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Abstract

As we grow more reliant on AI systems for an increasing
variety of applications in our lives, the need to understand
and interpret such systems also becomes more pronounced,
be it for improvement, trust, or legal liability. AI Planning
is one type of task that provides explanation challenges, par-
ticularly due to the increasing complexity in generated plans
and convoluted causal chains that connect actions and deter-
mine the overall plan structure. While there are many recent
techniques to support plan explanation, visual aids for nav-
igating this data are quite limited. Furthermore, there is of-
ten a barrier between techniques focused on abstract planning
concepts and domain-related explanations. In this paper, we
present a visual analytics tool to support plan summarization
and interaction, focusing in robotics domains using an actor-
based structure. We show how users can quickly grasp vital
information about actions involved in a plan and how they
relate to each other. Finally, we present a framework used to
design our tool, highlighting how general PDDL elements can
be converted into visual representations and further connect-
ing concept to domain.

Introduction
As with all fields of AI research, the past years saw an in-
crease in adoption of AI Planning technology, leading to an
increasing demand in methods to interpret and explain such
models. Reasons for this increase include the drive to im-
prove such systems, to increase user trust, and to provide
transparency for legal action, especially considering many of
those systems will be employed in sensitive applications. AI
planning applications are commonly transparent and able to
provide direct information regarding how a plan came to be
or what are the relationships between individual actions, but
directly interacting with this information is often not enough
to convey to users the knowledge they need, especially as
plans grow larger and more complex and user needs become
more specific (Fox, Long, and Magazzeni 2017).

While there has been recent development in the field of
Explainable AI Planning (XAIP), approaches are often tex-
tual in nature. Although an often seen feedback in user stud-
ies is the request for visual aids, very few visual analytics ap-
proaches to plan explanation are present in literature. While
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simple data visualization tools can provide helpful insight,
methods to explore and interact with the specific structure of
planning problems are currently limited. Additionally, a gap
has been reported in XAIP applications between domain-
oriented design and approaches based on abstract planning
concepts (Lindsay 2020), which can hinder the broader im-
pact of newly-developed explanation technologies.

In this paper, we present a novel visualization tool for AI
planning, focused on the domain of robotics. We aim to start
building a bridge between domain-oriented and concept-
oriented planning explanations, by presenting a model that
is still based on certain domain characteristics (highlighting
actors and movement) while building a framework that is
extensible to general PDDL problems.

In short, the main contributions of this paper are:

• A Visual Analytics tool to explore and interact with
PDDL plans;

• A glyph system that enables explanation and summariza-
tion of actions.

Related Work
AI Planning Explanations
A concept discussed and employed in several approaches
in literature is that an explanation needs to address multi-
ple models with conflicting properties in the same scenario,
mostly pertaining to the actual system versus its image in the
user’s mind. Model reconciliation (Chakraborti et al. 2019;
Sreedharan et al. 2019) states that the role of an explana-
tion technique is to bridge the gap between model and user’s
perception of such model by providing the user with knowl-
edge that might be missing. Model Acquisition (Sreedharan
et al. 2020) aims to move the actual model (revealed model)
towards an ideal model intended by the designer (mental
model).

Another common approach in XAIP are contrastive ex-
planations (Miller 2018; Hoffmann and Magazzeni 2019;
Dhurandhar et al. 2018), which aim to provide knowledge by
comparing different possibilities or courses of action. Fox,
Long, and Magazzeni (2017) state that, in the context of
AI planning, the question ”why did you do that” is often
loaded with the context ”why did you do that, as opposed to
something else”, and an appropriate response should take al-
ternatives into account. By providing information regarding
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other possibilities, contrastive explanations inform the user
of the reasoning behind the choice of a given course of ac-
tion (Borgo, Cashmore, and Magazzeni 2018; Sreedharan,
Srivastava, and Kambhampati 2018).

As methods for generating and storing information in-
tended for explaining planner decisions improve, how to
properly communicate this information to users has also be-
come a research focus. Argumentation frameworks (Collins,
Magazzeni, and Parsons 2019) can be used to build ex-
planations from low-level logic conditions and effects. For
robotics in particular, verbalization (Rosenthal, Selvaraj,
and Veloso 2016; Hayes and Shah 2017; Canal et al. 2022)
is a powerful tool that allows a robot to convey argumen-
tation into natural language. On the general field of XAI,
there are discussions on how explainability itself contains a
social component between explainer and explainee, and how
to properly handle it (Madumal et al. 2018; Miller 2019).

