
Is Policy Learning Overrated?:
Width-Based Planning and Active Learning for Atari

Benjamin Ayton*1, Masataro Asai*2

1MIT
2MIT-IBM Watson AI Lab

aytonb@mit.edu,masataro.asai@ibm.com

Abstract
Width-based planning has shown promising results on Atari
2600 games using pixel input, while using substantially fewer
environment interactions than reinforcement learning. Re-
cent width-based approaches have computed feature vectors
for each screen using a hand designed feature set (Rollout-
IW) or a variational autoencoder trained on game screens
(VAE-IW), and prune screens that do not have novel fea-
tures during the search. We propose Olive (Online-VAE-IW),
which updates the VAE features online using active learn-
ing to maximize the utility of screens observed during plan-
ning. Experimental results across 55 Atari games demonstrate
that it outperforms Rollout-IW by 42-to-11 and VAE-IW by
32-to-20. Moreover, Olive outperforms existing work based
on policy-learning (π-IW, DQN) trained with 100 times the
training budget by 30-to-22 and 31-to-17, and a state of the art
data-efficient reinforcement learning (EfficientZero) trained
with the same training budget and ran with 1.8 times the
planning budget by 18-to-7 in the Atari 100k benchmark,
without any policy learning. The source code and the ap-
pendix are available at github.com/ibm/atari-active-learning
and arxiv.org/abs/2109.15310.

Introduction
Recent advancements in policy learning based on Reinforce-
ment Learning (RL) (Sutton and Barto 2018) have made it
possible to build an intelligent agent that operates within a
stochastic and noisy image-based interactive environment,
which has been one of the major goals of Artificial Intel-
ligence. The Arcade Learning Environment (ALE) (Belle-
mare et al. 2013), which allows access to pixel and mem-
ory features of Atari games, is a popular testbed for testing
modern RL approaches (Mnih et al. 2015). However, RL
approaches are notorious for their poor sample efficiency;
they require a huge number of interactions with the environ-
ment to learn the policy. This is especially true for sparse re-
ward problems, such as Montezuma’s Revenge, where suc-
cessful cases could require 1010 interactions with the envi-
ronment (Badia et al. 2020). Poor sample efficiency hinders
real-world applicability when the number of interactions is
restricted by practical constraints, such as the runtime for
collecting data and the safety of the environment.

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Meanwhile, the planning setting of the ALE provides an
alternative benchmark where the focus is placed on efficient
search. Significant progress in this setting has been made
on Iterative-Width (IW) (Lipovetzky and Geffner 2012;
Lipovetzky, Ramirez, and Geffner 2015) recently, which
prunes states if they do not possess features that have not
been seen during search, and has been demonstrated to out-
perform Monte Carlo tree search based on UCT (Kocsis
and Szepesvári 2006). For example, p-IW (Shleyfman, Tu-
isov, and Domshlak 2016) modifies IW to maximize the re-
ward per feature, DASA (Jinnai and Fukunaga 2017) learns
and prunes actions that lead to identical states, Rollout-IW
(RIW) (Bandres, Bonet, and Geffner 2018) improves any-
time characteristics of IW, which revolutionalized the field
with almost-real-time planning on pixel inputs, π-IW (Jun-
yent, Jonsson, and Gómez 2019) performs informed search
with a trainable policy represented by a neural network, and
π-IW+ (Junyent, Gómez, and Jonsson 2021) also learns a
value function.

Width-based approaches assume discrete inputs, such as
the RAM state of Atari games, but can work on continuous
variables using discretization (Frances et al. 2017; Teichteil-
Königsbuch, Ramı́rez, and Lipovetzky 2020). π-IW dis-
cretizes the last hidden layer of a policy function as the in-
put. Recently, VAE-IW (Dittadi, Drachmann, and Bolander
2021) obtains a compact binary representation by training a
Binary-Concrete VAE offline.

Search-based approaches are in general not directly com-
parable against RL-based approaches because the latter are
given significantly larger computational budgets than the
former. One exception is π-IW, a hybrid approach that
requires 2 × 107 interactions1 to learn policies in Atari
games. This suggests a better middle ground between one
extreme (RL) that requires billions of interactions, and an-
other (search) which does not improve in performance over
time but is more sample efficient. Given that π-IW requires a
large training budget, we hypothesized that learning a policy
is significantly sample-inefficient. By building off of VAE-
IW, which performs offline representation learning that is
fixed once trained, and does not improve over time, we aim
to build an agent which does learn over time, without expen-
sive policy learning.

1Updated in the Arxiv version from 4×107 in the ICAPS paper.

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

547

To this end, we propose Olive (Online-VAE-IW), a hy-
brid agent that collects new data and improves its state rep-
resentation online by combining Iterative Width with Active
Learning (Settles 2012). Active Learning is a group of ap-
proaches that optimize a data-dependent objective by explor-
ing, selecting, and adding new observations to the dataset.
Olive uses active learning in two senses: First, it improves
the search with a Multi-Armed Bandit that balances data col-
lection (exploration) and reward-seeking behavior (exploita-
tion) based on expected rewards and their variances. Sec-
ond, it improves the state representation with an Uncertainty
Sampling (Settles 2012) that selects and adds novel screens
between each planning episode based on the inaccuracy of
the state representation. Active learning collects both reward
information and screen information, but there is a non-trivial
interaction between them. For example, reward-seeking be-
havior is also necessary for screen selection because it is not
cost effective to accurately learn the representations of states
that are unpromising in terms of rewards.

Our online learning agent plays the game until a specified
limit on ALE simulator calls is reached. Each time the game
finishes (an episode), the agent selects and adds a subset of
the observed game screens to a dataset, then retrains a Bi-
nary Concrete VAE neural network that provides feature en-
codings of screens. Between each action taken in an episode,
it constructs a search tree by performing rollouts, and selects
the most promising action (giving the highest achievable re-
ward in the expanded tree) at the root node using the in-
formation collected during the rollouts. States encountered
during a rollout are pruned using the novelty criterion pro-
posed by Rollout-IW. During a rollout, actions are selected
by balancing the exploration and the exploitation of rewards
using the Best Arm Identification algorithm called Top Two
Thompson sampling (Russo 2020).

We show that after only a small number of training
episodes, our approach results in markedly improved game-
play scores compared to state of the art width-based plan-
ning approaches and policy-based approaches with the same
or a smaller number of simulator calls.

