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Abstract

In this paper, we define goal legibility in a multi-agent path-
finding setting. We consider a set of identical agents moving
in an environment and tasked with reaching a set of locations
that need to be serviced. An observer monitors their move-
ments from a distance to identify their destinations as soon
as possible. Our algorithm constructs a set of paths for the
agents, one to each destination, that overlap as little as possi-
ble while satisfying a budget constraint. In this way, the ob-
server, knowing the possible agents’ destinations as well as
the set of paths they might follow, is guaranteed to determine
with certainty an agent’s destination by looking at the shortest
possible fragment of the agent’s trajectory, regardless of when
it starts observing. Our technique is robust because the ob-
server’s inference mechanism requires no coordination with
the agents’ motions. By reformulating legible path planning
into a classical minimum cost flow problem, we can lever-
age powerful tools from combinatorial optimization, obtain-
ing fast and scalable algorithms. We present experiments that
show the benefits offered by our approach.

1 Introduction

In this paper, we focus on legibility, which refers to the
agent’s ability to signal the goal it wants to achieve through
its actions to an observer in the loop. The notion of legi-
bility has been introduced in robotics motion planning by
Dragan and Srinivasa (2014), who define legible motion as
“motion that enables an observer to quickly and confidently
infer the correct goal”. This concept affords a broad inter-
pretation and has been formulated in different ways across a
growing body of work that has come to include motion and
task planning (Dragan 2017; MacNally et al. 2018; Kulka-
rni, Srivastava, and Kambhampati 2019, 2020), single and
multi-agent scenarios (Miura and Zilberstein 2021) and de-
terministic and stochastic settings (Miura, Cohen, and Zil-
berstein 2021). Legibility also overlaps with the concept of
transparency (MacNally et al. 2018).

We consider a cooperative path-finding setting in an en-
vironment with one origin and a set of destinations. One
or more identical agents can appear at the origin and move
in the environment to serve requests at the different desti-
nations. An observer monitors the environment from a dis-
tance. It can see all agents’ actions and wants to determine

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

668

their destinations as quickly as possible after starting observ-
ing their motion. The problem is to synthesize paths for the
agents so as to make it easy for the observer to infer their
destinations. We solve the problem as follows. In an offline
phase, a path finder, which knows the origin and the desti-
nations, builds paths from the origin to each destination so
that the paths overlap as little as possible. Then, the path
finder communicates these paths both to the observer and
the agents. In a subsequent online phase, each agent enter-
ing the environment picks one destination and follows the
pre-calculated path to it. The observer, given how the paths
have been constructed, is guaranteed to be able to decide the
agents’ destinations with certainty by making the minimum
possible number of observations.

This setting is motivated by autonomous robotic missions
in challenging scenarios, where the agent and the human do
not share the same physical space and do not interact di-
rectly. Instead, the robots autonomously perform some tasks,
and a human supervisor is in charge of remotely monitoring
the unfolding of the mission. The supervisor is not supposed
to follow each robot’s actions at all times, but, when neces-
sary, it needs to be able to quickly assess the goal of each
robot by simply looking at its behavior (direct communi-
cation might not be available). Our goal is to simplify the
decision-making process of the observer and reduce their
cognitive load. For example, consider an autonomous fire-
fighting system operating in a factory where some rooms
are at risk of fire and need to be periodically inspected. Our
technique provides the robots with paths that have minimal
overlap so that a human looking at any snippet of an agent’s
movements (not necessarily starting from the origin) can
quickly determine where it is going.

Our first contribution in this paper is to define the concept
of legibility within a multi-agent path finding setting and
give a crisp mathematical formalization of this problem. We
propose an optimization framework to look for optimal solu-
tions under a budget constraint. Building on this framework,
our second contribution is to provide efficient algorithms to
solve legible path finding by leveraging classical techniques
from combinatorial optimization. We show that our prob-
lem can be reformulated in terms of finding the minimum
cost flow in a suitably constructed network. Our approach is
robust as the observer’s reasoning does not need to be co-
ordinated with the agents’ actions. In related techniques, the



observations are always assumed to start from the first step
of the agent’s behavior, while in our case the observer can
start observing the agent’s movement at any point and still
be able to decide the agent’s destination with complete con-
fidence. Our experiments show that our approach is powerful
and can scale up to large environments efficiently.

2 Problem Statement

In general, multi-agent path planning involves three prob-
lems: (i) assign agents to destinations; (ii) find a path for
each agent to its assigned destination; and (iii) schedule the
agents’ motions on the paths (Yu and LaValle 2013). Here,
we only focus on the second problem, path finding, and,
more specifically, on legible path finding. The first problem
is irrelevant as we assume that the agents are identical so
each agent can be associated with any destination (anony-
mous path planning). As for the third problem, we assume
no global coordination between the agents, so they can start
their motion at different times. If a local conflict emerges,
because two or more agents need to move to the same vertex
or swap position, we assume simple local coordination poli-
cies can be adopted (e.g. one agent moves, the others wait).

