describe below and would thus have also
required the same adaptations we applied to totSAT.

The totSAT and HTN2STRIPS planners were developed
for agile planning, i.e., they attempt to find any solution as
quickly as possible. Such a plan is usually not a good ap-
proximation on the true cost of an optimal plan.

HTN2STRIPS For HTN2STRIPS, this is caused by
aborting the search once a solution was found for the small-
est possible progression bound. It may however be possi-
ble to find shorter (and cheaper) plans with higher progres-
sion bound (Behnke, Höller, and Biundo 2019). We simply
keep iterating over progression bounds until we reach the
time limit and take the shortest plan found. HTN2STRIPS
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uses a classical planner internally to search for an HTN
plan. By default this is the planner jasper (Xie, Müller, and
Holte 2014), which does not produce near optimal solu-
tions. We ran HTN2STRIPS additionally with Fast Down-
ward (Helmert 2006) using the A∗ search with the LM-Cut
heuristic and greedy best first search and the FF heuristic.

totSAT For totSAT, we modified the planner’s overall al-
gorithm. By default, totSAT iterates over the maximum de-
composition depth K until a solution has been found and
returns that solution – no matter its cost. Since the cost C
of this plan is an upper bound to the true cost of an optimal
plan, we modified the planner to continue, but with the re-
striction that the cost of the plan is limited to at most C − 1.
If we can find such a plan, we can set the upper bound to its
cost and repeat the process. If there is no cheaper solution
at depth K, there still might be a cheaper solution at depth
K+1. We thus increase the depth to K+1 and again attempt
to find a plan with cost at most C − 1.

This technique requires us to be able to bound the max-
imum cost of a plan in totSAT’s translation to SAT. For
each action a at timestep t, we introduce decision variables
Ct

1, . . . , C
t
c(a) and add implications at → Ct

1, . . . , a
t →

Ct
c(a). I.e. choosing an action a to be in the plan at time t

causes c(a) atoms to be true. We then gather all such Ct
c

atoms in a set C. To limit the overall cost of actions to some
value L, we have to ensure that at most L of the atoms from
C are true. We use the sequential counter encoding (Sinz
2005) to encode this restriction.

This simple procedure has a problem: the size of the for-
mula restricting the cost scales in e · C · t, where e is the
maximum cost of an individual action, l is the cost limit,
and t is the number of time steps. Given our compilations, e
and C can both be significantly above 104, which makes the
encoding impossible to use. Instead, we optimize the cost in
a two step process. In the initial step, we set the cost of all
actions to ⌊ c(a)

104 ⌋ and proceed as normal. If we have deter-
mined that the formula for depth K and cost limit C is not
solvable, the cost of the best plan for depth K must be in
[(C+1) ·104, (C+2) ·104). From the previous call for cost
C + 1, we have a plan and can compute its cost Co under
the original model. We then add the cost limiting formula
twice, once for the cost function ⌊ c(a)

104 ⌋ and once for the cost
function c(a) mod 104. We limit the former to C + 1, and
iterate as described above over the latter starting with Co−1
mod 104. Once we have reached an unsolvable formula for
this iteration, we proceed to the next depth K + 1 and start
iterating over the cost bound for the ⌊ c(a)

104 ⌋ cost model. This
way, we try to approximate the cost of the cheapest plan.

Results As for the optimal planners, we ran the modified
satisficing planners with a time limit of four hours per in-
stances and a memory limit of 32GB.

For the translation to compute the upper bound cu, the
modified totSAT returned some plan in 187 out of the
220 instances while HTN2STRIPS with LM-Cut returned
plans in 163 instances, HTN2STRIPS with FF in 165, and
HTN2STRIPS with jasper in 172 instances. pandaPI with
greedy A∗ with the FF heuristic solves 73 instances and with

the ADD heuristic solves 88. Overall, the satisficing plan-
ners found some plan in 193 out of the 220 instances.