Background
We formalize the image-based ALE as a finite horizon MDP
P = 〈X,A, T, I,R, t∗, γ〉, where X is a set of state ob-
servations (game screens) x, A is a set of actions a, T is
a deterministic transition function, I ∈ X is an initial state,
R : X,A,X → R is a reward function, t∗ is a planning hori-
zon, and γ is a discount factor. A policy π(x) = Pr(a | x) is
a categorical distribution of actions given a state, and a score
function Vπ(x) is the long-term reward of following π from
x, discounted by γ. Our task is to find an optimal policy π∗
which maximizes V ∗π (I). Formally,

x0 = I, xt+1 = T (xt, at), (1)

π∗ = arg max
π

Vπ(I) = arg max
π

t∗∑
t=0

γtR(xt, at,xt+1).

In particular, we focus on a deterministic policy, i.e., a plan,
or an action sequence π∗ = (a0, · · · at∗), which is equivalent

to Pr(a = at | x = xt) = 1,Pr(a 6= at | x = xt) = 0.
Additionally, we define an action-value function

Qπ(x, a) = R(x, a,x′) + γVπ(x′), x′ = T (x, a) (2)

which satisfies Vπ∗(x) = maxaQπ∗(x, a). We will omit
π, π∗ for brevity hereafter.

Following existing work, the agent is assumed to have ac-
cess to the ALE simulator, and we assign a fixed simulation
budget to the planning process and force the agent to select
an action each time the budget runs out. We assume that ob-
served states can be cached, and the simulator can be set to
any cached state during planning. We discuss more details
on the experimental setting in Sec. .

Classical Novelty for Width-Based Planning
Width-based planning is a group of methods that exploit the
width of a search problem, originally developed for clas-
sical planning problems, which are deterministic shortest
path finding problems that are quite similar to MDPs in sev-
eral aspects. To simplify the discussion, assume that each
state x ∈ X is represented by a subset of boolean atoms
F , so that the total state space is X = 2F . A (conjunc-
tive) condition over the states can be represented as a subset
c ⊆ F where a state x satisfies c (denoted as x |= c) when
c ⊆ x. Then a unit-cost classical planning problem can be
seen as an MDP 〈X,A, T, I,R,∞, 1〉 where T is determin-
istic and, given a goal condition G, R(x, a,x′) = 0 when
x′ |= G, and R(x, a,x′) = −1 otherwise. Unlike typical
STRIPS/PDDL-based classical planning (Fikes, Hart, and
Nilsson 1972), T could be a black-box in our setting.

Width in width-based planning (Lipovetzky and Geffner
2012) is defined as follows. Given a condition c, we call
the optimal plan to reach a state x |= c to be the optimal
plan to achieve c. The width w(c) of c is then the mini-
mum size |c′| of a condition c′ such that every optimal plan
π∗ = (a0, a1 . . . , aN) to achieve c′ is also an optimal plan
to achieve c, and that any prefix subsequence (a0, . . . , an)
of π∗ (n ≤ N) is also an optimal plan for some condition
of size |c′|. The width of a classical planning problem is
then w(G), the width of the goal condition. While the defi-
nition can be easily extended to categorical variables instead
of boolean variables, as seen in SAS+ formalism (Bäckström
and Nebel 1995), we focus on boolean variables as they are
easily interchangeable.

Lipovetzky and Geffner (2012) found that, in a major-
ity of planning problems in International Planning Compe-
tition (López, Celorrio, and Olaya 2015) benchmarks, each
single goal atom g ∈ G seen as a condition {g} tends to
have a small width, typically below 2. Based on this finding,
they proposed Iterative Width (IW), a highly effective blind
search algorithm that is driven by the intuition that the orig-
inal problem also has a small width. IW performs a series of
iterations over the widthw in increasing order. Thew-th iter-
ation, denoted as IW(w), performs a breadth-first search that
enumerates optimal plans for every condition whose width
is less than or equal to w. IW(w) is guaranteed to solve a
problem whose width is below w. While it runs in time ex-
ponential in w, low-w iterations run quickly and efficiently
by keeping track of a novelty metric of each search state and

548

pruning the states with novelty larger than w. A state x is
called novel with regard to w if there exists a condition c of
size w such that x |= c, and no other state x′ that has been
seen so far satisfies c. The novelty of a state is then defined
as the minimum w for which it is novel.

Novelty can be used like a heuristic function (Lipovetzky
and Geffner 2017) in traditional search algorithms such as
Greedy Best First Search (Hoffmann and Nebel 2001). How-
ever, unlike traditional heuristics it does not utilize the tran-
sition model or the goal condition, and its value is affected
by the set of states already expanded by the search algo-
rithm. Let C be a CLOSE list; a database of states expanded
during the search and their auxiliary information. We denote
the novelty of state x by n(x, C) to emphasize the fact that
it depends on the CLOSE list. Initially, C = ∅, but new
states are added to C as more states are expanded. To deter-
mine whether a new state x is novel, check whether there is
a condition c satisfied by x and not satisfied by any state in
C. To implement a fast lookup, C is implemented with a set
of conditions that are already achieved. IW(w) terminates
when C contains all conditions of size w expressible under
F .

Rollout-IW (RIW)
Width-based planning has been successfully applied to
MDPs outside of classical planning. A boolean encoding
z ∈ {0, 1}F is computed for each state, where each ele-
ment zj of the encoding indicates that the j-th atom in F is
present in the state if and only if zj = 1. A state is pruned
if its novelty is larger than a specified width, and the policy
with highest reward in the pruned state space is determined.

To apply width-based planning to Atari games with states
derived from screen pixels, Bandres, Bonet, and Geffner
(2018) proposed to compute z from a vector of pixelsx ∈ X
using the B-PROST feature set (Liang et al. 2016). How-
ever, even with width 1, the state space is too large to plan
over using breadth first search under the time budgets con-
sistent with real-time planning. To overcome this issue, they
proposed Rollout-IW, which improves the anytime behavior
of IW by replacing the breadth-first search with depth-first
rollouts. They define a CLOSE list Cd specific to each tree
depth d and use a depth-specific novelty n(x, C≤D) for state
x at depth D. The depth-specific novelty is the smallest w
such that for some condition c with |c| = w, x |= c and c
is not satisfied by any state in Cd with d ≤ D. Rollouts are
performed from the tree root, selecting actions uniformly at
random until a non-novel state is reached. Novelty is reeval-
uated for states each time they are reached, since CLOSE
lists at lower depths may change between different rollouts,
and a state is pruned if it is ever found to not be novel.