2.1 Legibility Definitions

We now give a formal definition of legibility in multi-
agent path planning. We consider directed multigraphs G =
(V, &), where V is the set of nodes and £ is the set of
edges. We implicitly assume the existence of two functions
0 :& — Vandk : £ — V with the interpretation that 6(e)
and k(e) represent the tail and the head of an edge e € &
respectively. Given a vertex v € V, we define in(v) and
out(v) as follows:

in(v) ={ee&|kle) =v}, out(v)={eecf|b(e)=uv}

A walk from a node v to a node w is a sequence of edges
v = (e1,...,e) such that 6(e;) = v, k(e;) = w, and
O(en) = k(ep—1) forall h = 2,... 1. For a walk ~, we
indicate its length as [, = [. We work with multigraphs be-
cause the constructions in Sections 3 and 4 become simpler
when using this concept, which is more flexible than the con-
cept of graphs. In the examples, when there are not ‘parallel’
edges, we represent graphs, where edges are represented as
ordered pairs of vertices.

A node o € V represents the origin node and D C V a set
of possible destinations, with |D| > 1. We assume that o has
only outgoing edges (in(o) = () and the nodes d € D have
only incoming edges (Vd € D, out(d) = 0 ). The triple
(G,0,D) is called a legibility problem instance.

Given a set of walks P from o to D, we call P(? the
subset of walks in P that connect o to destination d.

Definition 1 We say that a set of walks P is (o,D)-
connecting if, for every d € D, there exists a walk v € P
from o to d (i.e.Vd € D, P ().

We now introduce the concept of legibility formally.

Definition 2 An (o, D)-connecting set of walks P is called
k-legible, with k € NT, ifVd,d € Dwithd # d, ¥V~ =
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(e1,....,e,) € PDandV ' = (e},....€) ) € P(d,), we

have that (€j41,...,€j4k) # (ej,ﬂ, e ej’+k)’ Vj,j €
Nsuchthat j +k <l,and j' + k <.

Definition 2 means that the set P is k-legible if, given any
two walks from the origin to two different destinations, they
do not share any subwalk of length k. For example, two
walks are 1-legible if they do not have any edge in common;
they are 2-legible if they do not share any subwalk of length
two (but they might have an edge in common). Clearly, if
two walks are 1-legible, they are also 2-legible and so on.
Hence, we are interested in the minimum legibility.

Definition 3 Given an (o, D)-connecting set of walks P, the
minimum k such that ‘P is k-legible is called the legibility
delay of P and denoted as k(P).

Definition 3 tells us that if a set of walks P has legibility
delay k, the observer is guaranteed to determine each agent’s
destination by making k observations at the most. Consider
a prefix-free language £ whose words are the subwalks of
the walks in P with length up to k. From a practical point
of view, after building the walks in P, we could construct a
look-up table to associate words of £ with their correspond-
ing destinations. The observer, looking at this table, would
only need to wait until it observes one of the entries to then
pick the associated destination as the agent’s chosen one.

Considering Definitions 2 and 3, we have the following
observation.

Remark 1 When we check whether a set of walks P is k-
legible, all the walks of length | < k do not play any role.
This implies that, if we put

I(P) = max Ly

every set P is l(P)-legible.

The following definition concludes our formal introduc-
tion of legibility.

Definition 4 A legibility problem instance (G,0,D) is
called k-legible if there exists an (o, D)-connecting set of
walks P that is k-legible. The legibility delay of (G, 0, D),
denoted k(G, 0,D), is the minimum legibility delay among
all possible (o, D)-connecting set of walks P. In formula,

k(G,0,D) = k(P)

min
P (0,D)—conn.

2.2 Legibility Optimization Problems

We now consider the three most relevant optimization prob-
lems concerning the concept of legibility.

Problem 1 Given a legibility problem instance (G,o,D),
determine its legibility delay k(G, 0, D) and find an (0, D)-
connecting set of walks P such that k(P) = k(G, 0, D).

A simple observation follows. We will use it in Section 3.

Remark 2 We can always restrict our search to (o,D)-
connecting sets P such that |P| = | D), i.e. subsets contain-
ing exactly one walk from o to every destination d.
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Figure 1: (a): A legibility problem instance (G, o0, D). (b):
(0, D)-connecting set of walks P such that k(P) = 2 for
an infinite budget. (c): The legibility delay increases to 4 for
a budget B = 120. (d): The legibility delay increases even
more (k(P) = 5) for a budget B = 100.

We now introduce a cost on walks in the following way.
Given a directed multigraph G = (V,£), we introduce a
weight vector W € (R*)®. The weight of a walk v =

l
(e1,...,e)isdefined as W(vy) = > W,, . Finally, the cost
h=1
of a set of walks P is defined as

C(P)=)Y_ W()

YEP

We can now enunciate two optimization problems that in-
vestigate the trade-off between cost and legibility.

Problem 2 Given a legibility problem instance (G,o0,D)
and a legibility delay k, find an (o, D)-connecting set of
walks P that is k-legible and minimizes the cost C(P).

Ciglom) (k) = C(P)

min
(0,D)—conn.
k(P)<k

We conventionally put C™" (k) = oo if k(G,0,D) > k.