Lindsay (2020) argues that there is a gap in the field
of XAIP between domain-tailored explanations, which fo-
cus on specific problems and applications, and explanations
based on general planning concepts, which are more abstract
in nature. The author then proposes an explanation method
that builds an abstraction for a given problem based on
generic problem structures that can be shared between do-
mains. The aforementioned gap is relevant to visualization
as well, as the effort involved in developing unique visual
representations for each domain can make it impractical. In
this paper, we work towards developing a visualization sys-
tem that can be decomposed into general components, which
could then be used for other applications.

Visual Analytics and XAIP
Visual Analytics (VA) is the practice of using visual rep-
resentations and interfaces to promote analytical reason-
ing with respect to complex computational systems or data.
VA is commonly described as a cycle in which users ob-
tain knowledge about a given model, act on that knowledge
to enact change, and then obtain new knowledge from the
changed model that can be used for further improvement.
While VA approaches are quite common in XAI (Liu et al.
2017; Choo and Liu 2018), the literature on visualization
techniques for plan explanation and interaction is currently
quite limited.

Visualization approaches to XAIP proposed in literature
include Tintarev et al. (2014), who proposed a method to
present plans as either text or graph form, allowing alter-
nating between the two representations and using basic ex-
ploratory functions such as filtering and highlighting. Mag-
naguagno, Pereira, and Meneguzzi (2016) proposed a vi-
sual representation for planning that depicts actions as jig-
saw puzzle pieces, and different PDDL predicates as con-
nector shapes that must be matched for an action’s precon-
ditions to be satisfied. While both approaches provide in-
sights into how plan actions relate to one another and how
they are organized regarding their preconditions and causal
links, they lack context, not showing the role these actions
play in a general view of the plan. Additionally, as plans
grow larger in size and complexity, navigating through each
action and effect individually may quickly become imprac-

tical. Kumar et al. (2021) proposed a visual system for con-
necting actions and representing system states applied to
model reconciliation, but it also lacks scalability as plan
size and complexity grows larger. Chakraborti et al. (2017)
presented a visualization-enabled system for XAIP that of-
fered summarization and reasoning, but mainly for under-
standing relationships between sensorial data gathered by
the system and planner outputs. Plans themselves are shown
as a sequence of action nodes, with preconditions and ef-
fects shown as arrows coming in and out of action nodes, re-
spectively. Le Bras et al. (2020) presented a timeline-based
approach that condenses actor state into the Y axis, aiming
to provide insights on how actors may block or interact with
each other. Benton et al. (2018) also utilize vertical informa-
tion in an innovative way, presenting an aircraft landing plan
as a Gantt chart in which actions are stacked according to the
altitude in which they take place. While these approaches are
very effective, vertical positioning alone may not be enough
to convey all necessary information for many domains.

The visual representations we present in this paper
build upon information visualization concepts in literature.
Among them, we can cite glyph design (Borgo et al. 2013),
particularly hierarchical glyph grouping (Rees et al. 2020)
and taxonomy-based design (Maguire et al. 2012).

Design
This paper presents a novel visualization method for AI

plan explanation and summarization in domains related to
autonomous robots. Our model is designed to structure plan
information in a timeline around different actors, individ-
ual real-world entities performing actions and controlled by
the planner (i.e., robots). The design is based on observation
of other plan explanation approaches, such as verbalization:
natural languages often form sentences using a subject-verb
structure, denoting an actor performing an action.

We researched literature on planning for robotics and de-
veloped our model around the most commonly found do-
main features and problems, as well as user studies. One ex-
ample of user feedback can be found in (Canal et al. 2022),
which showed users two different verbalization approaches
and asked for feedback in how effective they were at present-
ing information. Users had varying levels of knowledge in
robotics and planning, and at the end were asked for general
feedback regarding suggestions for improvement or what in-
formation they thought was missing from the verbalized ex-
planations. The most common requests related to summa-
rization and contextualizing actions, in particular how each
action related to goals. More than a third of the participants
explicitly asked for visual aids when asked about sugges-
tions to an explanation tool. We consulted robotics experts
for questions that a visualization tool would need to answer
as well, and refined our results to a list of four requirements
and four design tasks that would attend them.