For the lower bound c>0, totSAT produces plans for 202
instances, HTN2STRIPS with LM-Cut 177 and with FF 187
out of the 220 overall instances. The instances for which
HTN2STRIPS finds a plan are a strict subset of the instances
for which totSAT finds a plan, i.e., we have some plan for
202 instances in total. Further, pandaPI with greedy A∗ and
the FF heuristic solves 174 instances while add solves 212.
Overall, we can find plans and thus approximations for c>0

for 218 of the 220 instances. We failed only in once instance
of the domains Rover (p30) and Satellite (p17), each. Note
that in these two domains, even the estimation of c>0 still
requires solving the underlying HTN which is too difficult
for these two very large instances.

Generating the Bounds
We discarded the two instances for which we could not com-
pute any estimate on the bound c>0, as we have no way of
setting the cost bound for them anyway. Additionally, we
found that cu = c>0 or cu = c>0+1 for 11 instances, which
were also discarded, since we cannot generate any plausi-
ble cost bound between cu and c>0. The remaining 207 in-
stances were used to generate OSHTN planning instances.
For 81 instances, we were able to optimally compute both
cu and c>0. For a further 101 instances, we have approxima-
tions on both cu and c>0. Of these, for 63 the approximation
to cu is less than 104, i.e., we found a plan that does not con-
tain any pay action. In these cases, the cost that we found is
an upper bound to the true cost cu. In the remaining 61 in-
stances, the best plan that we found contained a pay action.
For these plans their cost can be written as b + p · 104. The
cost b is however not an upper approximation to cu – as it
might be possible to use fewer pay actions (i.e., achieve a
higher utility), which might require a more expensive plan.
Lastly for 25 instances, we only have an approximation on
c>0, but not on cu.

Since we don’t have any informed means to investigate
or to differentiate the different cases associated with the up-
per bound cu, we treat all of them the same. For 182 in-
stances, we thus have an upper bound cu and a lower bound
c>0 for any sensible cost bound. We have created up to
10 OSHTN planning instances for each of the base prob-
lem instances, varying the cost bound. Since we expect the
problems to become disproportionally harder with increas-
ing cost bound, we decided to not select the cost bounds for
these 10 instances linearly, but exponentially. We have thus
generated the cost bounds c>0 + 1 + ⌊f · (cu − c>0 − 2)⌋
for f ∈ {0, 0.08, 0.16, 0.25, 0.36, 0.46, 0.58, 0.71, 0.85, 1}.
For some instances |cu − c>0 − 2| was not high enough to
admit 10 different integer cost bounds. In these cases, we
generated fewer than 10 instances. For the remaining 25 in-
stances, for which we don’t even have an estimate for uc, we
interpolated between c>0 and 2 · c>0, i.e., we used the above
formula if one sets cu = 2 · c>0.

Overall, this process has resulted in a benchmark set with
1.955 OSHTN planning instances. For a more detailed anal-
ysis of the benchmark set, we refer to Sec. Experimen-
tal Evaluation.

47



Solving OSHTN Planning Problem
There are multiple approaches to solving classical OSP, all
of which are inspired by efficient and state-of-the-art search
techniques for ordinary optimal classical planning. The most
prominent techniques are explicit branch-and-bound search
with heuristics that adapt the ideas of classical planning to
OSP (Mirkis and Domshlak 2013; Domshlak and Mirkis
2015; Muller and Karpas 2018), reformulations of OSP as
classical planning with two cost functions either for heuris-
tic computation (Katz et al. 2019a) or to enable explicit
A∗ search with bound-sensitive heuristics (Katz and Keyder
2022) and symbolic blind search (Eifler et al. 2020; Speck
and Katz 2021). We propose a similar approach by consider-
ing and adapting two successful approaches to optimal HTN
planning for OSHTN planning: explicit heuristic search and
symbolic blind search. The benchmark set and source code
of both planners is available online (Behnke et al. 2023).