VAE-IW
VAE-IW (Dittadi, Drachmann, and Bolander 2021) extends
RIW to learn encodings from screen images. In a training
stage, the game is run using RIW until a fixed number of
screens are encountered and saved. A Binary-Concrete Vari-
ational Autoencoder (Jang, Gu, and Poole 2017; Maddison,
Mnih, and Teh 2017) is trained on the saved data to pro-

duce a binary encoding vector z ∈ {0, 1}F from screen
pixels, following work on learning a PDDL representation
of image-based inputs (Asai and Fukunaga 2018). After the
training, the game is played using RIW, with features ob-
tained by the encoder.

A VAE consists of an encoder network that returns qφ(z |
x), a decoder network that returns pθ(x | z), and a prior dis-
tribution p(z). The VAE is trained to maximize the evidence
lower bound (ELBO) of the saved screens, computed as

log pθ(x) ≥ ELBO(x) (3)
= Eqφ(z|x)〈log pθ(x | z)〉 −DKL(qφ(z | x) ‖ p(z)).

To obtain binary latent vectors, the latent variables are as-
sumed to follow component-wise independent Bernoulli dis-
tributions.

p(z) =
F∏
j=1

Bern(0.5), qφ(z | x) =
F∏
j=1

Bern(µj) (4)

where µ are Bernoulli parameters that are obtained as the
sigmoid of the output of the encoder network. To obtain de-
terministic features for planning, qφ(z | x) is thresholded,
using zj = 1 if µj > 0.9 and 0 otherwise.

Online Representation Learning for Atari
Learning the features from data permits the encoding to be
tailored to a specific game, but generating a faithful encod-
ing of a game is non-trivial, and using a static dataset is
typically insufficient. For example, Dittadi, Drachmann, and
Bolander (2021) save screens that are reached by a Rollout-
IW agent using a hand-coded B-PROST feature set, and use
those screens to train a Binary-Concrete VAE to produce a
game-specific encoding. However, in order for the encod-
ing to be representative of a game, the dataset must include
screens from all visually distinct parts, such as separate lev-
els. When the B-PROST/Rollout-IW agent lacks a degree of
competence to reach level 2 and beyond, screens from the
later levels are never included in the dataset, thus VAE-IW
cannot perform well in later levels.

To build an efficient online planning agent that simultane-
ously learns the representation, we must tackle three chal-
lenges: (1) How to automatically collect a diverse set of
screens in the dataset, which requires a metric that quan-
tifies the diversity of screens. (2) How to focus on improving
the representations of states that return high rewards. This
is because learning the representation of the states with low
rewards may not be worthwhile because the resulting agents
will ultimately avoid such states. Finally, (3) How to keep the
dataset size small. If the dataset gets too large, the compu-
tational effort for retraining between episodes becomes pro-
hibitive.

To tackle these challenges, we propose Olive (Online-
VAE-IW) (Alg. 1), an online planning and learning agent
that performs dynamic dataset refinement and retraining of
the VAE between each search episode (line 4-5). It addresses
the challenges above from three aspects: (1) Pruning based
on novelty, (2) search guided by Bayesian estimates of future
rewards, and (3) active learning based on uncertainty sam-
pling in games that change visually as the game progresses.
Olive consists of 3 nested loops:

549

1. Episode (line 8): A period which is started and ended by
a game reset. Each reset could be triggered by a limit on
the maximum number of actions in an episode, a limit
on simulator calls (training phase only), or an in-game
mechanism (e.g., beating the game, running out of lives).
During training, each episode is followed by augmenting
the dataset with k screens observed in the episode and re-
training the VAE. When evaluating Olive’s performance
after training, no additional screens are added.

2. Planning and Acting (line 13): A period in which the
agent makes a decision by searching the state space us-
ing a simulator. It ends by hitting a limit on the maximum
number of simulator calls for the period. When it reaches
the limit, the agent performs an action irreversibly. The
agent chooses the action that achieved the largest reward
Qi(x, a) on any rollout i from the root node (line 17),
and then truncates the search tree at the new root.

3. Rollout (line 18): A lookahead that collects information
using a black-box simulator. States are pruned if they are
not novel (line 23). Actions are chosen by Best Arm Iden-
tification (BAI) algorithms (line 24), based on statistics
from previous rollouts. Each recursion into a deeper roll-
out obtains a new empirical Q-value (line 27-28) and up-
dates the statistics (line 29-30).

Prior Distributions for Reward
Let Q(x, a) be a random variable for the cumulative reward
of a rollout from x starting with an action a, and Qi(x, a)
be the cumulative reward obtained from the i-th rollout
launched from x with a. Assume that we have launched
n rollouts from x with a so far, and we have a collection
of data {Q1(x, a), . . . , Qn(x, a)}. We define a hierarchical
Bayesian model where p(Q(x, a)) is a Gaussian distribu-
tion N (µ, σ2) with an unknown mean µ and a variance σ2,
which are further modeled as follows (Gelman et al. 1995):2

Q(x, a) | µ, σ2 ∼ N (µ, σ2) (5)

µ | σ2 ∼ N (µ̄, σ2/n) (6)

σ2 ∼ Scaled-Invχ2(n+ 1, σ̄2) (7)

where µ̄ is the empirical mean µ̄ = 1
n

∑n
i=1Qi(x, a) of

the data, and σ̄2 is a regularized variance σ̄2 = 1
n+1 (σ0 +∑

i(Qi(x, a)− µ̄)2) where we use σ0 = 0.2 as a prior (hy-
perparameter), Scaled-Invχ2 is a Scaled Inverse χ2 distri-
bution. Initializing σ̄2 to a non-zero value σ0 when no roll-
outs are made (n = 0) and using n + 1 as the divisor in-
stead of n is called a pseudo-count method, which avoids
zero-frequency problems, i.e., when it is the first time to
launch a rollout from the current node, we avoid computing
Scaled-Invχ2 with σ̄2 = 0, which is undefined.

This Bayesian statistical modeling can properly account
for the uncertainty of the observed Q(x, a). The key idea
is that the true mean/variance of Q(x, a) differs from the
empirical mean/variance of Q(x, a) observed during finite
rollouts. Since we do not know the true mean/variance, we

2This particular model is equivalent to a Normal-Gamma dis-
tribution in other literature.

Algorithm 1: Training and evaluation of Olive

1: procedure OLIVE-EXPERIMENT(X,A, T, I,R)
2: Initialize VAE, dataset X ← ∅
3: for ep = 1, . . . , Nep do . Training loop
4: X ← X ∪ {k screens observed in EPISODE}
5: Retrain VAE with X
6: for ep = 1, . . . , 10 do . Evaluation loop
7: EPISODE
8: procedure EPISODE
9: xroot ← RESETGAME

10: while xroot is not terminal do . e.g., until dead
11: xroot ← PLANANDACT(xroot)
12: return observed screens
13: procedure PLANANDACT(xroot)
14: Initialize CLOSE list

{
C0 . . .