Requirements
R1 Summarization. Interacting with longer and more com-

plex plans by reading a list of actions can quickly become
unfeasible or excessively time-consuming. Users need a
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general plan representation able to quickly provide gen-
eral information on the actions contained within.

R2 Context. Besides showing what actions are contained
within a plan, a XAIP tool must also explain why they
are there. The role of a given action within a plan can
be contextualized by examining which other actions are
impacted by it or how it relates to the plan’s goals.

R3 Task-oriented. A large problem in XAIP is that the ques-
tions to be answered often depend on the task at hand.
The visualization tool must be able to accommodate to
different users, domains and needs.

R4 Details on demand. A visual summary can be helpful,
but access to detailed, accurate and unambiguous infor-
mation from data must be provided when requested.

An important note is that such requirements interact with
one another; R1 refers to building representations that can
summarize the data contained within, but R3 states that in-
formation shown depends on task. Therefore, the contents of
a summary will be different for different tasks. From these
requirements, we devised four design tasks:

Design Tasks
T1 Action Grouping. Essential for R1. The visualization

model needs to be able to bundle groups of actions into
single entities that represent them. An efficient represen-
tation for a group should contain all relevant information
(R2, R3) from the actions contained within, or provide
quick ways to access it (R4).

T2 Action Details. All information related to a given action,
either properties (i.e, parameters, start time or associated
PDDL functions) or context (i.e, how they relate to goals,
objects and other actions in the plan), must be visually
represented (R2, R3) or available upon demand (R4).

T3 Goal Tracking. The visualization should provide an user
with understanding of how close goals are to completion
along the execution of a plan, when they are completed
and the roles of actions with respect to them (R1, R2).

T4 Information Filtering. Depending on the user and do-
main, certain types of information need to be prioritized,
while others can be ignored. Users need easy access to
details that are relevant to their tasks while not having to
navigate through all possible detail options (R3).

Visualization Framework
The proposed visualization consists of multiple glyphs rep-
resenting actions arranged horizontally according to a time-
line and vertically according to the actor performing them
and the plan they appear in. The contents and presentation of
each glyph are customizable, allowing for exploratory anal-
ysis or for expert users to build a profile for a given domain
with a set of behaviors assigned to different types of action.

Tool Overview
The visualization tool was implemented in d3.js1, and runs
on most web browsers. Plan data extraction was done

1https://d3js.org/

through ROSPlan (Cashmore et al. 2015), and is compati-
ble with PDDL 3.1. A screenshot of the visualization tool is
shown in Figure 1. (A) shows file selector and customization
options, allowing users to change visualization features for
certain operators or objects, as well as choosing an action
grouping method. (B) shows different plans stacked verti-
cally for comparison, with the top row being a timeline for
external events, such as Timed Initial Literals. (C) shows
the message box that appears when the cursor hovers over
a glyph, containing detailed information on the action (or
group of actions, in the case of a group glyph), and high-
lights causal links by giving causally related glyphs colored
auras. An expandable sidebar on the right (D) contains infor-
mation on the plans themselves, such as their full description
in PDDL form, as well as all goals and their color legend.

Glyph Design

Glyphs can be defined as visual objects that depict attributes
of data records using different visual channels and are placed
discreetly in display space. They can be used independently
and constructively to depict attributes of a data record or a
set of data records, and can make use of visual features from
other signs such as icons and symbols. (Borgo et al. 2013).

Plan actions can contain several kinds of information,
from their operational details (type of operator, parameters)
to their relationships to other actions (causal links) and goals
(causal chain, goal completion). We define action glyphs as
a circle, with operator type shown as a symbol in the mid-
dle. Goal information is shown as colored arcs on the outer
edge of the circle and dots surrounding it. Temporal infor-
mation is shown as a bar spanning the action’s duration,
and an additional sectioned arc surrounding the glyph can
be customized to display other variables. Figure 2 shows the
proposed glyph and the information it contains.