Explicit Heuristic Search
First, we make a slight modification to the existing explicit
heuristic search for optimal HTN planning (Behnke, Höller,
and Biundo 2019; Höller et al. 2020). Instead of stopping
the search when a goal node (i.e. we reached the empty
task network) was expanded, we continue until the open list
is empty, pruning successors with f value above the cost
bound. This modification ensures that, assuming a given re-
cursion depth bound (see Sec. Theoretical Properties on why
such a bound is necessary), we will explore all goal states up
to the specified cost bound. Given that, we can store during
search the goal state with the maximal utility value observed
so far. As a simple optimization, the search terminates if we
encounter a goal node with the highest possible utility value.

Finally, we consider two different admissible heuris-
tics, the blind heuristic which corresponds to an exhaus-
tive search and the LM-cut heuristic for HTN (Helmert and
Domshlak 2009; Höller et al. 2018).

Blind Symbolic Search
Behnke and Speck (2021) showed that symbolic search can
be realized for HTN planning by incrementally construct-
ing automata each representing all states and stacks, i.e.,
search nodes, reachable with certain costs. Speck and Katz
(2021) showed that symbolic search can be used for classi-
cal OSP by representing the utility function and efficiently
evaluating the reachable set of states, which are also rep-
resented as decision diagrams such as Binary Decision Di-
agrams (BDDs) (Bryant 1986). The same idea is possible
for the Behnke and Speck (2021) approach. As Speck and
Katz (2021), we use Algebraic Decision Diagrams (ADDs)
to represent the utility function. When running the symbolic
search algorithm, instead of terminating as soon as a search
node with an empty task network is found, we evaluate all
the search nodes we encounter during the search and de-
termine the maximum utility of each of them using the un-
derlying BDD representations. This evaluation takes is per-
formed by intersecting all reachable final states will the util-
ity function’s ADD. The termination criterion is equivalent
to the one we described for our explicit heuristic search ap-
proach, namely that the search terminates when the open

list is empty (no new automaton can be generated), the cost
bound is exceeded (all automata with costs up to the cost
bound have been generated), or we encounter a state with
the highest possible utility.

Theoretical Properties
We now consider the theoretical properties of the presented
search approaches. Since they are all derived from optimal
HTN planning with optimality guarantees, we only need to
address the modifications we make for OSHTN planning.

It is important to point out that explicit search for optimal
HTN planning is, in its base version, not a complete planning
algorithm. This arises due to the fact that HTN problems can
contain recursion in their methods, which can produce an in-
finitely large search space that can never be fully explored.
This can be remedied by techniques like iterative deepening.
For optimal planning, this simple solution is not applicable,
as we need to guarantee that no cheaper solution than the
one we found exists. The methods A 7→ Aa and A 7→ a,
where a is a primitive action with c(a) = 0 and A is an
abstract task, will generate an infinite zero-cost loop within
the search space, which would need to be fully explored to
show that a given plan is an optimal solution. One method to
avoid such infinite zero-cost loops is to restrict the maximum
depth of decomposition allowed. Under this constraint, the
search space is finite and exhaustive search will return an op-
timal solution (Sohrabi, Baier, and McIlraith 2009). Such a
bound can be part of the problem, or it can be proven that the
problem does not suffer such a problem, which is the case
for a large set of planning problems, yielding optimality of
exhaustive search for these domains (Nau et al. 2003). For
the general case, we need to be able to infer such a bound,
if it exists. For our purpose of OSHTN planning, we thus
need to find a bound to the decomposition depth that if ex-
hausted will guarantee that all possible goal states can be
found within this bound. For total order HTN planning, the
proof of Behnke, Höller, and Biundo (2018) is directly ap-
plicable and establishes an upper bound of |A|·

(
2|V|)2. This

bound is prohibitively large in practice, but applying it ren-
ders any explicit search for total order HTN planning to be
complete. Note that for partial order HTN planning no such
bound can exist, as deciding whether a solution exists is un-
decidable (Erol, Hendler, and Nau 1994).

To conclude optimality and completeness for the OS-
HTN explicit search, the main insight is that the underly-
ing search algorithm eventually generates all search nodes
with an empty task network with increasing cost. Further,
any pruned task network can only lead to a plan that exceeds
the cost limit as the heuristic we use for A∗ is admissible.
Optimality stems from the fact that we maintain the state
with the highest utility encountered during the search, so that
eventually a solution is returned that leads to a state with the
highest utility reachable while respecting the cost bound.