Problem 3 Given a legibility problem instance (G,o0,D)
and a budget B, find an (o, D)-connecting set of walks P
that has cost C(P) < B and minimizes the legibility delay.

k(P)

min

(g,O,D) (B) = min

P(0,D)—conn.
C(P)<B

Example 1 Consider the legibility problem instance
(G, 0,D) as depicted in Figure 1(a). Assume all edges have
unitary cost, except for edge (0,vs), which has cost 100.
Suppose that you have an infinite budget first. It is easy to
see that k(G,0,D) > 2 because, since the destinations are
four but the edges leaving o are only three, two walks will
have to share one edge in order to reach all destinations.
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Figure 1(b) shows an (o, D)-connecting set of walks P
such that k(P) = 2. The legibility delay is two as edge
(0,v3) is traversed both to reach dy and ds, so an observer
needs to wait at least two steps to decide where the agent
is going. As a consequence, k(G,0,D) = 2. Now, suppose
that the available budget is 120 (B = 120). In this case, the
set of walks ‘P cannot be utilized to reach the destinations
as C(P) > B. Figure 1(c) shows that, to satisfy the
budget constraint, we can traverse (o0,vs) only once. This
constraint increases the legibility delay, which becomes
k(G,0,D) = 4, as the walks to d3 and dy now share three
edges, i.e. (0,vg), (vs,v7), (v7,vs). If the budget is even
smaller, B = 100 (Figure 1(d)), edge (o0,vs) needs to be
avoided altogether; increasing the legibility delay further,
k(G,0,D) = b, as now the walks to dy and ds share four
edges, i.e. (0,vg), (vg, v7), (v7,v8), (Ug, Vg).

3 1-Legibility as a Network Flow Problem

In this section, we study 1-legibility. In particular, we fo-
cus on finding 1-legible sets when they exist and solving
Problem 2 for the special case k& = 1. In the next section,
we present a method to reduce k-legibility for any k to 1-
legibility on a suitably modified graph.

Checking 1-legibility boils down to verify that we can find
an (o0, D)-connecting set of walks P that do not have any
edge in common, i.e. they are edge-independent. We start
our analysis with some initial observations.

3.1 Preliminary Observations

If the number of edges that exit the origin is smaller than
the number of destinations, then necessarily one or more of
those edges will have to be taken more than once in con-
structing an (o, D)-connecting set of walks P, which vi-
olates the conditions for 1-legibility. Hence, the following
necessary condition holds for 1-legibility: |out(o)| > |D|.
The second observation is that, for 1-legibility, we can re-
strict our analysis to paths (instead of walks) in the graph.
As we look for edge-independent walks, being able to go
back and forth on them does not impact legibility. We have
the following result.

Proposition 1 If there exists an (o, D)-connecting set of
walks P such that k(P) = 1, then there exists an (o, D)-
connecting set of paths P’ such that k(P') = 1.

Proof The elimination of possible closed subwalks from
the walks in P does not impact either (o, D)-connectivity or
edge-independency. This consideration proves the claim. W

It is convenient to make a modification to the graph G =
(V, ) by creating a new fictitious destination d, which we
add to V. We also add an edge from each destination d € D
to d to the set of edges £. We call this new graph the modified
graph and indicate it as

g=.8) )
Any set of walks P from o to D can be transformed into a
set P of walks from o to d in G by adding a last link to d in

each walk. Also, by dropping the last edge from the walks
in P, we can reconstruct P.



Since we assume that |P| = |D| (see Remark 2), it holds
that P is 1-legible if and only if the paths in P are edge-
independent. In consequence, our problem of checking if
(G,0,D) is 1-legible is equivalent to checking if there exist
|D| distinct paths in G from o to d. This is a classical graph
theory problem that, based on Menger’s theorem (Menger
1927), can be reformulated in terms of cut capacities as fol-
lows. An (o — d)-cut (A, B) is a partition of vertices V into
subsets A and B such that o € A and d € B. The cut ca-
pacity, g(A, B), is the cardinality of the set of edges going
from A to B. We define the (0 — d)-connectivity of G as the

minimum cut capacity over all possible (o — d)-cuts:
A'(G,0,d) = min{q(A, B) | (4, B) (0 — d) — cut}

This index can be interpreted as the minimum number of
edges whose removal disconnects o from d. Notice that,
since the capacity of the cut (V \ {d}, {d}) is |D|, we al-
ways have that \*(G, 0,d) < |D|.

The following corollary summarizes our analysis of the
legibility problem so far.

Corollary 1 Consider a legibility problem instance

(G, 0, D). The following conditions are equivalent:

1. k(G,0,D)=1 - -
2. There exist |D| edge-independent paths in G from o to d.
3. A*(G,0,d) = |D|

Proof The equivalence between 1 and 2 follows from the

definition of G in (1). The equivalence between 2 and 3 fol-
lows from the Menger’s theorem. |

These considerations reformulate producing an (o, D)-
connecting 1-legible set of walks in G into finding the max-
imum number of independent paths from o to d in the mod-
ified graph G and, in turn (by the Menger’s theorem), into
exhibiting a (o0 — d)-cut with capacity |D| in G. ~
_ If we can find |D| edge-independent paths from o to d in
G, then a simple transformation that removes the last edge
creates the desired set P in G. On the other hand, the con-
struction of a maximum number of independent paths in a
graph between two nodes is a classical graph theory com-
binatorial problem for which many possible algorithms can
be used. An efficient and popular approach is to transform
the problem into a network flow problem and then run the
Ford and Fulkerson’s (1956) algorithm on it. We follow this
approach not only to solve Problem 1 but also to address
Problems 2 and 3. Below we briefly recall the basic notation
for network flows.

3.2 1-Legibility and Network Flows

A network is a four tuple N' = (G, s, t, u) where G = (V, )
is a directed graph, s € V is the source vertex, t € V is
the sink vertex and v : £ — RT is a positive capacity
function that assigns a capacity u(e) to each edge e € €.
A flow f on a network A is a function f : £ — RT
that satisfies the following two conditions: i) Ve € £,0 <
f(e) < u(e) (edge capacity constraint); and ii) Yo € V '\
{s:t} 2 ¢ ¢ out(e) F(€) = 2o¢ € in(v) [ (€) (conservation of
flow constraint). The value of a flow f is defined as the to-
tal amount of flow that leaves s: z(f) = > cou(s) f(€)-
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Given the conservation of flow, this is also equal to the flow
that enters ¢, z(f) = >_.c;, ) f(€). Given a network N,
the maximum flow problem consists in computing a flow f*
with the maximum possible value.

