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Abstract

Scheduling is an important problem for many applications,
including manufacturing, transportation, or cloud computing.
Unfortunately, most of the scheduling problems occurring in
practice are intractable and, therefore, solving large industrial
instances is very time-consuming. Heuristic-based dispatch-
ing methods can compute schedules in an acceptable time,
but the construction of a heuristic providing satisfactory so-
lution quality is a tedious process. This work introduces a
method to automatically learn dispatching strategies from just
a few training instances using reinforcement learning. Evalua-
tion results obtained on real-world, large-scale instances of a
resource-constrained project scheduling problem taken from
the literature show that the learned dispatching heuristic gener-
alizes to unseen instances and produces high-quality schedules
within seconds. As a result, our approach significantly outper-
forms state-of-the-art combinatorial optimization techniques
in terms of solution quality and computation time.

Introduction
Many problems in various application domains, such as trans-
portation, manufacturing, energy, or finance, require solving
scheduling problems in an acceptable time. Unfortunately,
most of these problems are proven to be NP-complete (Garey,
Johnson, and Sethi 1976) or NP-hard (Sotskov and Shakhle-
vich 1995), i.e., no algorithms for efficient schedule compu-
tation are known. Therefore, domain-independent optimiza-
tion techniques, such as Mixed Integer Programming (MIP)
(Bénichou et al. 1971), Constraint Programming (CP) (Rossi,
van Beek, and Walsh 2006), or Answer Set Programming
(ASP) (Gebser et al. 2012), often cannot find suitable sched-
ules for industrial-size problem instances within given time
constraints. In such cases, researchers aim to develop fast
(meta-)heuristic algorithms that compute satisfactory, but not
necessarily optimal, schedules in a runtime appropriate for
practical scenarios.

Over the past decades, various approximate scheduling
methods have been suggested in the literature (Vaessens,
Aarts, and Lenstra 1996; Potts and Strusevich 2009; Çalis
and Bulkan 2015). Among them, dispatching rules constitute
one of the most popular approaches (Grabot and Geneste
1994). Every such rule is a handcrafted heuristic designed by
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experts using past problem instances and personal experience
in solving scheduling problems. Examples include the First-
In-First-Out (FIFO) rule, which schedules jobs according
to the time they arrive in a queue, or the Most-Total-Work-
Remaining (MTWR) rule, prioritizing jobs with the most
amount of processing still to be done (Blackstone, Phillips,
and Hogg 1982).

Although algorithms based on dispatching rules have
shown good runtime results when applied to real-world
scheduling problems, the quality of obtained solutions is
often considerably off from optimal schedules. In addition,
these methods are not robust and require manual parametriza-
tion for a particular scheduling problem, which can be tedious
and error-prone. Machine Learning (ML) arises as a natural
tool for tuning and/or discovering such heuristics. The re-
utilization of experience gained by solving previous problem
scenarios on new unseen instances has been a topic of sig-
nificant interest in recent years, with a range of approaches
suggested in the literature (Bengio, Lodi, and Prouvost 2021).

Contributions. In this paper, we propose a new Reinforce-
ment Learning (RL) formulation for scheduling problems and
an approach for training neural networks to learn dispatching
strategies. Our contributions can be summarized as follows:

• Efficient MDP Formulation. We introduce an efficient
Markov Decision Process (MDP) formulation for schedul-
ing problems, where the state-transition function consid-
ers sequences rather than a fixed number of actions. This
formulation is closely related to dispatching heuristics and
allows us to represent the scheduling process in terms of
single-agent decision-making. Moreover, the number of
state transitions stays low and learned policies do not de-
pend on the number of jobs or tasks in problem instances.

• RL Training Approach. Taking advantage of the speci-
ficities of our MDP formulation, we design an RL ap-
proach capable of training order- and size-invariant neu-
ral networks on instances of diverse scale. Our training
method does not require a continuous reward function,
thus eliminating the need for reward-shaping techniques
(Laud 2004) and circumventing the injection of possibly
biased prior knowledge into the learning environment.

• Beam-search Solution Generation. Finding action se-
quences minimizing the solution cost of an instance based
on the generated probability distribution of the neural net-
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work is hard. While simple and fast, greedy search can
often lead to sub-optimal outcomes when applied to neu-
ral action selection. On the contrary, exhaustive search
gets intractable very soon due to the size of the search
space. Our use of beam search to generate solutions from
a neural network, thus, constitutes a suitable compromise
between solution quality and computational cost.