Proposition 1 The presented explicit heuristic search is op-
timal and complete for OSHTN planning with bounded re-
cursion depth. For total order OSHTN a depth limit exists
that still guarantees completeness.
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all 63 131 104 41 0 86 263 688 2.48
0 10 20 26 8 0 15 60 139 4.17
5 5 15 8 7 0 13 10 58 2.01
9 4 7 7 6 0 12 3 39 1.57

L
M

C

all 53 156 103 43 16 90 270 731 2.68
0 9 20 26 8 2 17 60 142 4.38
5 4 18 7 7 1 14 13 64 2.15
9 4 9 7 6 2 13 3 44 1.76

ze
ro

all 36 153 99 41 0 81 0 410 1.96
0 4 20 26 7 0 15 0 72 2.93
5 4 17 7 7 0 12 0 47 1.75
9 3 9 7 6 0 12 0 37 1.55

Table 1: Coverage of OSHTN planners on the seven bench-
mark domains. We show the overall coverage (row “all”), as
well as the coverage for the interpolation points 0, 5, and 9,
the overall coverage, and the coverage normalised to 1 per
domain. For the three interpolation points coverage normal-
isation is w.r.t. the instances of that interpolation point.

In contrast to explicit search, the symbolic search tech-
nique for HTN planning (Behnke and Speck 2021) uses fi-
nite automata to represent sets of search nodes of explicit
HTN search. The automata however only represents the task
structure of explicit search nodes. To also represent state in-
formation, the transitions (s1, a, s2) in these automata are
associated (or labelled) with BDDs that encode states asso-
ciated with these transitions. Given that these automata can
contain loops, they are able to represent both finite and in-
finitely large sets of search nodes reachable in explicit HTN
search. Further, this representation is strong enough in the
sense that it can represent any set of reachable search states
under a given cost bound (Behnke and Speck 2021, Thm. 1).
As a result, this search technique is complete, even for HTN
domains with infinite zero-cost cycles.

Proposition 2 The presented symbolic search is optimal
and complete for OSHTN planning.

Experimental Evaluation
In this section, we empirically evaluate and analyze the pre-
sented planning approaches for OSHTN planning on the
newly introduced benchmark set.

We evaluated the symbolic planner, which we abbrevi-
ate as BDD and the explicit search planner using the LM-
Cut heuristic (denoted LMC) and the zero heuristic (denoted
zero). For each of the 1,955 OSHTN planning problems,
each planner was given 8 GB of RAM and 30 minutes of
runtime on a compute cluster with nodes equipped with In-
tel Xeon Gold 6242 32-core CPUs.

Results The overall coverage of the OSHTN planner on
our benchmark set is shown in Tab. 1. We also present the
results differentiated over the individual cost bounds. Since
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Figure 1: Dependence of coverage on the cost bound, split
by planner and domain. Each colored line per domain shows
for every interpolation point the coverage of the planner on
that domain for that interpolation point.

we have generated for each of the original problem instances
(initial state, initial plan, preferences, and utilities) up to 10
instances with a different cost bound, we can differentiate
between these cost bounds for our analysis. For each origi-
nal problem instance, we number the instances with differ-
ent cost bound from 0 to 9 depending on which cost bound
multiplier we used for it. We call these values the interpo-
lation points. I.e. the instance 0 used the multiplier 0 and
9 used 1. As explained above, for some instances, we can-
not generate all 10 intermediate cost bounds, if multiple of
them would fall onto the same integer. Our benchmark set
of 1,955 instances then only includes one of these instances.
For analysing the behaviour of the planning algorithms as
well as for analysing the properties of the benchmark set, it
is more useful to consider these duplicate cost bounds as dis-
tinct instances. Else it could, e.g., be the case that there are
x instances for interpolation point 4 which are all unsolved,
but 2x for interpolation point 5, of which x are solved. This
would imply a non-monotonicity in the behaviour of the al-
gorithms, which does not exist, as the solvable instances are
the same cost bound for interpolation points 4 and 5.

