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Abstract

In the quest to achieve better response times in dense ur-
ban environments, law enforcement agencies are seeking Al-
driven planning systems to inform their patrol strategies. In
this paper, we present a framework, OFFICERS, for deploy-
ment planning that learns from historical data to generate de-
ployment schedules on a daily basis. We accurately predict in-
cidents using ST-ResNet, a deep learning technique that cap-
tures wide-ranging spatio-temporal dependencies, and solve
a large-scale optimization problem to schedule deployment,
significantly improving its scalability through a simulated an-
nealing solver. Methodologically, our approach outperforms
our previous works where prediction was done using Gener-
ative Adversarial Networks, and optimization was performed
with the CPLEX solver. Furthermore, we show that our pro-
posed framework is designed to be readily transferable be-
tween use cases, handling a wide range of both criminal and
non-criminal incidents, with the use of deep learning and
a general-purpose efficient solver, reducing dependence on
context-specific details. We demonstrate the value of our ap-
proach on a police patrol case study, and discuss both the eth-
ical considerations, and operational requirements, for deploy-
ment of a lightweight and responsive planning system.

Introduction

Faced with dense urban environments and budgetary con-
straints, modern law enforcement is turning to computer sci-
ence for efficient patrol strategies. Combinatorial optimiza-
tion problems can be tailored to the requirements of any
given agency or police force, balancing incident response
times, manpower utilization rates, and police visibility. In
the rush to develop patrol strategies that offer excellent per-
formance, however, the human element must not be forgot-
ten. Police officers, with years of established practice behind
them, can be resistant to overly radical modifications to their
working patterns and shift structures, and intangible factors
such as community relations and local knowledge can be
lost in overly-prescriptive and dynamic deployment plans.
Bringing together ideas from prior work that provided law
enforcement deployment planning for a specific use case, we
are proposing a framework called OFFICERS (Operational
Framework For Intelligent Crime-and-Emergency Response
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Scheduling) to provide a generalized pattern for tackling law
enforcement patrol planning, and discuss the steps required
to achieve a deployed system and the ethical ramifications
of predictive law enforcement. Additionally we present so-
lution methods for two key components: the incident predic-
tor and the manpower scheduler, and generate experimental
results using police patrol as a use case.

Related Work

Incident prediction is a vital prerequisite to effective de-
ployment planning, as the knowledge of where emergen-
cies occur will inform the positioning of response agents.
Examples of prediction approaches used in the past in-
clude statistical aggregation of historical demands (Malle-
son and Andresen 2015), spatial hotspot identification with
temporal regression (Butt et al. 2021), risk terrain model-
ing (Caplan, Kennedy, and Miller 2011), continuous time
modelling of burglary (Mukhopadhyay et al. 2016), Gaus-
sian Process incident generation for discrete space-time in-
tervals (Chase et al. 2019), deep learning (Chase et al.
2021), (Wang et al. 2017), and network analytics (Dash,
Safro, and Srinivasamurthy 2018). Where many of these
methods fall short is in capturing the spatio-temporal de-
pendencies in crime data, where incidents appearing in one
location or time period implies they will not also appear in
the immediately adjacent locations or periods. In this pa-
per we employ ST-ResNet, a method designed to predict ur-
ban crowd flows (Zhang, Zheng, and Qi 2017), that captures
spatial and temporal dependencies combined with external
factors to learn longer cyclic patterns. A similar notion was
considered in (Wang et al. 2017), but we apply the model
to a wider range of emergency incident types and employ a
novel performance metric that reflects the role of the predic-
tion within our framework. In so doing, we show that this
approach can be applied successfully to a range of use cases
within law enforcement and emergency response.