}
15: while budget remaining do . Planning
16: ROLLOUT(xroot, [], 0)
17: return T (xroot, arg maxa maxiQi(xroot, a))

18: procedure ROLLOUT(x, π, d) . state, path, depth
19: z ← SIGMOID(ENCODE(x)) > 0.9
20: if Parameters[π] is not present: . new node
21: Update Cd using x, initialize Parameters[π]
22: if x is terminal | budget exceeded | n(x, C≤d) > w:
23: return 0
24: a← Best Arm Identification(Parameters)
25: x′ ← T (x, a), π′ ← π + [a]
26: (n, µ̄, σ̄2)← Parameters[π′]
27: Qn+1(x, a)←
28: R(x, a,x′) + γ ROLLOUT(x′, π′, d+ 1)

29: µ̄′ ← nµ̄+Qn+1(x,a)
n+1

30: σ̄2′ ← (n+1)σ̄2

n+2 + (Qn+1(x,a)−µ̄)(Qn+1(x,a)−µ̄′)
n+2

31: Parameters[π′]← (n+ 1, µ̄′, σ̄2′)
32: return Qn+1(x, a)

use distributions to model which values of mean/variance
are more likely. This distribution becomes more precise as
more observations are made, e.g., the variance σ2/n of µ
decreases as the divisor n increases (more observations).

To incorporate this Bayesian model, it is only neces-
sary to store and update n, µ̄, σ̄2 incrementally on each
search node (line 29-30) without storing the sequence
{Q1(x, a), . . . , Qn(x, a)} explicitly. See the appendix for
the proof of these updates. Note the n+ 2 being used as the
divisor for the variance due to the pseudo-count, which adds
1 to the number of samples. In all our experiments, we ini-
tialize the parameters to n = 0, µ̄ = 0, σ̄2 = 0.2. We refer to
this set of parameters as

(
n, µ̄, σ̄2

)
= Parameters[π′], where

π is an action sequence that reached x and π′ = π + [a].
Although Atari environments are deterministic, note that

Q(x, a) still have uncertainty due to the depth-first algo-
rithm which does not systematically search all successors.

Best Arm Identification
While Rollout-IW and VAE-IW have focused on uniform
action selection within the pruned state space, we recognize

550

that more advanced action selection is fully compatible with
width-based planning. We use the distributions overQ to ap-
ply a Best-Arm Identification (BAI) strategy at each node
(Audibert, Bubeck, and Munos 2010; Karnin, Koren, and
Somekh 2013).

BAI is a subclass of the multi-armed bandit (MAB) prob-
lem (Gittins, Glazebrook, and Weber 2011); a sequential de-
cision making problem in which many unknown distribu-
tions (levers) are present, and one is selected to be sampled
(pulled) from at each decision. MABs have frequently been
studied with a minimum cumulative regret (CR) objective,
which aims to maximize the expected reward of the samples
obtained during the experimentation. For example, UCB1
(Auer, Cesa-Bianchi, and Fischer 2002) is the theoretical ba-
sis of the widely used UCT algorithm for MCTS (Kocsis
and Szepesvári 2006), and is derived under a CR objective.
In contrast to CR, BAI draws samples to minimize the sim-
ple regret, i.e., to maximize the expected rewards of a sin-
gle decision (acting) made after the experimentation. BAI is
thus more appropriate for our problem setting, as we wish
to maximize the performance of acting and not the cumula-
tive performance of rollouts. A number of works have rec-
ognized BAI as a more natural objective for tree search and
have proposed algorithms based on BAI (Cazenave 2014;
Kaufmann and Koolen 2017) or hybrids of BAI and cumula-
tive regret minimization (Pepels et al. 2014). To our knowl-
edge, these search procedures have not been applied within
a state space pruned by width-based planning. Shleyfman,
Tuisov, and Domshlak (2016) also point out that simple re-
gret is better suited for this purpose. However, their Racing
p-IW algorithm is not explicitly based on BAI.

In this paper, we consider Top-Two Thompson Sampling
(Russo 2020, TTTS) as a BAI algorithm, and additionally
consider UCB1, uniform random action selection, and max-
imum empirical mean for reference. Note that Rollout-IW
and VAE-IW use uniform sampling for rollouts.

Top-Two Thompson Sampling (TTTS) is an algorithm
that is based on Thompson Sampling (TS). TS runs as fol-
lows: For each a, we first sample σ2 (Eq. 7). Next, us-
ing n, µ̄, and the sampled value of σ2, we sample µ
(Eq. 6). We similarly sample Q(x, a) (Eq. 5). TS returns
â = arg maxaQ(x, a) as the best action. TTTS modifies
the action returned by TS with probability α (a hyperparam-
eter, 0.5 in our experiments). TTTS discards action â, then
continues running TS until it selects a different action a 6= â,
which is returned as a solution. TTTS is shown to provide a
better exploration than TS. Since we use an improper prior
at n = 0, we first sample each action once at a new node.

Upper Confidence Bound (UCB1) selects the action
which maximizes the metric µ̄a +

√
2 logN/na where µ̄a

is the statistic µ̄ for action a, na is the count n for a, and
N =

∑
a na is the sum of counts across actions.

Updating the Screen Dataset
Finally, we update the dataset X by adding a fixed num-
ber k of new observations after each episode. In principle,
all screens that are observed during an episode could be
added to a dataset to further train the VAE. However, this ap-
proach quickly exhausts the physical memory and prolongs

the training time between episodes.
We address this issue through two strategies. The first ap-

proach is to select the k screens at random from those ob-
served during the episode. This approach is more likely to
include screens from later in the game as the agent improves,
incorporating visual changes in the game into the learned
representation. We refer to this approach as Passive Olive.

However, most of the new data are duplicates, or are quite
close to data points already in the dataset. For example, the
initial state and states nearby may be added to the dataset
multiple times, and are likely to have similar appearances.
As a result, the dataset contains more screens for the states
near the initial states than those for the states deep down the
search tree, resulting in an imbalanced dataset. Not only do
these duplicate screens lack new information for the VAE
to learn, but the imbalance also potentially prevents VAEs
from learning new features, because machine learning mod-
els assume i.i.d. samples and tend to ignore rare instances in
an imbalanced dataset (Wallace et al. 2011).