Icons and hierarchical taxonomy An icon is displayed
in each glyph’s middle area, representing the type of action
(PDDL operator). These icons are selected by users, and the
set of icons is used to create a hierarchical taxonomy for
actions in that domain (T1, T2). This hierarchy is used for
grouping actions together and summarizing groups of simi-
lar actions. Figure 3 shows an example of taxonomy for the
IPC2002 Rovers domain (Long and Fox 2003). Operators
can belong to four different categories, which are used to
group and identify icons in the visualization. This taxonomy
can also be used to enable different levels of abstraction for
different action types in the same visualization (T4): in this
example, each action of the ‘interaction’ type uses a specific
icon, but all ‘communication’ actions share the same icon.

While we originally intended to propose building operator
representations using a more abstract taxonomy-based hier-
archical system (Maguire et al. 2012), empirical observation
showed that a semantically appropriate icon (Mcdougall,
Curry, and De Bruijn 1999) can be instantly recognizable,
reducing the learning curve that an abstract hierarchical rep-
resentation would introduce. Although we created the icons
shown in this paper using basic shapes, an icon library can
be plugged into the tool and made available to users.
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Figure 1: Screenshot of the plan visualization tool. Settings and customization menu is shown on the left (A). The center
area shows a timeline shared by a list of plans, distributed vertically (B). When an action glyph is selected, a message box is
displayed, containing its details (C). An expandable tab (D) on the right contains detailed information for all plans and goals.

Figure 2: Action Glyph description

Goal Relevance Estimation To provide users with in-
sights on the role of a given action in a plan, we produce
an estimation of its impact in each of the plan’s goals (con-
ditions that need to be true or false by the end of the plan)
(T3). This is accomplished by estimating how close each
goal is to completion before and after the action takes place
and comparing them. Given a plan π = {(t0, a0)...(tn, an)}
where (ti, ai) is a pair of time instant ti and action ai, a set
of goals G = {g0, ..., gm}, an initial state s0, a domain D
containing the types of actions that can be undertaken, and
an external planner algorithm planner that returns a gener-
ated plan (πg) and its total duration (c). Using Algorithm 1,
we can obtain a n × m matrix ∆ containing the estimated
progress for all goals in G and actions in π.

∆ essentially contains, for each action ai, the predicted
difference in time between completing each goal with and
without ai’s effects. It allows the observation of the impact
of different actions in a plan with respect to each goal, and
shows that most actions can be connected to a subset of
goals that they bring the system state closer to achieving. In

Figure 3: Example Hierarchical Action Taxonomy for the
IPC2002 Rovers domain (Long and Fox 2003). Icons and
hierarchy are user-defined and are used for grouping actions
and assigning behaviors to similar groups.

some cases, actions can negatively impact goals (e.g., mov-
ing away from where an action needs to take place to fulfill
a goal). An example ∆ is displayed in Figure 4.

This information is added to the visualization as a multi-
colored segmented circle around the action icon in each
glyph. The circle is divided into segments, each represent-
ing a goal and assigned a different color using a categorical
color scale. The fraction of ai’s circle assigned to each color
is linearly distributed among the non-negative values of ∆i.
Actions that for whatever reason do not have any positive
values in ∆ will have no colored outline at all.

Additionally, we mark actions that turn a goal estimate to
0 (action ‘completes’ goal) and actions that raise goal es-
timates from 0 (action ‘undoes’ goal), and add dots to the
upper-right corner of glyphs: for each goal completed, a dot
of the corresponding goal’s color is added, and for each goal
undone, a hollowed-out dot is added.

It is worth noting that all information obtained in this step
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Algorithm 1: Goal progress estimation
Input: π, G, s0, D
Output: Matrix of goal advancement per action ∆

1: Load initial state s0
2: let M , M ′ be n×m matrices
3: for each action ai in π do
4: Si = system state immediately after ai ends
5: S′i = Si without ai’s effects
6: for each goal gj in G do
7: (πij , cij) = planner(D,Si, {gj})
8: (π′ij , c

′
ij) = planner(D,S′i, {gj})

9: M(i, j) = cij ; M ′(i, j) = c′ij
10: end for
11: end for
12: ∆ = M ′ −M
13: return ∆