The concept of maximum flow in a network is linked to
the concept of minimal cut by the Max-Flow/Min-Cut the-
orem (Ford and Fulkerson 1956). For this, we need to use
a more general concept of cut capacity: given an s — t-cut
(A, B), the cut capacity, c¢(A, B), is the sum of the capac-
ities of all the edges going from set A to set B. The Max-
Flow/Min-Cut theorem states that the minimum cut capacity
in a network A\* (V) is the same as the maximum flow value.
Efficient algorithms can be run on A to find the maximum
flow. One of these is the above-mentioned Ford-Fulkerson’s
algorithm, which presents an important feature: if the capac-
ity of every edge is integer, then the algorithm constructs a
maximum flow f* that is also integer-valued on every edge.

Given a legibility problem instance (G,o,D), we ap-
ply the Ford-Fulkerson’s algorithm to the network N =
(G,0,d,u), where G = (V,€) is as defined above and
u(e) = 1 for every e € £. The output of this algorithm
is a flow f* of maximum value. If z(f*) = A\*(N) < |D],
it follows from Corollary 1 that k(G,0,D) > 1. We will
see in the next section how to handle this case. On the other
hand, if z(f*) = A\*(N) = |D|, we construct |D| indepen-
dent paths in G from o to d based on f*. We do this by ex-
ploiting the fact that, since f* is integral and u(e) € {0,1},
f*(e) € {0,1} for every edge e. Starting from o and using
the edges e for which f*(e) = 1, standard recursive tech-
niques allow us to construct the desired paths. Finally, by
dropping the last edge in such paths, we construct an (o, D)-
connecting 1-legible sets of paths P in G.

Problem 2 can also be approached using network flow
techniques. If we have a weight cost vector W on graph
G, we extend it to a weight cost vector W on G defined by
W, = W, ife € £ and W, = 0 otherwise (i.e. we give
zero cost to the edges connecting the destinations D to the
fictitious destination d). For a flow f on the corresponding
network N = (G, 0,d,u), we can define a cost as follows:

o(f) = fle)We
ec&
For a desired flow value x, the minimum cost flow problem
consists of computing a flow f with value x (i.e. pushing
2 units of flow from s to ¢, subject to the conservation and
capacity constraints) that minimizes the overall cost, i.e.
Q@)= mino(f)

)
f flow | z(f)=x

We conventionally put ¢#™(z) = oo if there is no feasible
flow of value x. As the maximum flow problem seen above,
the minimum-cost flow problem satisfies an analogous inte-
gral property (Ahuja, Magnanti, and Orlin 1988): if the edge
capacities are all integers (as it happens in our case), there
exists a flow that solves Eq. (2) and is also integer-valued on
every edge. This fact, together with the connection we have
established between legibility and edge-independent paths,
allows us to tackle Problem 2 in the context of a minimum-
cost flow problem. We start analyzing the case when the leg-
ibility delay is k = 1 by presenting the following result.



Proposition 2 Given a legibility problem instance (G, 0, D)
with weight cost vector W, consider the network N' =
(G, 0,d,u) with extended weight cost vector W. A 1-legible
(0, D)-connecting set of paths P in G has minimal cost
Clg.om)(1) = " (ID]) ©)
Proof We put C™""(1) = C{g's 1) (1) and ¢™"(|D]) =
(| DI). If a 1-legible (o, D)-connecting set of walks P
does not exist, C’"””(l) = o0 and, by Corollary 1, a flow
with value |D| does not exist, making the cost 3" (|D|) =
oo. Hence, the equality is satisfied in this case. Let us now
consider the case in which a 1-legible (o, D)-connecting set
of paths exist and let P be one of minimum cost so that
C(P) = C™"(1). The paths in P can be extended to |D|
edge-independent paths in G connecting o to d and having
the same cost. Such paths define a flow f on N of value |D
that takes as possible values only 0 or 1 and, given an edge e,
fe = 1if and only if e appears in one of the extended paths.
By construction, this flow f has the same cost C™"*(1). This
proves that > holds in (3). Consider now an integer valued
flow f of minimum cost for A" and value |D|. We thus have
c(f) = cf#™(1). The flow f only takes values 0 or 1 and
the edges on which the flow is 1 form, as discussed above,
|D| edge-independent walks in G from o to d. By removing
the last edge, we obtain a 1-legible (o, D)-connecting set of
paths P in G whose cost is C(P) = ¢%"(1). This yields <
in expression (3) and completes the proof of the theorem.

Thanks to Proposition 2, we can apply the fast algorithms
that have been developed to solve the minimum-cost flow
problem to find solutions for Problem 2 when k& = 1.