• Empirical Evaluation. We evaluate our method on large-
scale, industrial instances of a Resource-Constrained
Project Scheduling (RCPS) problem (Hartmann and
Briskorn 2010) from the literature (Kovács et al. 2021),
comparing our approach to previously developed CP and
MIP models. In particular, we demonstrate the ability of
our method to learn dispatching heuristics that generalize
well to previously unseen RCPS instances, thus reusing
the experience gained by solving a few training scenarios.

The paper is organized as follows. Section describes ba-
sic concepts of scheduling problems, introduces the RCPS
problem, as well as state-of-the-art algorithms and heuristics
to solve these problems. Section presents our RL approach
and its implementation. Results of an extensive evaluation
on an industrial scheduling problem are provided in Section .
Section concludes the paper and discusses future work.

Background and Problem Statement
Scheduling problems appear in different domains and are
ubiquitous in many industries such as manufacturing or trans-
portation (Rinnooy Kan 2012). From the earliest approaches,
most research focused on the assignment of jobs to machines,
where each job has an arrival time, a due date, and a penalty
associated with delays (Muth and Thompson 1963). Since
then, practical applications have led to various scheduling
problem definitions focusing on specific domain require-
ments (Pinedo 2016).

RCPS Problem. Different variants of the RCPS problem
(Hartmann and Briskorn 2010; Cavalcante, Cardonha, and
Herrmann 2013) deal with scenarios where limited resources
ought to be utilized in the best possible way to accomplish
the tasks of given jobs. A typical RCPS instance comprises
a set J of jobs and renewable resources M (e.g., machines
or personnel), which are represented by finite subsets of N+.
Each job j ∈ J corresponds to a (partially) ordered set of
tasks (or operations) Tj with a deadline dj ∈ N+ and an
importance weight wj ∈ N. Every task τ ∈ Tj has a process-
ing time pτ ∈ N+ and requires at least one resource in M .
The execution of tasks is non-preemptive, i.e., a task cannot
be interrupted once started. To respect the order of tasks in
a job j, any task τ ∈ Tj can start only when all preceding
tasks in Tj have been finished. Additional requirements on
the starting time might include coupling, when τ must start
immediately after all preceding tasks are finished, or buffer-
ing, enforcing a time buffer bτ ∈ N between τ and preceding
tasks. The resources m ∈ M are characterized by their ca-
pacities qm,k ∈ Q+ ∪ {0} for time points 1 ≤ k ≤ h. Note
that qm,k = 0 signals the unavailability of m at time k, e.g.,
due to maintenance or days off. The objective is to find a
schedule that minimizes the total tardiness, i.e., the weighted
sum of delays lj over all jobs j ∈ J :

∑
j∈J,lj>0

wj ·
(
ω · lj + ω′) (1)

where coefficients ω and ω′ indicate per time point and job-
wise delay penalty, respectively.

Previous Approaches. The RCPS problem is NP-hard in
the strong sense (Blazewicz, Lenstra, and Rinnooy Kan 1983)
and has been extensively studied in the literature (Herroelen,
De Reyck, and Demeulemeester 1998; Pellerin, Perrier, and
Berthaut 2020). Given the complexity, exact methods like
MIP or CP come to their limits as the size of problem in-
stances grows. Over the past decades, considerable research
focused on methods to compute high-quality solutions within
an acceptable time. Examples include approximate MIP or
CP models exploiting specific problem properties and incom-
plete approaches like (meta-)heuristic search.

Heuristic Approaches. A greedy algorithm can utilize var-
ious heuristics to construct a solution for a problem instance.
Among these heuristics, dispatching rules that express expert
knowledge in the form of “if-then” conditions are prevalent.
In general, such methods determine a priority for each job
based on its features and resource states at every time point
when scheduling decisions must be made. The features may
include the time left until a job’s deadline, the number of
yet unaccomplished tasks, or the importance weight of a
job. Then, the greedy algorithm schedules tasks of highest-
priority jobs to free machines such that problem constraints,
e.g., resource capacities, are satisfied.