To tackle this challenge we employ Uncertainty Sampling
(Settles 2012), a simple active learning strategy which se-
lects data that the current model is most uncertain about.
Retraining the model with those data points is expected to
improve the accuracy of the model for those newly added
inputs. In uncertainty sampling, we select k screens Xchosen
from among the newly collected screens Xnew with the low-
est total probability under the current model:

arg min
Xchosen⊂Xnew,|Xchosen|=k

∑
x∈Xchosen

log pθ(x).

In Olive, pθ(x) represents the VAE. Since pθ(x) is un-
known, we approximate it with its lower bound, i.e., the
ELBO that is also the loss function of the VAE (Eq. 3).
Therefore, given a new set of observations Xnew, we com-
pute their loss values using the VAE obtained in the previ-
ous iteration, then select the screens with the top-k highest
loss values (minimum ELBO) as Xchosen. Images with high
loss values are images that the VAE is uncertain about, and
which will be improved when added to the training set. We
call the resulting configuration of Olive as Active Olive.

Empirical Evaluations
We evaluated Olive and existing approaches on a com-
pute cluster running an AMD EPYC 7742 processor with
nVidia Tesla A100 GPUs. We used 55 Atari 2600 games
with a problem-dependent number of actions (Bellemare
et al. 2013, the minimal action configuration) and the risk-
averse reward setting (Bandres, Bonet, and Geffner 2018).
For every configuration, we trained the system with 5 differ-
ent random seeds, then evaluated the result for 10 episodes
(playthroughs) for 50 evaluations total. Following existing
work (Junyent, Jonsson, and Gómez 2019; Junyent, Gómez,
and Jonsson 2021; Dittadi, Drachmann, and Bolander 2021),
we use a discount factor of γ = 0.99 (rather than 0.995 in
(Bandres, Bonet, and Geffner 2018)) in line 28. However,
note that the reported final scores are undiscounted sums of
rewards.

Resource Constraints: We repeated the setup of previ-
ous work (Lipovetzky and Geffner 2012; Bandres, Bonet,

551

and Geffner 2018; Dittadi, Drachmann, and Bolander 2021)
where each action is held for 15 frames, which we refer to
as taking a single action. We define a single simulator call
as an update to the simulator when taking a single action.
Improving the learned state representation requires screens
to be observed by agents with increasing performance that
can, for example, reach further in the game and experience
later levels. In order to allow Olive to play a larger number
of episodes during training, we limit the number of actions
in each episode to 200. During evaluation, an episode ends
if the game is not already finished once 18000 actions have
been performed from the initial state (because some games
can be played indefinitely).

To evaluate the sample efficiency, we limit the total num-
ber of simulator calls allowed for the training, or the total
training budget. Approaches that contain machine learning
with IW include VAE-IW, π-IW, and HIW (Dittadi, Drach-
mann, and Bolander 2021; Junyent, Jonsson, and Gómez
2019; Junyent, Gómez, and Jonsson 2021), but they use
widely different budgets. The latter two use 4×107 or 2×107

simulator calls, while VAE-IW does not specify such a limit
due to how they collect the data. VAE-IW collects 15000 im-
ages in total by indefinitely playing the game with B-PROST
features, and randomly sampling 5 images in the search tree
between taking each action. To normalize by budget, we
modify VAE-IW to stop when it exhausts the budget, and
sample k = 15000 images out of all past observed images
using reservoir sampling. The total budget is 105 simulator
calls, which is adequate because we use only 15000 images
in total. The VAE is trained for 100 epochs, following the
README file of the public source code of VAE-IW (not
specified in the paper).

Olive, in contrast, plays the first episode with B-PROST
features and collects k = 500 images from the observed
screens. After the first iteration, it extends the dataset by
k = 500 images in each episode, but by performing Rollout-
IW using the features learned at the end of the previous
episode. If the training budget is exhausted before com-
pleting 30 episodes (15000 images), the remaining images
are sampled from the entire set of screens seen in the final
episode.

Finally, to achieve “almost real-time” performance pro-
posed in (Bandres, Bonet, and Geffner 2018), we limit the
computational resources that can be spent between taking
each action, or the “budget”. An issue with the “almost real-
time” setting of some existing work is that the budget be-
tween each action is limited by runtime. This lacks repro-
ducibility because the score is affected by the performance
of the compute hardware. Following (Junyent, Jonsson, and
Gómez 2019; Junyent, Gómez, and Jonsson 2021), we in-
stead limit the budget by the number of simulator calls,
which is set to 100.

Evaluation Criteria: Since scores in Atari domains have
varying magnitudes, we cannot compare them in differ-
ent environments directly. Instead, we count the number
of “wins/losses” between configurations. The wins are the
number of environments where one configuration outper-
formed another with a statistical significance. To test the sig-
nificance, we used Mann-Whitney’s U test with p < 0.05.

win loss uniform max UCB1 TTTS

uniform - 9 3 5
max 5 (-4) - 4 2

UCB1 4 (+1) 8 (+4) - 6
TTTS 10 (+5) 9 (+7) 2 (-4) -

Table 1: Win/loss comparisons for different BAI algorithms
in VAE-IW+ann. X(±Y) indicates X wins and Y wins mi-
nus the losses. TTTS outperformed uniform and max in sig-
nificantly more domains. UCB1 won against TTTS in more
domains in direct comparison, but failed to win decisively
against uniform (4 wins, 3 losses).

Ablation Study
We perform an ablation study of Olive to understand the ef-
fect of each improvement added to VAE-IW. We test the ef-
fects of VAE training parameters, the action selection strat-
egy used in rollouts, and active learning of the dataset. Table
2 shows a summary of these comparisons.

VAE-IW + Temperature Annealing: Our VAEs are iden-
tical to those described in (Dittadi, Drachmann, and Bolan-
der 2021), consisting of 7 convolutional layers in the en-
coder and the decoder. However, they elected not to anneal
the temperature τ (Jang, Gu, and Poole 2017) when train-
ing the Binary-Concrete VAE, and instead kept the value
low (τ = 0.5). A BC-VAE becomes slower to train when
τ is small because the activation function becomes closer
to a step function, with small gradients away from the ori-
gin. We evaluated an exponential schedule τ = τmaxe

−Ct

for an epoch t and an appropriate constant C which anneals
τ = τmax = 5.0 to τ = 0.5 at the end of the training
(t = 100).

We compared the total number of significant wins of
τmax = 5.0 against τmax = 0.5, thereby enabling/disabling
annealing. τmax = 5.0 won against τmax = 0.5 in 17 do-
mains, while it lost in 14 domains. From this result, we
conclude that annealing causes a significant improvement in
score. We call this variation VAE-IW+ann.