4 Reformulating s-Legibility as 1-Legibility
Checking s-legibility can be reduced to checking 1-legibility
when we operate a suitable transformation of the original
graph G. Given a legibility problem instance (G, 0, D) and
s € N, with s > 1, we construct a new graph G®) which
we call the s-legibility graph, whose vertices consist of all
walks of length s — 1 in G and two vertices are connected if
the corresponding walks overlap completely except for the
first element of the first walk and last element of the second
walk. This construction ensures that, if we find two edge-
independent walks in the s-legibility graph, they correspond
to walks in the original graphs that can share (s — 1) el-
ements at the most. This, in turn, means that, by checking
1-legibility in the s-legibility graph, we can draw conclu-
sions on the s-legibility in the original graph. To make these
concepts precise, we introduce a number of auxiliary sets.

4.1 s-Legibility Graph’s Construction

In this section, we explicitly represent D = {d1,...,d,}.
We then start by taking all walks in G of a given length s:

Q) ={(e1,...,es) € E | Blen) = k(en_1) h=2,..,s}
Given v = (e1,...,es) € Q) we put y. for
(e1,...,es—1) and v~ for (e, ..., e5).

We then consider the following subsets of o), respec-
tively, (i) walks that start in o; (ii) walks that end in a specific
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destination d;; (iii) walks that end in any destination in D;
and (iv) walks that do not start in 0 and end in D:

i Q) ={ler,....es) € Q*|0(er) =0},
() Q) ={(er,.ve0) € QW |n(es) = dy),
(i) Q%) =dUDng_§,

i€

Gv) oY =Q®\ (QEZ) U Qﬁ;?)

We introduce a virtual origin o, a set of virtual destinations
that is in one-to-one correspondence with the original set of
destinations D, i.e. D = {dj,...,d,}, and the following
subset of D that corresponds to destinations reachable in a
number of steps smaller than s:

D) = {d; | 3y walkin G fromotod;, I, <s—1} (4)
We are now ready to construct the s-Legibility directed
(multi)graph G(*) = (V%) £(5)) where
Ve =PV ufo}uDd

&)
s) __ s (s)

gl = 9l ueE® S

with Eés_)@ = {eg, | di € D®}, a set containing edges in

one-to-one correspondence with the virtual destinations in

D). Tail and head functions are respectively 6 : £() —

V&) and k : £6) — V), They are defined based on

whether e € £(5) belongs to QES), QE‘Z), Q(;)), or Eés_)l—), as
follows:

ve ol 0(y) =<, K(Y)=7>

ve Q%Z) 0(v) =0, K(y) =7

ve oy 0(y) =<, #(y)=di

eg, € 5;5_)@ O(e) = o, k(e) = d;

Let us now see the interpretation of the graph. The node
set V() consists of: (i) the set of subwalks of length s — 1
in the original graph that do not start in o and do not end in
any destination; (ii) the fictitious origin o; and (iii) the ficti-
tious set of destinations D. In the edge set £(%), there are all
walks 7 of length s connecting pairs of subwalks of length
s — 1, namely . and v~ , obtained from ~ eliminating, re-
spectively, the last and the first edge in . Notice that v and
v~ overlap completely except for the first element in 7. and
the last element in 7y~ . There are two exceptions: any walk v
that starts in o is instead considered as an edge starting from
the virtual origin o and ending in 7~ ; and a walk that ends
in a destination d; is instead considered as an edge ending in
the corresponding virtual destination d; while starting in y..
Also, for each destination d; for which, in the original graph,
there is a walk of length smaller than s connecting the origin
o to d;, there is an edge connecting the virtual origin o to the
corresponding virtual destination d; in the s-legibility graph.
These edges are necessary to represent walks that would not
otherwise appear in the s-legibility graph.

If the original graph G is equipped with a weight vec-
tor W € RE, this is extended to a weight W) in the



s-legibility graph G(®) in the following way. For edges

(617'“765) S Q(S), we put
(617 e "eS) €Q (®) \ Q(S) — W((Psl),... es) We,
(617-..,65)69() — W((e) .... s el+...+WeS

(6)
Finally, for each of the edges eq, € 5, _p» We put We(;)
equal to the minimum cost among all p0551ble walks from o
to d; in G having length < s. Costs for walks and set of walks
will be denoted with the symbol C(*). In tackling Problems
2 and 3, we will assume that the weight vectors on the s-

legibility graphs are defined in the way just described.
4.2 From s-Legibility to 1-Legibility

We now establish a one-to-one correspondence between
(0, D)-connecting set of walks in G and (0, D)-connecting
set of walks in G (), This is achieved via the following natu-
ral transformations between walks in G and G(5):
* Givenawalk v = (eq,...,¢;) in G of length [ > s con-
necting o to some destination d;, we can consider the cor-
responding walk 4’ in G(*) given by:

Y =TI(y)=((e1,...,€6), ., (€1_sq1,. .. 1)) (D)
Note that, by the definition of the tail and head functions
for G (S), we have that +' connects o to Ji.

« Conversely, we notice that any walk 4/ from 6 to d; in
the subgraph Gl = (V(S)7 Q(S)) of G (i.e. not using
edges in Sé‘i)ﬁ) must necessarily be of the form (7). For
such a walk, we define

v =T = (e1,...,e1)
We notice that, by construction,
T (y) =7, TIT(y) =+

Proposition 3 The following facts hold true:

1. Consider a set P of walks in G from o to D, all of
length | > s, that is (o0, D)-connecting and s-legible.
Then, T/ (P) is (6, D)-connecting and 1-legible. More-
over, C®)(T1(P)) = C(P).

2. Consider a set P' of walks in G©) from & to D that is
(6, D)-connecting and 1-legible. Then, T*(P') is (o, D)-
connecting and s-legible. Also, C(I'°(P')) = C)(P).