While handcrafted heuristics have an outstanding runtime
performance and lead to solutions for very large problem
instances, they incur several drawbacks: (i) the prioritization
of jobs relies on the personal experience of domain experts
and particular special cases encountered in the past; (ii) ex-
perts must be aware of features relevant for the job prioritiza-
tion and combine them properly in a heuristic function; and
(iii) even slightest modifications of the original scheduling
problem or instance characteristics might cause a significant
reduction of solution quality or even make a heuristic method
unable to compute a feasible solution.

Metaheuristic Approaches. These techniques use sophis-
ticated combinations of heuristics to explore the most promis-
ing regions of the search space thoroughly. Unlike complete
optimization algorithms, metaheuristics do not guarantee the
computation of a globally optimal solution when given unlim-
ited runtime. Nevertheless, by traversing a range of feasible
solutions, metaheuristics can often produce high-quality so-
lutions with less computational effort than complete methods
(Blum and Roli 2003). Moreover, in many cases, metaheuris-
tic approaches provide better solutions than greedy heuristics,
requiring just a modest increase in computation time. Most
metaheuristics implement some form of stochastic optimiza-
tion, incorporating random decisions to circumvent overly
biased exploration of the search space and to escape local
optima (Bianchi et al. 2009). The metaheuristic methods uti-
lized for scheduling include simulated annealing, tabu search,
artificial immune systems, bee and ant colony optimization,
genetic algorithms, particle swarm optimization, and scatter
search (Vaessens, Aarts, and Lenstra 1996; Ishibuchi and
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Murata 1998; Ahire et al. 2000; Gao et al. 2019). A common
issue of metaheuristics is lack of robustness, i.e., they can be
successful on some problem instances but fail to find satis-
factory solutions or take long computation time on other in-
stances of the same problem (Chopard and Tomassini 2018).

RL Approaches. Recently, RL methods attracted re-
searchers as an approach to overcome the issues of scheduling
methods discussed above. Several works study variants of
the classic job-shop scheduling problem (Zhang et al. 2020;
Liu, Chang, and Tseng 2020; Han and Yang 2020; Tassel,
Gebser, and Schekotihin 2021). While these approaches pro-
vide better results than handcrafted dispatching rules, they
have only been tested on small-scale benchmark instances
(Taillard 1993; Demirkol, Mehta, and Uzsoy 1998) with less
than 100 jobs and 20 machines, so that they do not take the
challenges faced in industrial settings into account. Another
issue of such RL-based scheduling approaches is that they
rely on reward shaping to deal with the credit assignment
problem (Minsky 1961), faced due to the optimization of
episodic job completion objectives.

For the RCPS problem, which is more general than job-
shop scheduling, Sung, Choi, and Nielsen (2020) proposed an
RL approach that associates actions with jobs. Consequently,
the method is not size-invariant and requires re-training for in-
stances of different sizes. Empirical improvements compared
to greedy heuristics are thus limited to the tested benchmark
instances of small size, comprising at most 20 projects and
90 operations at maximum.

Moreover, researchers applied RL methods to improve the
performance of complete optimization approaches like MIP
and CP. Modern MIP solvers incorporate heuristic reasoning
techniques, such as cutting planes (Marchand et al. 2002),
branch-and-bound (Gomory 2010), branch-and-cut (Padberg
and Rinaldi 1991), or metaheuristics (Glover 1990), which
can be configured and tuned by means of RL methods (Tang,
Agrawal, and Faenza 2020; Nair et al. 2020; Prouvost et al.
2020; Ding et al. 2020). Similar domain-independent tuning
efforts have been undertaken for CP solvers as well (Cappart
et al. 2021; Chalumeau et al. 2021). However, automatic al-
gorithm configuration cannot circumvent limitations of exact
optimization approaches due to inherent problem complexity.

DispatchR Method
This section formulates dispatching decisions in terms of an
RL problem, presents a respective deep RL-based architec-
ture, specifies training and application methods.