VAE-IW + ann + BAI Rollout: We next evaluated the ef-
fect of adding active learning in action selection to VAE-
IW+ann using BAI. Table 1 shows the wins between BAI
algorithms, including uniform (baseline), UCB1, TTTS, and
max (a greedy baseline that selects the action with the max-
imum empirical mean reward). The results indicate that
TTTS significantly outperforms uniform and max by win-
ning in 10 and 9 games, and losing in 5 and 2 games, re-
spectively. While UCB1 has 6 wins and 2 losses against
TTTS, it did not outperform uniform decisively (4 wins and
3 losses). Since TTTS outperforms uniform more reliably,
we conclude that VAE-IW+ann+TTTS is the best approach
without online dataset updates.

Offline Learning vs. Passive Olive vs. Active Olive: Fi-
nally, we test the effect of online representation learning by
comparing Passive and Active Olive to offline approaches in
Table 2. Active Olive is more effective than Passive Olive (6-

552

to-4 against Passive), and wins more against offline learning
(Active wins 7-to-5 while Passive wins 7-to-6, against the
best offline approach, VAE-IW+ann+TTTS.)

The impact of Active Olive is most important for games
whose visual features change significantly at higher scores.
For example, in BankHeist, JamesBond, Pitfall, and Wizard-
OfWor, the background and enemy designs change once an
agent reaches far enough in the game, while in Amidar new
enemy designs and color swaps occur. Montezuma’s Re-
venge has multiple rooms, and the maximum score of Olive
reached 2500 without policy learning, which outperforms
540 reported by 2BFS (Lipovetzky, Ramirez, and Geffner
2015). However, the impact of active online learning is game
dependent. In games whose visual features are rather static,
the VAE trained by VAE-IW can be sufficient.

We also see Passive Olive could outperform Active Olive
in some games. This is due to the weakness of uncertainty
sampling that, while it seeks for new screens, it does not
consider the similarity between the k selected screens, i.e.,
selected screens can be visually similar to each other and can
skew the dataset distribution. The more sophisticated Ac-
tive Learning methods (e.g., mutual information maximiza-
tion) address this issue, but we leave the extension for fu-
ture work. Instead, to assess the best possible scores achiev-
able with online learning, we analyzed a hypothetical, orac-
ular portfolio, labeled as PortfolioOlive, which counts the
domains in which either ActiveOlive or PassiveOlive wins
against the baselines, and domains in which both lost against
the baselines. As expected, this approach even more signifi-
cantly outperformed existing baselines.

Main Results: Olive vs. π-IW vs. EfficientZero
Finally, Table 3 provides individual average scores of
ActiveOlive across 55 Atari domains, alongside scores
achieved by Rollout-IW and VAE-IW. In terms of average
scores, ActiveOlive outperforms VAE-IW in 32-to-20, and
Rollout-IW in 42-to-11. Olive is also best in class in 30 do-
mains. Standard errors and maximum scores are included
in the appendix. As a reference, we added human scores
and VAE-IW scores from (Dittadi, Drachmann, and Bolan-
der 2021) which uses hardware-specific 0.5 second planning
budget and an unknown training budget.

Next, to understand the impact of a good representa-
tion relative to the impact of policy-learning, Table 3 also
compares ActiveOlive against π-IW (Junyent, Jonsson, and
Gómez 2019), DQN (Mnih et al. 2015) and EfficientZero
(Ye et al. 2021). All results are obtained from the cited pa-
pers, except π-IW which is based on its Arxiv manuscript,
as per its authors’ request. π-IW is a width-based approach
guided by a neural policy function which discretizes its in-
termediate layer as the feature vector for width-based search.
This is an interesting comparison because π-IW has a sig-
nificantly larger total training budget (2× 107) compared to
ActiveOlive (105), while operating under the same planning
budget of 100. DQN is a state of the art model-free RL ap-
proach. EfficientZero is a recent state of the art in model-
based data-efficient RL trained on a subset of Atari do-
mains under the same 105 environment interactions. It uses a
frameskip of 4 and 50 MCTS simulations per acting, instead

of 15 and 100 in Olive, thus is allowed to see the screen
15/4 = 3.75 times more frequently, and is given about a
1.8 times larger planning budget per second (equivalent to
50 · 15

4 = 187.5 simulations per acting using frameskip 15).
ActiveOlive outperforms π-IW by 30-to-22, DQN by 31-
to-17, EfficientZero by 18-to-7. VAE-IW also outperforms
EfficientZero by 15-to-10. These wins/losses are counted by
comparing the average results without the U -test due to the
lack of the data on each run. Olive has average runtime per
action of 0.38 sec., which is closely above real-time perfor-
mance (15 frames, 0.25 sec.) that would be achievable by
optimization and faster hardware.

Related Work
Incorporating Multi-Armed Bandit strategies to address
exploration-exploitation trade off in search problems has a
long history. Indeed, the initial evaluation of the planning-
based setting of Atari was done based on UCB1 (Bellemare
et al. 2013). However, from a theoretical standpoint, UCB1
is not appropriate in simple regret minimization scenario like
online planning and acting. To our knowledge, we are the
first to use a Bayesian BAI algorithm (TTTS) in MCTS. A
limited body of work has used frequentist BAI in MCTS
(e.g. Successive Halving in (Cazenave 2014)), but not within
width-pruned search or the Atari domain.
π-IW (Junyent, Jonsson, and Gómez 2019) learns a Q-

function which is then combined with Rollout-IW by re-
placing the uniform action selection with a softmax of Q
values. However, it does not explicitly consider the uncer-
tainty of the current estimate. In other words, theQ-function
in π-IW provides a point estimate (mean) of Q(x, a),
rather than its distributional estimate. Thus, while we fo-
cused on knowledge-free uninformed search as the basis of
our method, our contribution of uncertainty-aware Bayesian
methods is orthogonal to policy learning approaches. Ex-
tending π-IW to Bayesian estimates is future work.

Olive is limited to learning the state representation, re-
quiring simulator interactions for rollouts. To further im-
prove the sample efficiency, future work includes learn-
ing the environment dynamics, similar to model-based RL
(Schrittwieser et al. 2020) but without expensive, sample-
inefficient policy learning. Learning a PDDL/STRIPS model
(Asai and Muise 2020) and leveraging off-the-shelf heuristic
functions that provide a search guidance without learning is
an interesting avenue of future work.