Proof 1. Consider the walk ~ (e1,...,¢) € P

that connects o to d;. Then, '/ () connects o to d;. Since

P is (o, D)-connecting, this implies that I'/(P) is (0, D)-

connecting. Considering that, by construction, the edges ap-

pearing in the walks in 'Y (P) correspond to the subwalks
of length s of the walks in P, the s-legibility of P yields the
1-legibility of '/ (P). Finally, the cost equality follows from
the fact that, because of relations (6), C*)(T'/ (v)) = C(~).

2. It follows from arguments analogous to 1, after we no-
tice the following two facts. First, if 4/ € P’ connects & to

d;, then T'?(/) connects o to d;. Second, all possible sub-

walks of length s in I'*(1/) are edges in «y'. |

The following relationship between legibility in G and
G® holds.
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Theorem 1 Consider a legibility problem instance
(G,0,D) and, given s > 1, the auxiliary legibility problem
instance (G*), 6, D). Then (G, 0, D) is s-legible if and only
if(g(s), 0, D) is 1-legible. Moreover,

Clgiom (k) =
Proof ‘If’: Suppose P is a 1-legible (5, D)-connecting set
of walks in G(*). We partition P into two parts P = P, U

P,_p, where P,_p contains all the walks of length 1 in

P that consist of an edge in 5;‘?75. We call Dy and D,
the set of those destinations d; € D for which the virtual
corresponding one d; is reached by a walk, respectively, in
P or in P,_5. By construction Dy U D, = D. For every
walk e; € P, D (where we recall, d; € D)) we now
consider a walk 7(%) in G from o to d; of length [ < s — 1
and minimum cost. Th1s must exist given the definition of

D), We put

min

(G 5.5 (1) ®)

P =T%P

SIEE €))

By Proposition 3, Fb(P.) is (0,De ) connecting and s-
legible, while {~(%) | eq, € P,_p}is (0, Dy)-connecting.
Since this last set only consists of walks of length below s,
Remark 1 allows to conclude that P is (o, D)-connecting
and s-legible. ~

It also follows from Proposition 3 that C'(I'*(P,))
C©)(P,). Given the definition of weight for the directed
edges in 5;5_)15 and the optimal way in which we choose
the walks (%), we also have that C'(v(%)) = C®)(ey,)
for every d; € D.,. Thus, C({~{4) | eq, € P p}) =
C)(P;_p). As the two sets are disjoint, this shows that
C(P) = C®)(P) and this proves < in relation (8).

‘Only if’: Suppose P is an s-legible (o, D)-connecting set
of walks in G. Write P = P, U P, where P consists of
the walks of length smaller than s and P, consists of the
remaining ones. Let D, and D, be the set of destinations
reached by the walks, respectively, in P, and in P,. We in-
dicate the corresponding subsets in D as, respectlvely, D
and D,. By point 1 of Proposition 3, Ff (Ps) is a 1-legible

(0, D, )-connecting set of walks in G(*). On the other hand,
the set

OD}

P<S = {ed’i |dl S D<S}

is a 1-legible (6, D;)-connecting set of walks in G(*).
Since edges used in I'/(P,) and P form disjoint sets
and, by construction, D = D, U D,, we conclude that
P = T7(P,) U P is a 1-legible (o, D)-connecting set of
walks in G(),

Following the same line of reasoning as above, we have
that C*)(T/(P,)) = C(P,) thanks to Proposition 3 and
CG)(P.,) < C(P~,) by the way P has been defined in
(10). Thus, C*)(P) < C(P). This proves > in relation (8)
and completes the proof. |

(10)

Example 2 In Figure 2, we present a fragment of graph
G corresponding to graph G in Figure 1(a). Edges are



Figure 2: A fragment of graph G(?) for graph G in Fig. 1(a).

denoted as ordered pair of vertices (as no parallel edge is
present in the original graph). The fictitious destination is d.
The two colored walks correspond to the two walks in Figure
1(b) leading to do and ds. Notice how, while the two origi-
nal walks in G in Figure 1(b) have a common edge, the two
walks in G2 are instead edge-independent.

An interesting final remark is that we cannot extend
Proposition 1 to legibility delay higher than 1. Namely, it is
possible that, for certain problems, there are s-legible sets of
walks P but not s-legible sets of paths. This is shown in the
example below for a simple case with only two destinations.

Example 3 Consider the graph in the picture below.

dl

dz

Any path from o to the destinations will share the subpath
v = (e1eseseqes). Therefore, every (o, D)-connecting set of
paths P will necessarily exhibits legibility delay k(P) = 6.
On the other hand, we can consider the following two walks:

e1ezezeqes f1
ere26ge0e3E3€364 804058565 fa

4!

72 (i

P = {v1, 72} is (0, D)-connecting and k(P) = 3.

The idea behind Example 3 is that coding strategies can be
used to lower the legibility delay. If we allow the motion of
the agents to contain closed loops, these can be exploited to
significantly reduce the legibility delay. A budget constraint
would automatically bound the use of this feature.