Dispatching as an RL Problem
An RL problem is specified in the form of an MDP: at any
time point t ≥ 0, an agent is in a state st ∈ S , takes an
action at ∈ A, receives an instantaneous reward rt ∈ R, and
transitions to the next state st+1 ∼ p( · | st, at). A policy
π : S 7→ P(A) maps any state st to an action π(at | st) with
the intent of maximizing the expected cumulative reward
over a time horizon. We consider parameterized policies
πθ and seek to solve the optimization problem of finding
θ∗ = argmaxθ J(πθ), the optimal parameters for our policy.
In the following, we formulate dispatching decisions on jobs’

operations to be scheduled in terms of an MDP. We specify
the state space S , action spaceA, reward rt, and the transition
function st+1 ∼ p( · | st, at).
State Space S. A state st ∈ S is given by the set Lt of
legal jobs at time point t, i.e., jobs whose current tasks can
be scheduled to free resources, along with their features. For
each legal job j, we consider the following features: (1) re-
maining time until the deadline dj ; (2) number of remain-
ing tasks until completing the job j; (3) importance weight
wj ∈ N; (4) sum of buffer times bτ ∈ N over remaining tasks
τ ∈ Tj ; (5) number of remaining coupled tasks in Tj ; and
(6) processing time pτ ∈ N+ of the current task τ ∈ Tj .

Action Space A. The set A of available actions at time
point t consists of the legal jobs in Lt, i.e., A = Lt. Hence,
the action space is discrete, and the cardinality of A may
vary from one time point to another. The latter condition is
different from conventional action spaces, which have a fixed
number of actions for all possible states.

Reward rt. Due to the specificities of our training ap-
proach, which employs a derivative-free optimization method,
we do not require a continuous and differentiable reward
function. As a consequence, our method can directly use the
original objective function in Equation (1), even though it is
sparse and yields feedback only when jobs are completed.

State Transition. Given a state st ∈ S along with an or-
dered set Ot over the actions in A = Lt, the new state st+1

is determined as follows. For each job j in the order given
by Ot, allocate j if its resources are (still) free, and move on
to the next job in Ot otherwise. If the agent allocates a job j,
the required resources are occupied, and other jobs needing
them have to wait for the processing time pτ until completion
of the scheduled task τ ∈ Tj . After all legal jobs have been
traversed, the environment increments the time point by 1 and
determines the legal jobs whose current tasks are executable
at st+1 along with their features. Note that, even though all
jobs in Ot are initially legal at st, their successive allocation
may occupy the resources also required for later jobs in Ot.

Network Architecture
Before feeding state representations to a neural network,
we rescale observed job features by applying a min-max
normalization scaler and then proceed as follows.

Position-wise Feed-Forward Network. Our policy learner
consists of a simple, fully connected feed-forward network
composed of three linear transformations with a tanh activa-
tion in between:

FFN(x) = tanh(tanh(xW1 + b1)W2 + b2)W3 + b3

Similar to the transformer architecture (Vaswani et al.
2017), we apply the neural network to each legal job sep-
arately. The inner layers have dimensionality dff = 32, while
the network outputs a scalar representing the estimated job
priority. We transform the obtained priority vector into a prob-
ability vector by stacking the estimated priorities of jobs and
applying the Softmax function to the resulting vector. Having
a probability vector rather than a priority vector facilitates
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Algorithm 1: Policy Rollout
1: Input: policy network parameters θ and set J of jobs.
2: Initialize time point t = 0
3: while unfinished job j ∈ J exist do
4: Filter all legal jobs Lt

5: Compute features of the jobs in Lt

6: Sample without replacement an ordered set Ot of ac-
tions using the distribution given by policy πθ( · | st)

7: for all j ∈ Ot do
8: if j can be allocated then
9: Allocate j at time point t

10: end if
11: end for
12: t← t+ 1
13: end while

exploration during the learning phase. In particular, we deter-
mine the allocation order by sampling without replacement
from this probability vector, thus avoiding tie-breaking in
situations when two jobs have the same estimated priority.

Policy Rollout. In Algorithm 1, we put everything together
and describe one policy rollout. The resulting environment
comes close to classic static dispatching heuristics, except
that the policy network dynamically computes the job dis-
patching order. Moreover, the enforcement of coupling and
buffer constraints on the ordered set Ot is accomplished by a
custom propagator built-in to the environment.

Training Method
Objective functions of scheduling problems are defined over
discrete sets of possible job allocations and result in learn-
ing environments with non-smooth objectives. The latter are
not differentiable and, therefore, unsuitable for training RL
agents by traditional methods backpropagating gradients. In
our approach, we overcome this issue by using a combination
of two methods: estimation of a natural gradient using the
Parallelized Evolution Strategies (PES) algorithm by Sali-
mans et al. (2017) and a modern gradient-based optimization
algorithm to update the mean vector of the policy network
weight distribution.