Figure 4: Goal estimation matrix ∆ for a plan using the
IPC2002 Rovers domain. The plan has six goals and 19 ac-
tions. Blue cells appear when an action reduced a goal’s esti-
mated completion time, and red cells represent a goal com-
pletion time increasing, i.e., the effects of the action made
the goal more difficult to achieve individually.

are estimates meant to provide insight into the roles of each
action in a plan, and are not guaranteed to be an exact repre-
sentation of its time constraints and dynamics between plans
and system states. Isolating and quantifying the effects of in-
dividual actions may come with a degree of error, especially
as the number of simultaneous actions that can be performed
increases. Therefore, we also give the option to turn off goal
tracking for chosen operators.

To perform goal progress estimation, the planner can be
run using a relatively short timeout limit, as results are de-
signed to be only interpreted as an approximation, and plan-
ning for a single goal is less time-consuming. With a 0.25
second timeout, a full analysis for a 100 action plan and
10 goals will take under 5 minutes. A planner able to keep
track of states through multiple runs could drastically im-
prove performance as it would obtain many similar plans.

Spatial Layout
The 2D visual space in the visualization is organized as fol-
lows: the horizontal (x) axis is reserved for a timeline, that is
scaled to the screen by the tool. Glyphs are placed according
to start time of their respective actions or action group. The
vertical (y) axis is divided among plans, which are displayed
in separate areas for quick comparison. Each plan is then fur-
ther divided between actors, and each action is placed in the

Figure 5: Two approaches to building group glyphs. a) ap-
plying the same icon if multiple actions share an operator (or
hierarchy branch) or asterisk if there are multiple actions of
unrelated types. b) a quadrant symbol based on the number
of actions from each hierarchy branch. Other elements, such
as goal tracking and duration, remain the same.

row of its main actor. We define the main actor for an action
as the first parameter in each action command.

Glyph Grouping
If visual density becomes high enough that neighboring
glyphs cannot be displayed side-by-side without overlap-
ping, they are grouped into a larger glyph that represents
a group of actions (T1). Goal estimation is displayed as if
the group was a single action; duration is converted to the
first action start until the latest action end. Additionally, to
highlight the presence of multiple actions, the group glyph
is drawn 25% larger than single-action glyphs.

We set two ways to generate an icon for an action group.
The first is to use the same icon if all actions share the same
operator, or category icon on the hierarchical taxonomy if
they belong to the same category. Otherwise, an asterisk
icon is used. The second approach is to build a symbol based
on assigning quadrants for higher-level taxonomy categories
and filling them (both in size and opacity), either according
to the number of actions of the given category or according
to the sum of their durations. For both methods, the number
of actions in the group is added to the middle of the glyph.
Figure 5 illustrates the two approaches to glyph grouping.

Grouping is done by agglomerative hierarchical clustering
in actions filtered by actor. By default, distances are calcu-
lated between actions’ start times on the timeline, and the
threshold is automatically defined according to screen res-
olution, zoom level and glyph size. It can also be triggered
manually and configured for other metrics: using the Cosine
distance between goal estimates allows combining actions
that contribute towards similar goals, and comparing opera-
tor types can group actions that share the same type to im-
prove readability. However, to preserve timeline structure,
comparisons can only be made between adjacent glyphs.

Interactivity
The visualization is designed to support zooming and pan-
ning actions, automatically rebuilding groups if the zoom
level causes them to overlap or stop overlapping. When the
cursor hovers over a glyph, it is selected, increasing its size
and displaying a message box with the full content of the ac-
tion (T2, T4): id, description, start time and duration, causal
links. Other glyphs relating to its causal links, i.e., actions
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that enable the selected action to happen and actions that the
selected action enables (Seegebarth et al. 2012), are high-
lighted in green and red auras, respectively. The same effect
applies to group glyphs, with the exception that only causal
links external to the group will be listed and highlighted.