In Tab. 1, we display the coverage values for the inter-
polation points 0, 5, and 9. As expected, we can observe
that the coverage decreases with an increasing cost bound,
i.e., higher interpolation point. As the search space has to
be explored until the bound is reached increases, the run-
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the maximally reached cost

time should increase, too. For a more detailed understand-
ing of this dependency, we depict in Fig. 1 for each planner,
domain, and interpolation point the coverage of that plan-
ner. While coverage of the barman and rover domains is low
across the board, the coverage in robot and transport, and
to a lesser extent blocksworld, decreases as the cost bound
increases. The exact point and shape of this increase is seem-
ingly a domain property. In contrast, the instances in the
snake domain don’t show a significant decrease in perfor-
mance. We attribute this to the overall low cost bounds in
snake – the largest value for uc for any snake instance is 23.

Overall, the explicit search with the LM-Cut heuristic
performs best, but the symbolic approach is better in bar-
man and robot. As expected, explicit search with LM-Cut
dominates explicit search with the zero heuristic. Interest-
ingly, both symbolic search and explicit search with the zero
heuristic fail to solve the easiest satellite instances and the
latter also fails to solve any transport instances.

Since the planning algorithms leave a lot of instances un-
solved, we wanted to investigate how far these algorithms
were from solving the respective instance. We have thus
recorded for every instance, the maximum cost that was ex-
plored by each of the planners. For explicit search, this is the
maximum cost of any search node popped from the search
queue and for symbolic search the highest cost of a com-
pleted search layer. We plot in Fig. 2 the relation of the
cost bound and the maximally explored cost for all planners.
Note that points on the diagonal represent solved instances.

Lastly, we considered structural properties of the gener-
ated benchmark set – mainly to validate that the benchmark
set we have generated is interesting. The most important
property of an OSHTN benchmark set (and for any OSP
benchmark set for that matter) is the distribution of achiev-
able utilities with respect to costs. To allow for an inter in-
stance comparison, we considered this for our analysis rel-
ative to the cost bound. We can now consider for every in-
stance the (relative) cost needed to achieve the first non-zero
utility (denoted as r>0) and the (relative) cost of achieving
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Figure 3: Relative cost needed to achieve the best achievable
utility vs the relative cost needed to achieve any non-zero
utility. We color-code the absolute value of the cost bound.

the best possible utility rb. If rb = 1 then the cost bound
needed to be fully utilised to obtain the maximum achiev-
able utility. In many cases, however, it is possible to achieve
the maximum achievable utility already with a lower cost.
We depict this data in Fig. 3. Any point on the diagonal is a
case where the cost of achieving any non-zero utility was no
lower than the cost to achieve the maximum possible util-
ity. Points on the right vertical line represent cases where
the maximum achievable utility required the full cost bound.
Overall, we can see that that the distribution of the utilities
over the necessary cost for achieving it is quite varied, which
indicated a well-balanced benchmark set.

Conclusions
In this paper, we have studied the problem of partial satis-
faction planning for problems that have inherently hierar-
chical characteristics. On the theoretical side, we formally
defined two hierarchical partial satisfaction planning for-
malisms, namely net-benefit planning and oversubscription
planning, which differ in whether the utilities assigned to
the objectives are comparable to the plan cost. We show
that this class of problems belongs to the same complex-
ity class as the underlying hierarchical task network plan-
ning problem, EXP-time complete. On the practical side,
we have constructed a carefully designed and structured set
of benchmarks for the hierarchical oversubscription plan-
ning. Moreover, we presented and evaluated two different
approaches, namely explicit heuristic search and symbolic
search, for hierarchical oversubscription planning using the
proposed benchmarks. Our evaluation shows that the pro-
posed approaches can solve about a third of the tasks in the
proposed benchmark set. Our work contributes a balanced
and well-structured benchmark set and strong baselines for
future research in a novel and practical planning formalism.

One exciting direction for future work is extending our
formalism and planners to support partially ordered hierar-
chical task network (Behnke, Höller, and Biundo 2019).
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