Evolution Strategies (ES) is a family of black-box opti-
mization methods inspired by natural evolution that, in every
iteration, generate a set of parameter vectors, evaluate their
fitness using the objective function, and retain the “fittest”
ones. The generation procedure often uses d-dimensional
multivariate Gaussian, which mean vector and covariance
matrix represent candidate solution center and mutation ma-
trix of parameter vectors, respectively. ES methods optimize
these distribution parameters using plain gradients, which
often causes issues with slow convergence of ES algorithms
(Wierstra et al. 2014). To solve this problem, Natural Evolu-
tion Strategies (NES) (Wierstra et al. 2014) algorithms use
natural gradient (Amari 1998), which uses a more “natural”
Kullback-Leibler divergence (Kullback and Leibler 1951)
to measure the distance between distributions instead of the
Euclidean distance used by plain gradients.

When applied to the training of a neural network F (θ),

NES methods operate on the distribution of parameters pθ
and not on the network parameters θ themselves. In this case,
the goal is to minimize the expected value Eθ′∼pF (θ′) by
searching over the parameter space of pθ with stochastic
gradient optimization. Thus, the variant of PES suggested
by Salimans et al. (2017) assumes that pθ is a multivariate
Gaussian with mean vector θ and fixed covariance σ2I . In
this case, the gradient estimator can be rewritten using the log-
likelihood trick in terms of the parameter vector θ, leading to
an estimator of the form:

∇θF (πθ) ≈ 1
σ·N

∑N
i=1 F (πθ′

i
)ϵi (2)

where ϵi ∼ N (0, I) is sampled from a multivariate Gaussian,
θ′i = θ + σϵi, F (πθ′

i
) is estimated using a single trajectory,

and σ > 0 is a fixed constant. This gradient estimator is
used to evaluate the performance of each individual neural
network of the population on the current state of a scheduling
instance. Roughly, PES algorithm used in DispatchR can be
summarized as follows:
0. Initialize the current policy parameter vector θ.
1. Sample N neighboring solutions θ′i from a normal distri-

bution centered around θ with a standard deviation σ.
2. Evaluate each neighbor θ′i, using the tardiness function in

Equation (1) and estimate a natural gradient using Equa-
tion (2).

3. Provide the estimated gradient to an optimization algo-
rithm that updates the policy parameter vector θ.

4. Repeat from step 1 until convergence.
Because PES works with the function evaluations, there is

no need to rely on a continuous reward function. Therefore,
we can use the unbiased objective function of the original
problem definition. Moreover, Metz et al. (2021) recently
pointed out that ES may be a better alternative for training
RL agents than gradient descent, providing better gradient
estimation when the policy function is low-dimensional.

Schedule Computation
Computation of schedules using a trained RL agent only, i.e.,
as a heuristic for a greedy best-first strategy, might be too
narrow since an agent selects actions one by one or sequence
by sequence, as in our case. Greedy search methods, which
iteratively select the action with the highest probability ac-
cording to the probability distribution of the policy network,
might ensure a short computation time. However, its applica-
tion often leads to solutions of a lower quality (Stahlberg and
Byrne 2019). Beam search provides a good balance between
greedy best-first and complete strategies and, therefore, it is
the preferred method for decoding auto-regressive machine
translation models (Meister, Cotterell, and Vieira 2020). In
particular, beam search maintains k beams of possible so-
lutions, which correspond to a form of pruned breadth-first
search where the breadth is limited to k ∈ Z+ hypotheses.

Our beam search algorithm, illustrated in Figure 1, has
two phases: the greedy and the exploration phase. In the
first phase, the algorithm starts with the initial state s0 and
greedily constructs a solution by sampling action vectors
at from the probability distribution π(at | st), where 0 ≤
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t0 t1

Greedy

t′￼2,k

t2

Beam Search

tm−1 tm

t0 t1 t2 tm−1 tm

t′￼m−1,k t′￼m,k

t′￼m,1 Beam 1

Beam k

Figure 1: Two-phase beam search to compute schedules using
a previously trained RL agent, where the initial greedy phase
selects all actions best-first, while k beams explore alternative
schedules in the second phase.

t ≤ m and m is the maximum starting time of any task in
the schedule. In each step of the greedy construction, the
algorithm takes the most probable action from action vector
at that comprises all legal actions for the current state st
ranked by their probabilities. The greedy phase stops when a
complete schedule is computed.