Conclusions
In this paper, we proposed Olive, an online extension of
VAE-IW, which obtains a compact state representation of the
screen images of Atari games with a variational autoencoder.
Olive incrementally improves the quality of the learned rep-
resentation by actively searching for states that are both new
and rewarding, based on well-founded Bayesian statistical
principles. Experiments showed that our agent is competi-
tive against a state of the art width-based planning approach
that was trained with more than 100 times larger training
budget, demonstrating Olive’s high sample efficiency.

553

win loss RIW VAE-IW +ann +ann+TTTS PassiveOlive ActiveOlive PortfolioOlive

RIW - 8 10 7 4 6 4
VAE-IW 31 (+23) - 14 13 11 13 10

+ann 31 (+21) 17 (+3) - 5 5 7 4
+ann+TTTS 38 (+31) 20 (+7) 10 (+5) - 6 5 3

PassiveOlive 36 (+32) 21(+10) 6(+1) 7 (+1) - 4 -
ActiveOlive 35 (+29) 20(+7) 7(±0) 7 (+2) 6 (+2) - -

PortfolioOlive 38 (+34) 26 (+16) 10(+6) 9(+6) - - -

Table 2: Ablation study on Olive comparing wins/losses. In each X(±Y), X indicates the number of wins, and Y indicates
the number of wins minus losses. Adding annealing and a Bayesian BAI (TTTS) active learning significantly improves the
performance. Active representation learning improved the performance over passive representation learning, but they are com-
plementary. Their hypothetical, oracular portfolio (the best online configuration) shows future prospects.

human VAEIW RIW VAEIW Olive Olive π-IW DQN EfficientZero Olive
train/plan budget NA/0.5s 0/100 105/100 105/100 105/100 2× 107/100 5× 107/NA 105/(187.5) sec./act.

Alien 6875 7744 6539 7535 5450 5450 3969.8 3069 1140.3 0.41
Amidar 1676 1380.3 537 928 1390 1390 950.4 739.5 101.9 0.4
Assault 1496 1291.9 1053 1374 1477 1477 1574.9 3359 1407.3 0.3
Asterix 8503 999500 919580 999500 999500 999500 346409.1 6012 16843.8 0.31

Asteroids 13157 12647 2820 33799 41213 41213 1368.5 1629 - 0.33
Atlantis 29028 1977520 62538 2327026 2266404 2266404 106212.6 85641 - 0.39

Bank Heist 734.4 289 241 219 301 301 567.2 429.7 361.9 0.34
Battle zone 37800 115400 42640 33760 67660 67660 69659.4 26300 17938 0.38
Beam rider 5775 3792 4435 2786 3785 3785 3313.1 6846 - 0.38

Berzerk - 863 720 847 702 702 1548.2 - - 0.33
Bowling 154.8 54.4 26 64 64 64 26.3 42.4 - 0.33
Boxing 4.3 89.9 100 99 98 98 99.9 71.8 44.1 0.44

Breakout 31.8 45.7 6 58 53 53 92.1 401.2 406.5 0.39
Centipede 11963 428451.5 103983 623726 129967 129967 126488.4 8309 - 0.36

Chopper command 9882 4190 13490 14842 37248 37248 11187.4 6687 1794 0.4
Crazy climber 35411 901930 95056 308970 735826 735826 161192 114103 80125.3 0.32
Demon attack 3401 285867.5 23882 128101 128817 128817 26881.1 9711 13298 0.37
Double dunk -15.5 8.6 5 4 8 8 4.7 -18.1 - 0.39

ElevatorAction - 40000 84688 113890 83826 83826 - - - 0.36
Enduro 309.6 55.5 1 65 25 25 506.6 301.8 - 0.41

Fishing derby 5.5 -20 -36 -30 -33 -33 8.9 -0.8 - 0.46
Freeway 29.6 5.3 7 8 7 7 0.3 30.3 21.8 0.49
Frostbite 4335 259 416 270 509 509 270 328.3 313.8 0.39

Gopher 2321 8484 4740 6925 10073 10073 18025.9 8520 3518.5 0.34
Gravitar 2672 1940 535 1358 1655 1655 1876.8 306.7 - 0.32

Ice hockey 0.9 37.2 30 34 37 37 -11.7 -1.6 - 0.39
James bond 007 406.7 3035 338 2206 7637 7637 43.2 576.7 459.4 0.36

Kangaroo 3035 1360 796 884 1192 1192 1847.5 6740 962 0.39
Krull 2395 3433.9 3428 4086 3818 3818 8343.3 3805 6047 0.41

Kung-fu master 22736 4550 6488 5764 4874 4874 41609 23270 31112.5 0.39
Montezuma 4367 0 0 0 58 58 0 0 - 0.38

Ms. Pac-man 15693 17929.8 15951 19614 16890 16890 14726.3 2311 1387 0.37
Name this game 4076 17374 14109 14711 15804 15804 12734.8 7257 - 0.36

Phoenix - 5919 5770 6592 6165 6165 5905.1 - - 0.32
Pitfall! - -5.6 -40 -50 -12 -12 -214.8 - - 0.37

Pong 9.3 4.2 -6 -5 -5 -5 -20.4 18.9 20.6 0.36
Private eye 69571 80 57 1004 400 400 452.4 1788 100 0.4

Q*bert 13455 3392.5 1543 7165 6759 6759 32529.6 10596 15458.1 0.41
Riverraid 13513 6701 7063 6538 6303 6303 - 8316 - 0.39

Road Runner 7845 2980 13268 21720 36636 36636 38764.8 18257 18512.5 0.4
Robotank 11.9 25.6 64 35 61 61 15.7 51.6 - 0.45
Seaquest 20182 842 913 1785 2469 2469 5916.1 5286 1020.5 0.36

Skiing 1652 -10046.9 -29950 -29474 -28143 -28143 -19188.3 - - 0.38
Solaris - 7838 7808 5155 7378 7378 3048.8 - - 0.45

Space invaders 1652 2574 2761 2682 3301 3301 2694.1 1976 - 0.34
Stargunner 10250 1030 2232 3164 5234 5234 1381.2 57997 - 0.3

Tennis -8.9 4.1 -14 8 6 6 -23.7 -2.5 - 0.4
Time pilot 5925 32840 13824 27946 25180 25180 16099.9 5947 - 0.34

Tutankham 167.7 177 158 147 149 149 216.7 186.7 - 0.35
Up’n down 9082 762453 834351 729061 741694 741694 107757.5 8456 16095.7 0.54

Venture 1188 0 0 6 0 0 0 380 - 0.35
Video pinball 17298 373914.3 319596 437727 464096 464096 514012.5 42684 - 0.45

Wizard of wor 4757 199900 142582 175066 197662 197662 76533.2 3393 - 0.37
Yars’ revenge - 96053.3 69344 87940 90778 90778 102183.7 - - 0.34

Zaxxon 9173 15560 6496 10472 10594 10594 22905.7 4977 - 0.36

Table 3: Comparison of the average scores. Best scores in each group in bold. We also included human and VAE-IW scores
from (Dittadi, Drachmann, and Bolander 2021) as a reference. Scores of existing work are from the cited papers except π-IW
(based on its Arxiv manuscript, as per authors’ request). Hyphens indicate missing data. EfficientZero’s planning budget is
adjusted for frameskip 15. The rightmost column shows the average runtime of Olive between actions in seconds.