Customizable Behavior

It is important that different behaviors can be assigned to
different types of glyphs (T4), as different actions may have
different meanings and thought processes associated with
them depending on the task. Therefore, the visualization
tool has the option of filtering action glyphs by operator
types and parameters, assigning different visual properties
to them. For instance, causal links may be of interest only
to a certain type of action, and would generate unneces-
sary visual clutter if shown in others. The visual options
available for subsets of actions include highlighting and hid-
ing glyphs, displaying causal links as arcs, disabling goal
progress display, and disabling grouping. The visualization
tool uses a domain metadata file to save customization op-
tions and can include verbalization for describing actions
and goals (otherwise described in standard PDDL format).
This set of options can either be built as part of exploratory
analysis, as an user learns about the domain and problem, or
be given as a standard, previously set up by a domain expert
and then given to end users to aid in comprehension.

Applications
In this section, we present example applications of the vi-
sualization tool, discussing how it can support analysis for
problem exploration and planner debugging. In the interest
of space, we focus on information given by a few of the vi-
sual elements discussed in previous sections.

Problem Exploration In this example, shown in Figure 6,
we investigate how objects in the problem interact with a
plan, and how they relate to different actions. The plan was
generated from a problem using the IPC2002 Rovers do-
main (Long and Fox 2003). There are 4 actors and 11 goals
to achieve, all related to the rovers collecting samples and
transmitting data to a lander in a different location and opti-
mized for time. A few elements are noticeable at first glance:
rover1 tackles all camera actions (eye icons) and image-
related goals. rover0 has actions that work towards multi-
ple goals, while rover2 and rover3 work mainly towards one
goal each and have large amounts of downtime. To inves-
tigate possible downtime reasons (empty areas in the visu-
alization), we notice that rovers are often idle during com-
munication actions done by other rovers. From the domain,
we know that communications require a lander, which is oc-
cupied for the duration of the action. If set to highlight all
actions that use the only available lander, general, the vi-
sualization shows that this lander is constantly engaged in
communications after the 10-second mark, and is likely a
bottleneck for optimization. Changing the problem file to
add a second lander and generating a new plan would show
a reduction in total time from 137 to 93 seconds.

Planner Debugging In this example, shown in Figure 7,
we discuss how the visualization tool can be used for planner
debugging. The plan was generated from a problem using in
office robot domain from (Canal et al. 2022) and thought
to be optimized for time. A quick way to look for issues
in domain/problem modeling is to display causal links in
all operators, one by one. Actions that have more or fewer
links than they should are quickly recognizable. In this ex-
ample, however, a different issue appears: one robot has two
actions with no colored outline, i.e., their progress towards
goals was either 0 or negative, and one of them undoes a
goal condition. Zooming in and looking into action details,
we can see that the robot is moving in circles, in and out
of a waypoint. This behavior prompts an investigation into
the planner, which is then found to have been executed with
incorrect parameters and not properly optimizing the plan.

User Evaluation
We conducted two studies to test our model, both coupling
a formal experiment measuring performance across visual
representations with open ended questions to elicit subjec-
tive preference and insight into differences in how visual
encoding of information may be read and interpreted. The
first was a pilot study, conducted with 9 participants, from
which 4 were male and 5 were female; 4 declared having
knowledge in AI Planning, while 5 had no particular knowl-
edge but a computer science background. 5 of them were in
between ages 20 and 29, 3 between 30 and 39 and 1 over
age 40. The second was a comparative study, with 39 par-
ticipants, from which 24 were male, 13 were female, 2 were
non-binary; 18 declared basic knowledge in AI Planning or
a computer science background, 11 declared no knowledge
in AI Planning, 9 declared some knowledge, 1 declared ex-
pert level knowledge; 27 were aged between 18 and 22, 10
were aged between 22 and 26, 2 were aged over 26.

Pilot study In the pilot study, participants were asked to
answer questions related to six scenarios, each addressing
one or more of T1-T4. Stimuli consisted of either a simpli-
fied PDDL-like plan description accompanied by its corre-
sponding visual representation (Scenarios 1-2), or solely of a
plan visual representation (Scenarios 3-6). Scenarios 1 and 2
focused on Action and Goal representation, the stimuli con-
sisting of a plan pseudo-code description accompanied by
its corresponding visual summary. Participants where asked
to indicate at which time step an action had taken place or a
goal had been completed. Scenarios 3 to 5 focused on vi-
sual representation alone, and plan description was omit-
ted from the stimuli: Scenario 3 focused on interpretation
of causal links, asking participants which of a set of ob-
jects was picked up first; Scenario 4 focused on interpre-
tation of groups, asking participants to identify the number
of instances of a given action in the plan; Scenario 5 focused
on interpretation and concept grasping, asking participants
to first match a pseudo-code plan to one of three visual sum-
maries and then report differences between three visual sum-
maries; Scenario 6 was optional and aimed at gauging par-
ticipant engagement as well as their interpretation of a more
complex visual representation integrating all elements tested
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Figure 6: Plan for a IPC2002 Rovers domain problem. Four rovers perform several tasks capturing samples and images, opti-
mized for time. All goals require obtained data to be transmitted to a lander, which is occupied for the duration of the transmis-
sion. By setting the visualization to highlight in blue all actions that involve the lander object General, we can observe that it is
being used during most of the time and having only one lander is likely a bottleneck to this system.