In the second phase, our method computes an entropy for
each state in the trace of the greedy algorithm. The obtained
entropy values indicate the uncertainty of the policy network
while generating the action vector. Roughly, a state has high
entropy if all its actions have similar probabilities. Next, we
select k states with the highest entropy and run the greedy
search from the first stage starting from each of the k selected
nodes. The corresponding branches in the search tree are
created using the second-best action. At the end of the second
phase, the algorithm has obtained k + 1 schedules, compares
them, and returns the one with the best objective function
value as a result. While being k times more expensive than
greedy search, beam search usually generates better solutions
in an acceptable time. Moreover, one can easily speed up the
search for k additional solutions by parallel computations.

Experiments
This section presents the results of two experiments. First, we
evaluate DispatchR on a large-scale industrial RCPS prob-
lem and compare the solution quality to existing MIP- and
CP-based methods (Kovács et al. 2021).1 In the second ex-
periment, we investigate whether DispatchR can improve the
results of these MIP and CP methods by supplying them with
high-quality initial solutions.2

In both experiments, we used the following setup. We

1Unfortunately, the RL approaches from the literature surveyed
in Section come without publicly available implementations or
instance sets, and we could thus not include them in our experiments.

2Our implementation, a pre-trained model, and benchmarks are
available at: https://github.com/ingambe/LearningHeuristics

applied Adam (Kingma and Ba 2015) as a gradient-based op-
timizer with learning rate α = 0.04. The gradient estimation
was done with PES, using the standard deviation σ = 0.05
and a population size of N = 300. Moreover, the beam
search algorithm was limited to k = 80 beams, providing a
good balance between computational effort and exploration
of the search space. The RL agents were trained until conver-
gence, reached after 37800 episodes (126 iterations), which
amount to about one hour of computation time on the used
hardware—a machine equipped with two 20 cores/40 threads
Intel Xeon 6138 CPUs.

Benchmark Instances. We perform both experiments on
a set of large industrial RCPS problem instances provided
by Kovács et al. (2021). Compared to previously mentioned
RCPS problems from the literature, this benchmark set is very
challenging due to its size. On average, the 15 industrial in-
stances include 6274 jobs, 215 machines, and 17529 tasks to
schedule, modeling the projected work for six weeks on pro-
duction lines at different points in time. That is, the instances
of the benchmark set are samples of a common stochastic
process. The latter is often not the case for random instances
generated independently of one another and, therefore, not
exhibiting patterns we could capture with ML models. Un-
like that, an RL agent trained on some of the instances by
Kovács et al. (2021) can potentially learn scheduling poli-
cies applicable to unseen instances as well. Given the limited
number of instances, we take the first two (arbitrarily chosen)
of 15 instances for training and the 13 remaining ones as
test instances. Note that we could not observe any significant
improvement in the generalization ability of RL agents when
using more instances for training.

Experiment 1: DispatchR as Standalone Solver
In the original work, Kovács et al. (2021) presented MIP
and CP models for the investigated industrial RCPS prob-
lem, implemented using the state-of-the-art solvers Gurobi
(Gurobi Optimization 2021) and OR-Tools CP-SAT (Perron
and Furnon 2019), respectively. Due to the size and complex-
ity of instances for scheduling six weeks in advance, both
methods require an initial solution to start the optimization.
Otherwise, the solvers fail to find a feasible schedule within
3600 seconds (one hour) of computation time, which we set
as a limit in our experiments. With an initial solution at hand,
both the MIP and CP solver can find solutions of significantly
higher quality in the given computation time. Hence, Kovács
et al. (2021) proposed a greedy search method with a hand-
crafted dispatching heuristic based on the features of jobs for
determining some initial solution to optimize further. We take
these existing methods as baselines to compare the perfor-
mance of scheduling policies learned by DispatchR without
relying on any handcrafted heuristic or initial solution.