Much has been done on the problem of optimizing emer-
gency response, including law enforcement deployment
(e.g. (Lau, Yuan, and Gunawan 2016), (Mukhopadhyay et al.
2016), (Saisubramanian, Varakantham, and Lau 2015)). The
scheduling problem introduced in this paper draws on the
concept of police ‘presence’, an increasingly popular objec-
tive for deployment planning (Wang et al. 2021). We apply
this concept through scheduling with a patrol diversity con-



straint. However, there are scalability challenges for Mixed
Integer Programs (MIPs) that must optimize at the scale of
urban law enforcement on a daily basis. A relatively new and
exciting contender in the field of heuristic search is quantum
annealing, where combinatorial problems are formulated as
Ising, or equivalently QUBO (Quadratic Unconstrained Bi-
nary Optimization), models and solved by an annealing ma-
chine, such as D-Wave (Date et al. 2019). It is therefore
necessary to efficiently convert a constrained MIP to an un-
constrained problem, such as in (Crispin and Syrichas 2013)
for quantum vehicle scheduling and (Ikeda, Nakamura, and
Humble 2019) which applies D-Wave’s quantum annealer
to nurse scheduling, but can only solve small problems. Due
to the scale limitations of quantum devices, hybrid methods
or decomposition have been proposed (Ajagekar, Humble,
and You 2020), (Stollenwerk, Lobe, and Jung 2019). Quan-
tum computing is still in its nascent stage, so solvers such as
Fujitsu’s Digital Annealer (DA) chip (Aramon et al. 2019)
have been developed to solve QUBO models on conven-
tional CMOS computers, implementing a meta-heuristic in-
spired by quantum annealing. While these solvers still have
model size limitations due to hardware constraints, DA’s
fully connected 8192 binary variables (in contrast with D-
Wave’s 2048 qubits on a Chimera graph) is capable of mod-
eling and solving larger scale problems, and without the in-
termediate step of embedding the QUBO model onto the un-
derlying machine architecture. In this paper, we employ DA
to implement our model so as to support meaningful prob-
lem sizes that could be deployed using current technology.

One other alternative approach for security deployment is
game theory (security games), particularly the application of
Stackelberg games. Stackelberg games can be applied effec-
tively to many problems in security, as there are two play-
ers, a leader and a follower, who operate as adversaries. The
leader chooses strategy first, and can represent the security
force, while the follower responds to their choice, represent-
ing the various criminal elements who attempt to circum-
vent the security provision. Uncertainty can be incorporated
through the use of mixed strategies, with players choosing
actions according to expected payoff as determined by a
probability distribution. Stackelberg security games (SSG)
can be broadly divided into three categories: infrastruc-
ture security games, green security games, and opportunistic
crime security games (An, Tambe, and Sinha 2017). The first
category are focused on protecting infrastructure, such as
ARMOR deployed at LAX (Jain et al. 2010b). These games
end after a single attack with the defender only updating
strategies after attacks, due to the rarity but seriousness of
attacks. The attacker is assumed to employ detailed surveil-
lance. The second category, of green games, focus on pro-
tecting vulnerable ecology, such as PAWS for anti-poaching
operations (Fang, Stone, and Tambe 2015). Attacks are re-
peatedly executed, with less surveillance and planning than
for infrastructure attacks. The aim is to cover a large sparsely
populated geographic area, and machine learning can be in-
corporated to help with strategy creation. Finally, oppor-
tunistic crime games aim to tackle crimes with a low level
of planning but repeated operation. A typical example would
be pickpockets on public transport (Della Fave 2014). Note
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that game models hinge on the ability to design an accurate
payoff matrix over a finite discrete set of actions, but such
a setup is not possible nor suitable for our problem in this
paper, which is about scheduling patrol units across sectors
in space and time under various complex constraints.

Necessity of the Framework

One of the primary challenges faced by the law enforcement
agency that forms the basis of our case study is the hetero-
geneity of the incidents that must be responded to. Much
prior work in this field focuses on accurately predicting spe-
cific crime types or running interference against motivated
attacks that seek to circumvent the defence. This is particu-
larly true of SSG methods, which assume a degree of con-
certed rationality on the part of the follower, such that with
varying degrees of surveillance and prior planning, they will
attempt to adapt to the leader’s strategy. In our use case, with
incidents reported by the public via emergency call, the type
of incident can range from trivial noise complaints, through
to medical emergencies, up to assault, fighting, and even in
rare cases, bomb threats. With this diversity of incidents,
the Stackelberg game assumption of a rational intent be-
hind the attackers’ actions is less applicable, as only a subset
of the incident instigators will respond to police behaviour,
which we address by adding a ‘police presence’ constraint to
our scheduler. Our problem domain also considers heteroge-
neous urban terrain, incorporating residential, industrial, and
commercial areas on a daily basis. Therefore, we are not at-
tempting to protect a particular set of targets, but to robustly
cover a wide area in a varied urban environment. To handle
the heterogeneity and uncertainty in the spatio-temporal in-
cident occurrence, we incorporate a machine learning-based
incident generator to drive the input of the model, minimiz-
ing the burden on the user that can occur in infrastructure-
based systems (Jain et al. 2010b).