Figure 7: Plan for a office robot domain (Canal et al. 2022) problem. Two robots are performing tasks in an office. The area
highlighted in red contains two actions that show no progress towards any goals while undoing one of them. This seems odd,
so the user investigates further. Action descriptions show that Asro moves in a circle, leaving the kitchen shelf and returning to
it afterwards for no apparent reason, indicating that the plan may have been poorly optimized.

in previous scenarios, asking participants to identify which
action group included a given action.

For each scenario, participants were also asked: i) to rate
the influence of the visual representation on their plan under-
standing and task completion, ii) to provide a brief descrip-
tion of what they thought was happening in the plan. For (i)
a five-point Likert scale was used, with 1 being a strong neg-
ative impact and 5 a strong positive impact. (ii) was intended
to gauge their understanding of plan and visual representa-
tion as a whole.

Performance results were promising, with tasks related
to Scenarios 1, 3 and 5 reporting 100% accuracy, Scenario
2 achieving 89% accuracy (M=0.89, SD=0.33, SE=0.11),
Scenario 6 achieving 63% accuracy (M=0.62, SD=0.52,
SE=0.18) and Scenario 4 achieving 56% accuracy (M=0.56,
SD=0.53, SE=0.18). Descriptive statistical results for Sce-
narios 2, 4 and 6 are reported in Table 1. Participants’ de-
scriptive responses all provided a consistent description of
the actions in the plan for all scenarios, as well as correctly
describing differences across plans. When rating the overall
visualization as a complement to plans, the mean response
was M=3.88. At the end, users were also asked to rate the
difficulty of learning the visual representations from 1 (very
easy) to 5 (very difficult). The mean response was M=3.25.

Scenario 2 Scenario 4 Scenario 6
Mean 0.89 0.56 0.62
SD 0.33 0.53 0.52
SE 0.11 0.18 0.18
CI [0.63,1.15] [0.15, 0.96] [0.19, 1.06]

Table 1: Mean, Standard Deviation, Standard Error and Con-
fidence Intervals for pilot study scenarios 2, 4, 6.

Comparative Study The second study was designed to
further compare our model to a baseline. We chose an ap-
proach similar to (Le Bras et al. 2020), comparing the pro-
posed method against a Gantt chart. This study was divided
into two parts. In the first, we devised four scenarios: Sce-
narios 1-2 contained written plans and Gantt charts for their
actions, colored according to actor. Scenarios 3-4 contained
written plans and a visualization using our proposed model.
All plans were of similar complexity (3 goals, 16-20 actions,
and 2 actors). Users were told that all plans referred to the
same domain, robots in an office to which a floor plan was
provided. All scenarios were shown as a questionnaire with
static images, and the order in which they appeared was ran-
domized. For all scenarios, participants had three tasks: (i)
identify the order in which goals were achieved, (ii) answer
a question regarding a parameter in a plan (which actor per-
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formed a given action, which object was involved in an ac-
tion), (iii) provide a summary of what they thought happened
in the plan. Participants did not have any previous contact
with the visualization tool; an introduction page described
basic aspects of the glyph visualization, and images in sce-
narios 3-4 contained a reference for the meaning of visual
elements in a glyph. As the study was conducted with static
images, glyphs were numbered as to reference which actions
they represented. We also recorded how much time users
spent on each scenario, as a way to obtain insights into the
glyph system’s learning curve. However, we did not enforce
any time constraints on the participants. Participants were
then asked to rate the usefulness of both the Gantt chart and
the visualization from 1 (not effective at all) to 5 (extremely
effective), choosing which method they perceived to be more
useful, and to provide optional general feedback.