Results. The box plot in Figure 2 visualizes the solution
quality obtained with the greedy approach as well as the CP
and MIP methods by Kovács et al. (2021) on the one hand,
and with our DispatchR approach on the other. While the
initial solutions determined by greedy search have significant
room for improvement, the large size of instances represent-
ing six planning weeks only admits modest optimization
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progress measured by the objective function in Equation (1)
with the MIP model, as also observed in (Kovács et al. 2021).
The CP approach can improve the initial solutions more suc-
cessfully yet still leaves a noticeable gap to DispatchR whose
schedules usually yield the lowest total tardiness.

Unlike the CP and MIP methods, which perform anytime
optimization up to the time limit of 3600 seconds (as the in-
dustrial RCPS instances are too complex for earlier termina-
tion with an optimal solution), the beam search of DispatchR
investigates the fixed number of k = 80 beams for schedule
computation. Hence, as detailed in Table 1, DispatchR termi-
nates with a high-quality schedule in less than a minute for
every instance. The first two instances are distinguished in
boldface as we used them for training the policy network of
DispatchR, while the other 13 instances form the test set. We
crosschecked with an alternative splitting into two training
and 13 test instances that the average solution quality varies
by less than 0.5%, indicating that the choice of particular
training instances does not strongly affect DispatchR results
on the investigated industrial RCPS problem. In fact, the
schedules found by DispatchR improve on the MIP method
by a substantial margin for every instance, amounting to 29%
lower total tardiness on average. The average advantage is
still about 17% relative to the better scaling CP method, and
the improvements are also consistently distributed over the
instances, with the only exception of the lower tardiness ob-
tained with the CP solver on Instance 5. However, recall that
the latter is run for one hour per instance, while DispatchR
finds almost as good or better schedules in less than a minute.

Without providing further detailed results, let us note that
the instances for scheduling six weeks in advance are the
largest provided by Kovács et al. (2021). On smaller instances

Greedy CP MIP DispatchR

25000

27500

30000

32500

35000

37500

40000

42500

O
bj

ec
tiv

e

Figure 2: Box plot comparing the quality of solutions (up to
cost 44000) by DispatchR to a handcrafted heuristic as well
as CP and MIP methods presented by Kovács et al. (2021).

covering two planning weeks, the results reported in (Kovács
et al. 2021) (for a time limit of 1800 seconds per instance)
show an average improvement of 47% relative to the initial
solutions determined by greedy search with the CP approach.
The MIP method, which scales worse on the large instances,
has an advantage here and cuts the total tardiness down by
remarkable 65% on average. We also applied DispatchR to
the instances representing two planning weeks and obtained
an average improvement of 24% over the greedy search with
handcrafted dispatching heuristic, thus being less effective
than CP and MIP. This means that complete optimization
approaches remain the way of choice when they scale within
a given computation time, and that learned policies rather
than handcrafted heuristics should be taken for greedy search.

Instances CP MIP DispatchR

Instance 1 Obj. 32061 37517 246562465624656
Time 3600 3600 383838

Instance 2 Obj. 33752 39405 242032420324203
Time 3600 3600 383838

Instance 3 Obj. 32374 38806 284502845028450
Time 3600 3600 414141

Instance 4 Obj. 33125 36019 321913219132191
Time 3600 3600 424242

Instance 5 Obj. 316813168131681 38584 32191
Time 3600 3600 424242

Instance 6 Obj. 35366 41023 326133261332613
Time 3600 3600 454545

Instance 7 Obj. 36120 41994 326703267032670
Time 3600 3600 454545

Instance 8 Obj. 36260 43056 326743267432674
Time 3600 3600 444444

Instance 9 Obj. 32217 38720 282182821828218
Time 3600 3600 404040

Instance 10 Obj. 32162 38233 245792457924579
Time 3600 3600 404040

Instance 11 Obj. 33623 39627 245982459824598
Time 3600 3600 383838

Instance 12 Obj. 31134 37726 282102821028210
Time 3600 3600 424242

Instance 13 Obj. 33744 40255 242062420624206
Time 3600 3600 383838

Instance 14 Obj. 34067 40467 242022420224202
Time 3600 3600 383838

Instance 15 Obj. 54058 60815 385043850438504
Time 3600 3600 414141

Average 34783 40816 288112881128811
3600 3600 414141

Table 1: Solution quality and computation time (lower num-
bers are better for both) per instance obtained with the exist-
ing CP and MIP methods or DispatchR’s scheduling policy.
The time is measured in seconds.
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Experiment 2: DispatchR plus CP and MIP Solvers
The experiments by Kovács et al. (2021) showed that starting
from an initial solution can significantly improve the perfor-
mance of exact methods. Especially for industrial scheduling
problems, it is important to find such a solution quickly to
leave time for complete solvers to further improve the quality.
In our second experiment, we substitute the original hand-
crafted heuristic with DispatchR to determine initial sched-
ules to supply to the CP and MIP solvers. We again run the
CP and MIP methods for one hour and evaluate the outcomes.