554

Acknowledgments
This work is also supported by the MIT-IBM Watson AI
Lab, and its member company, Woodside.

References
Asai, M.; and Fukunaga, A. 2018. Classical Planning in Deep
Latent Space: Bridging the Subsymbolic-Symbolic Boundary. In
AAAI, 6094–6101. AAAI Press.
Asai, M.; and Muise, C. 2020. Learning Neural-Symbolic Descrip-
tive Planning Models via Cube-Space Priors: The Voyage Home (to
STRIPS). In IJCAI.
Audibert, J.-Y.; Bubeck, S.; and Munos, R. 2010. Best Arm Iden-
tification in Multi-Armed Bandits. In Proc. of the Conference on
Learning Theory, 41–53. Citeseer.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-Time Anal-
ysis of the Multiarmed Bandit Problem. Machine Learning, 47(2-
3): 235–256.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for SAS+
Planning. Computational Intelligence, 11(4): 625–655.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.; Vitvitskyi,
A.; Guo, Z. D.; and Blundell, C. 2020. Agent57: Outperforming
the Atari Human Benchmark. In ICML, 507–517. PMLR.
Bandres, W.; Bonet, B.; and Geffner, H. 2018. Planning with Pixels
in (Almost) Real Time. In AAAI, volume 32.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013.
The Arcade Learning Environment: An Evaluation Platform for
General Agents. J. Artif. Intell. Res.(JAIR), 47: 253–279.
Cazenave, T. 2014. Sequential Halving Applied to Trees. IEEE
Transactions on Computational Intelligence and AI in Games, 7(1):
102–105.
Dittadi, A.; Drachmann, F. K.; and Bolander, T. 2021. Planning
from Pixels in Atari with Learned Symbolic Representations. In
AAAI, volume 35, 4941–4949.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning and
Executing Generalized Robot Plans. Artificial Intelligence, 3(1-3):
251–288.
Frances, G.; Ramı́rez, M.; Lipovetzky, N.; and Geffner, H. 2017.
Purely Declarative Action Representations are Overrated: Classical
Planning with Simulators. In IJCAI, 4294–4301.
Gelman, A.; Carlin, J. B.; Stern, H. S.; and Rubin, D. B. 1995.
Bayesian Data Analysis. Chapman and Hall/CRC.
Gittins, J.; Glazebrook, K.; and Weber, R. 2011. Multi-Armed Ban-
dit Allocation Indices. John Wiley & Sons.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. Intell.
Res.(JAIR), 14: 253–302.
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical Reparameteriza-
tion with Gumbel-Softmax. In ICLR.
Jinnai, Y.; and Fukunaga, A. 2017. Learning to Prune Dominated
Action Sequences in Online Black-Box Planning. In AAAI, vol-
ume 31.
Junyent, M.; Gómez, V.; and Jonsson, A. 2021. Hierarchical Width-
Based Planning and Learning. In ICAPS, volume 31, 519–527.
Junyent, M.; Jonsson, A.; and Gómez, V. 2019. Deep Policies for
Width-Based Planning in Pixel Domains. In ICAPS, volume 29,
646–654.
Karnin, Z.; Koren, T.; and Somekh, O. 2013. Almost Optimal Ex-
ploration in Multi-Armed Bandits. In ICML, 1238–1246. PMLR.

Kaufmann, E.; and Koolen, W. 2017. Monte-Carlo Tree Search by
Best Arm Identification. In Neurips, volume 30.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-Carlo
Planning. In ECML, 282–293. Springer.
Liang, Y.; Machado, M. C.; Talvitie, E.; and Bowling, M. H. 2016.
State of the Art Control of Atari Games Using Shallow Reinforce-
ment Learning. In AAMAS, 485–493. ACM.
Lipovetzky, N.; and Geffner, H. 2012. Width and Serialization of
Classical Planning Problems. In ECAI, volume 2012, 20th.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width Search:
Exploration and Exploitation in Classical Planning . In AAAI.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Classical Plan-
ning with Simulators: Results on the Atari Video Games. In IJCAI.
López, C. L.; Celorrio, S. J.; and Olaya, Á. G. 2015. The Deter-
ministic Part of the Seventh International Planning Competition.
Artificial Intelligence, 223: 82–119.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2017. The Concrete Dis-
tribution: A Continuous Relaxation of Discrete Random Variables.
In ICLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-Level Control through Deep
Reinforcement Learning. Nature, 518(7540): 529–533.
Pepels, T.; Cazenave, T.; Winands, M. H.; and Lanctot, M. 2014.
Minimizing Simple and Cumulative Regret in Monte-Carlo Tree
Search. In Workshop on Computer Games at the European Con-
ference on Artifical Intelligence, 1–15. Springer.
Russo, D. 2020. Simple Bayesian Algorithms for Best-Arm Iden-
tification. Operations Research, 68(6): 1625–1647.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.; Sifre,
L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.; Graepel, T.;
et al. 2020. Mastering Atari, Go, Chess and Shogi by Planning with
a Learned Model. Nature, 588(7839): 604–609.
Settles, B. 2012. Active Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publish-
ers.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind Search
for Atari-Like Online Planning Revisited. In IJCAI, 3251–3257.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learning: An
Introduction. MIT Press.
Teichteil-Königsbuch, F.; Ramı́rez, M.; and Lipovetzky, N. 2020.
Boundary Extension Features for Width-Based Planning with Sim-
ulators on Continuous-State Domains. In IJCAI, 4183–4189.
Wallace, B. C.; Small, K.; Brodley, C. E.; and Trikalinos, T. A.
2011. Class Imbalance, Redux. In ICDM. IEEE.
Ye, W.; Liu, S.; Kurutach, T.; Abbeel, P.; and Gao, Y. 2021. Master-
ing atari games with limited data. Advances in Neural Information
Processing Systems, 34.

555