Table 2 shows the results for scenarios 1-4, with accu-
racy and standard deviation in the ordering task (i), and
the question task (ii). When asked the order in which goals
were achieved, participants attained a combined accuracy of
75.64% (SD=0.41, SE=0.07) for scenarios 1-2 and 79.48%
(SD=0.40, SE=0.07) for scenarios 3-4. Time spent on sce-
narios 3-4 was on average 12% greater than on scenarios
1-2. The mean usefulness score for the Gantt chart was 2.44
(SD=1.03, SE=0.16), while the proposed model got a mean
of 3.38 (SD=1.25, SE=0.20). When asked which method
was the most useful, 69.23% chose the proposed visualiza-
tion, 15.38% chose the Gantt chart, and 15.38% considered
both to be equally effective/ineffective.

After scenarios 1-4 were complete, participants were ex-
posed to the second part of the study: scenarios 5-6, which
contained a matching task similar to scenario 5 in the pilot
study: participants received a written plan and various differ-
ent visualizations, and were tasked with identifying which
of them corresponded to the written plan. Participants were
also given an option to select if they were not sure. Alter-
native choices were designed as to provide identifying fea-
tures in different visual channels, such as goals completed
in different orders, actions undertaken by different actors,
or different number of actors. Table 3 shows accuracy re-
sults from the plan matching tests. 69.23% of participants
picked the correct representation in scenario 5, and 76.92%
picked the correct representation on scenario 6. When com-
pared in a one-sided t-test against a null hypothesis h0 of
choices being picked at random, both scenarios returned p-
values below 10−7, showing that there is likely a high level
of correlation between image and plan for most users.

Conclusion
In this paper, we presented a visualization method for AI
Planning focused on observing different actors through a
timeline, describing how it summarizes plan structure and
displays goal status. We presented example applications and
user feedback, as means of demonstrating its applicability.

Limitations Although we discuss goal progress as a tem-
poral factor due to the timeline nature of the visualization,
it is not related to time as an optimization constraint. Even
if a plan is not optimized for time, observing temporal goal

Sc 1 Sc 2 Sc 3 Sc 4
Ordering Acc 0.69 0.82 0.77 0.82
Ordering SD 0.45 0.38 0.42 0.38
Ordering SE 0.07 0.06 0.07 0.06
Question Acc 0.92 1.00 0.97 0.95
Question SD 0.27 0.00 0.16 0.22
Question SE 0.04 0.00 0.03 0.04
Time Mean 215.80s 209.03s 246.88s 232.87s
Time SD 150.50s 148.87s 218.77s 138.08s
Time SE 24.10 23.84 35.03 37.29

Table 2: Results for comparative study, scenarios 1-4, per
task (ordering and question) and mean total time spent in
each scenario, incl. Standard Deviation and Standard Error.

Sc 5 Sc 6
Selected correct plan 69.23% 76.92%
Selected wrong plan 10.25% 12.82%
Selected ”not sure” 20.51% 10.26%

p-value against random 3.3 ∗ 10−8 1.3 ∗ 10−9

Table 3: Results for comparative study, scenarios 5-6, and
p-value against h0 (random choice) of one-sided t test.

progress provides similar insights. Adapting Algorithm 1 to
use a different variable can, however, be done without much
additional effort. One limitation is that our approach requires
the domain to explicitly represent actors; many domains in-
clude actions representing organizational processes or joint
efforts from different parts, and the option would be to rep-
resent the entire system as a single actor. Finally, plans are
assumed to be calculated beforehand; it would be interesting
to investigate the overhead incurred by interactively gener-
ating new plans and providing visualizations on the fly.

Future Work Many research directions present them-
selves for future work. The taxonomy concepts presented
can be further expanded as to perform statistical analysis on
several application domains and develop a general hierarchi-
cal taxonomy for robotics that could be shared by different
visualization approaches; A taxonomy-based glyph system
for PDDL objects can be developed, allowing for the com-
plete representation of an action and all of its parameters; Fi-
nally, a fully-customizable spatial layout system would also
be a promising direction.
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