Results. Figure 3 displays the solution quality of the CP
and MIP methods starting from initial solutions by DispatchR
as well as DispatchR as a standalone solver (like in Figure 2)
for comparison. We observe that both the CP and MIP solver
succeed to improve the solution quality relative to the stan-
dalone DispatchR by 12% or 5%, respectively, on average.
Although the MIP approach scales worse than CP on the
large instances for six planning weeks, we obtain 33% im-
provement when using DispatchR instead of the handcrafted
dispatching heuristic by Kovács et al. (2021) to determine
initial solutions. With the CP method, which leads to the
best overall results starting from the schedules found by Dis-
patchR, the average tardiness is 27% lower, thus exhibiting a
significant boost of solution quality by combining complete
methods with our approach.

Interpretability
Interpreting outputs from neural networks is a notoriously
difficult challenge (Zhang et al. 2021). However, understand-
ing the allocation decisions made by a neural network can
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Figure 3: Box plot of solution quality improvements by using
DispatchR (instead of the original handcrafted heuristic) to
supply an initial solution to the existing CP and MIP methods.
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Figure 4: Average feature importance over the training in-
stances, where the signs of weights indicate a positive/nega-
tive correlation and absolute values quantify the significance.

provide meaningful insights into the heuristic learned by an
RL agent and assist human operators in their work. In or-
der to assess the impact of features on the scheduling policy
learned by DispatchR, we thus applied Integrated Gradients
(Sundararajan, Taly, and Yan 2017), which belongs to the
family of attribution methods (Binder et al. 2016; Shrikumar,
Greenside, and Kundaje 2017).

The aggregated feature attribution information over train-
ing instances in Figure 4 indicates the correlations between
job features and the estimated job priorities. Despite the
policy network we use is non-linear and may thus involve
complex dependencies between job features and priorities,
the absolute value of a feature weight quantifies the degree
of correlation and its sign expresses whether the feature has a
positive or negative influence, respectively. Hence, the feature
weights obtained for DispatchR’s policy network point out
that jobs with few remaining tasks, a short processing time
for the current task, buffer constraints between remaining
tasks, close deadlines, and few coupled tasks are prioritized.
Interestingly, the importance weights wj for jobs j do not
impact the estimated priorities, and a plausible explanation is
that the investigated RCPS instances associate the uniform
importance weight 1 with almost all of the considered jobs.

Conclusions and Future Work
In this paper, we present DispatchR, a deep RL approach
to automatically learn high-quality dispatching strategies,
and apply it to a large-scale industrial scheduling problem.
We introduce an efficient MDP formulation of dispatching
decision-making along with a policy network architecture
that does not rely on any specific order and size of jobs. Un-
like previous approaches, we do not perform reward shaping
but use the unbiased original objective function for training
RL agents. Our experiments on a set of large industrial RCPS
problem instances show that DispatchR succeeds to produce
high-quality schedules in a fraction of the runtime required by
exact CP and MIP methods. Since the latter also take advan-
tage of supplied initial solutions, DispatchR can be used both
as a standalone solver or an approximate scheduling method
for boosting domain-independent optimization techniques.
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In future work, we plan to extend DispatchR to generaliza-
tions of the considered RCPS problem and to study further
scheduling application domains as well. The goal is to ob-
tain general insights about neural architectures required to
learn effective dispatching heuristics from the features of
large-scale instances of real-world scheduling problems. In
addition, we aim to improve the performance of our approach
further by exploring more advanced techniques such as Tabu
and Monte Carlo tree search. Finally, we intend to broaden
the scope of DispatchR to dynamic scheduling scenarios by
taking live updates and rescheduling demands into account.
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