5 Algorithms

Given a graph G, Theorem 1 allows us to tackle Problem 1
by studying the 1-legibility of the s-legibility graphs G(*). If
we now combine this result with the considerations in Sec-
tion 3, we can use network flow algorithms to solve all these
1-legibility problems. Algorithms 1 and 2 (see below) for
computing legibility are directly inspired by Theorem 1. Al-
gorithm 1 takes a legibility instance (G, o0, D) and returns
its legibility delay and a set of paths P such that k(P) =
k(G,o,D). The function createLegibilityGraph() at line
8 calls Algorithm 2, which constructs the s-legibility graph
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G(®) based on the s-legibility graph G(*~1) at the previous
iteration. The function extractDestinations() at line 10
implements expression (4) and constructGraph() at line
12 implements expression (5). The complexity of the algo-
rithms is dominated by the double loop at lines 1 and 2 of
Algorithm 2, leading to a complexity of O(|£(=1)|?).

Algorithm 1: Legibility Delay
Data: IT = (G, 0, D)
Result: k(G, 0, D)
Pl k(P) = k(g,_o, D)
1 N+ createNetwork(G)
P, \*(G,0,d) + FordFulkerson(N')
if \*(G,0,d) < |D| then
s+1
GW g
do
§4—s+1
G©) « createLegibilityGraph(G—1)
NG« createNetwork(G®))
P, (G, 0,d) < FordFulkerson(N)
1 | while \*(G®),0,d) < |D|
12 k(G,0,D) = k(P)

e O NN R W N

—
=]

Algorithm 2: Construction of s-legibility graph G(*)

Data: GGV

Result: ()
1 foreach (e1,...,e,_1) € Q6~Y do
foreach (¢},... ¢, ;) € @~V do
add = true
foreach 1 < k < (s — 2) do
if e}, # e;11 then

‘ add = false

break
if add = true then
9 | QW «—(er,... ea 1,6, )
10 D~V « extractDestinations(G=1)
1 D)« D=1y {CL €D | 3 (6’17 .- .,63_1) €
QY] Klear) = di)
12 G©) < constructGraph(DE—1,G)

® 9 AW N

Following Proposition 2 and subsequent considerations
in Section 3, we solve Problem 2 for legibility delay 1 by
applying the classical Primal-Dual algorithm (Ahuja, Mag-
nanti, and Orlin 1988). Similarly to Problem 1, Problem 2
for a generic legibility delay s can be transformed into the
corresponding optimization problem for G(*) with legibility
delay 1.

We now briefly tackle Problem 3 and propose a solution
that exploits its duality with Problem 2. Given a budget B,
the goal is to compute k@f’;’p) (B). We proceed as follows.

We start from the legibility delay k1 = k(G, o, D) and com-



pute, using the previous algorithms, B; = C(’gfz’p) (k1). We
then put k@fzyp)(B) = ky for every B ‘2 B;. We then take
the next ko > kq such that By = C("gL%Z.D)(kQ) < By and

put k’(gz D) (B) = ko forevery By < B < Bj. We iterate in

such a way until the budget has reached the minimum value

that is necessary to obtain an (o0, D)-connecting set of walks.
main

We obtain a step function for kfi'? 1, (B), where each cost

interval corresponds to the smallest legibility delay £ that
can be found by incurring that cost.

6 Experimental Results

For the experiments, we use a cluster with Intel Xeon ES5-

2640 processors running at 2.60GHz. The memory limit by
process is set to 4 GBs and time limit to 172,800 seconds.
We use grids with random obstacles as they resemble phys-
ical structures such as building and plant floors. We create a
fully connected graph and then progressively reduce its con-
nectivity. More specifically, we build a four-way connected
2D orthogonal grid. To vary its connectivity, we randomly
add obstacles using different thresholds (10%, 30%, 50%)
and a different seed for each problem instance. We set the
grid size to 30x30 with destinations varying from 2 to 8 with
2 unit increments. We run 150 problems per category (ob-
stacles ratio, |D|) and report average values. For all exper-
iments, origin nodes are chosen randomly. Destinations are
also chosen randomly among those nodes that are reachable
from the origin node.

Figures 3a and 3b show results relating to Problem 1. All
the results are averaged out over all problems as a function
of the obstacle ratio. Figure 3a displays the average time (in
seconds) it takes to calculate the legibility delay when we
vary the number of destinations and the obstacle ratio. The
legibility delay is harder to compute for 30% grids than for
10% ones because the average k level is lower when there
are only a few obstacles. The same logic does not apply
when increasing the obstacle ratio to 50%. The 50% prob-
lems are easier to solve than the 30% ones because there
is a limited number of paths that can reach all destinations.
Hence, even though the average k is higher for the 50% case,
the ratio between path availability and minimum legibility
delay leads to higher difficulty for the 30% problems. Fig-
ure 3b shows that, as expected, the legibility delay increases
as we increase the number of destinations and obstacle rate.

To be able to assess performance for Problems 2 and 3, we
consider the index 1—C{; , 1) /C(&'0 1) (5), Where Cf; |
is the minimum cost of an (o, D)-connecting set of walks in
G. This index can be interpreted as a distance from optimal-
ity when we constrain the legibility delay. Figure 3c focuses
on Problem 2 and displays the average distance to optimal-
ity as a function of the legibility delay s for 30% obstacle
rate. The figure shows that the more destinations, the higher
the distance from optimality. As we accept higher legibility
delays, the cost decreases. Figure 3d focuses on Problem 3,
showing that, as expected, having a bigger budget allows us
to decrease the legibility delay. As the number of destina-
tions increases, the effect of the budget is less significant.
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7 Related Work

In the AI and robotics communities, there has been grow-
ing interest in interpretable agent behavior in the past few
years (Dragan, Lee, and Srinivasa 2013; Langley et al. 2017;
Gunning and Aha 2019; Chakraborti et al. 2019; Sreed-
haran et al. 2021), stemming from the consideration that
rarely, if ever, agents act in isolation from humans. Synthe-
sizing interpretable behavior facilitates smoother Human-
Al interaction and also supports frust in autonomy (Bhatt,
Ravikumar, and Moura 2019). Interpretability has been stud-
ied along three main dimensions, legibility, explicability and
predictability (Chakraborti et al. 2019), but, lately, some ef-
fort has been made to connect and integrate these concepts
in unified frameworks (Sreedharan et al. 2021; Miura and
Zilberstein 2021). We will limit our discussion to legibility
and the most relevant related work.

The broad notion of legibility that we use has been pro-
posed by Dragan et al. (2013), who introduced it in the con-
text of motion planning. The setting of our work is, how-
ever, different from Dragan et al.’s one. They are interested
in scenarios in which the robot and the human physically
interact (e.g., they undertake a task together). The observer,
which starts observing from the beginning of the interac-
tion, is modeled as a probabilistic goal recognition system
and the planner searches for a plan towards the agent’s true
goal by favoring actions that maximize the goal’s posterior
probability. On the other hand, we assume the observer is de-
terministic as its decisions are completely determined by its
knowledge of the agents’ walks and its observations of the
agent’s behavior. We build plans from the origin to all possi-
ble goals, of which the observer has full knowledge. Based
on such knowledge, if it observes a transition (an edge) that
belongs to one path only, it can decide where the agent is
going with certainty; conversely, if it observes a transition
that belongs to more than one path, it defers a decision until
it observes the first transition that belongs to one path only.

Our technique bears some similarities with the work of
Keren et al. (2019) on GRD. In particular, the notion of worst
case distinctiveness (wcd), which is used in GRD, is con-
nected with our legibility delay. A wed equal to k indicates
that k is the maximal prefix length of any path an agent may
take to reach its goal before it becomes clear to the observer.
This means that there are at least two paths that share a prefix
of length k and go to two different destinations. On the other
hand, a legibility delay equal to j indicates that, given any
two paths from the origin to two different destinations, they
do not share any subpath of length j. It follows from the def-
initions of wcd and legibility delay that the legibility delay
is always greater or equal to the wcd plus one (because the
legibility delay counts up to the transition at which the goal
becomes clear to the observer, while the wcd counts up to
the transition before the goal becomes clear to the observer).
Since the wed is calculated over prefixes of plans only, if
two paths have an overlapping fragment that is not a prefix,
the wed is zero, while the legibility delay is the length of the
fragment plus one. Despite the connection between wed and
legibility delay, the two concepts are used in different ways
in GRD and in our framework. GRD aims at modifying the
environment to facilitate (or hinder) legibility, while we do
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Figure 3: Experiments on the legibility delay for a 30x30 grid with destinations varying from 2 to 8 and 10%, 30%, 50%
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not alter the environment; we construct legible paths in it.

We define legibility in the context of path finding, which,
given its importance in several practical applications, have
been studied for many years. We refer the readers to recent
survey papers on this topic for an overview of them (Stern
2019). Here, we focus on the connection between our work
and Yu and La Valle’s algorithm for solving anonymous
multi-agent path finding problems (Yu and LaValle 2013).
Although we take inspiration from their work in expressing
our problem of finding legible paths in terms of calculating
the maximum flow of a suitably constructed network, our
settings are different. Time is central to Yu and La Valle’s
formulation. They work on a time-expanded network, as-
sume global synchronization between the agents, which start
at the same time and move in a coordinated fashion, and
their goal is to minimize makespan or flowtime. On the other
hand, we do not represent time explicitly. We do not impose
synchronization constraints among the agents (as well as the
observer) and our optimization functions involve the legibil-
ity delay and path costs. It is conceivable to use time as cost,
and we will explore that in future work.

8 Conclusions and Future Work

We explore the concept of goal legibility in a path planning
scenario. We present three optimization problems through
which we study how to achieve minimum legibility and how
minimum legibility is influenced by the agent’s available
budget. We show that those problems can be transformed
into classical optimization network flow problems when we
make suitable transformations on the graph underlying the
path planning problem. Our experiments show the viability
of our approach.

Based on the foundational study presented here, in future
work, we plan to investigate more fine-grained definitions
of goal legibility and to study more sophisticated settings,
e.g. partially observable environments. In line with our goal
of simplifying the decision-making process of the observer
and reducing their cognitive load, we plan to study the most
natural way to present the observer with an association be-
tween subwalks and goals as the look-up tables mentioned
in Section 2 will not be suitable in complex environments.
We will run human studies to make this assessment.
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in challenging scenarios, where the agents and the humans
do not share the same physical space and do not interact di-
rectly. Instead, the robots autonomously perform some tasks,
and a human supervisor remotely oversees the unfolding of
the mission. The supervisor is not supposed to follow each
robot’s actions at all times, but, when necessary, it needs
to be able to quickly assess the goal of each robot by sim-
ply looking at its behavior (direct communication might not
be available). It follows that we envisage a positive use of
our technique to simplify the decision-making process of the
human operators and reduce their cognitive load. However,
considering potential misuses of our technique, any method
that facilitates legibility could potentially be turned into a
surveillance system. In our case, if the agents are provided
with the walks to follow without informing them that such
walks maximize legibility, their behavior could be easily
surveilled by a malicious actor. Open-access research usu-
ally discourages malicious use of technology as the tech-
niques are in the public domain after being published.
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