Scalability is a significant challenge in urban security.
Deployed methods such as ARMOR and TRUSTS (Lu-
ber et al. 2013) have handled games with a similar num-
ber of agents and locations to those used in our experi-
mental results, but for larger scale implementations, such
as IRIS, a branch-and-price algorithm, ASPEN, was re-
quired (Jain et al. 2010a). Given that our framework must
handle daily execution of deployments at the city level, we
have designed a three-stage structure, to decompose the shift
scheduling process. The first stage generates incident sam-
ples for training the deployment, capturing the range of inci-
dent possibilities. The second stage, as presented in previous
work (Chase et al. 2021), finds the number of police cars re-
quired to patrol a set of locations throughout a shift with a
time granularity of 2 hours. This demand is found by opti-
mizing the possible car deployments against generated inci-
dents, which means that the occurrence of an incident is not
disruptive to the patrol schedule, but is built into the sched-
ule creation, avoiding the need for real-time updates or plan
re-creation delivered by mobile app to patrol agents. The fi-
nal step, for which we present a scheduling model and scal-
ability approach in this paper, assigns the patrol cars to the
determined demand. We present a QUBO-based reformula-
tion of the optimization problem that can be solved more



efficiently on a general purpose QUBO solver, than on the
industry standard, branch-and-bound based CPLEX solver.
Demonstrating the efficiency of a QUBO approach suitable
for execution on a general purpose solver, we can be con-
fident that our approach will scale to larger problems while
meeting the requirement for daily execution.

OFFICERS Overview

The ability to respond rapidly to dynamically occurring in-
cidents is a key requirement for law enforcement and emer-
gency medical service agents of all stripes. A planner seek-
ing to guarantee this requirement can be met must know two
things: when and where incidents occur, and how agents
should be stationed/deployed. We propose a general solu-
tion framework, and as a case study, consider specifically
the problem of deploying police cars to patrol sectors. We
take a proactive planning approach in determining robust
schedules based on historical data. Our approach can also
be applied to station ambulances and firefighting apparatus
for Emergency Medical Services (EMS), as the framework
accounts for a variety of incident types without assuming
an antagonistic motive. We consider a scenario in which re-
sponse agents are assigned to patrol deployment sectors so
as to effectively respond to incidents. Sector boundaries are
static and define a predetermined geographic area. Agents
patrol their assigned sectors until an emergency call is made
and a central dispatcher assigns the agent to respond.

Our framework, outlined along with the problem scenario
in Fig. 1, requires three components, the first of which is the
prediction of incident occurrence, which we present in this
paper. Incident prediction methods were presented in ear-
lier works, but we demonstrate that this method can achieve
superior accuracy in precision and recall. Additionally, the
method presented in this paper is the most general, identify-
ing the spatio-temporal connections between incidents with-
out relying on explicitly provided terrain data. The second is
an optimization on the incident generation output to deter-
mine the number of agents required in each sector. For the
purposes of deployment, we employ the method presented
in (Chase et al. 2021) for the second component. This com-
ponent is also a refinement on previous designs, offering im-
proved scalability. The model regards incident types agnosti-
cally, considering only the priority, duration, and number of
agents required, enabling a range of incidents to be consid-
ered on an equal basis. This component identifies the num-
ber of agents required to patrol each sector, ensuring that
sufficient agents are able to satisfy the response times of in-
cidents even while earlier incidents are being addressed. At
this stage of the deployment planning process, other factors
such as pre-allocation can also be considered, to allow the
injection of human insight to provide coverage for factors
such as special events that can’t be predicted from historical
data. The third, and critical, component is the scheduler, an
optimization problem that determines which agents should
patrol a sector in each time period of a shift. The goal of
the scheduler is to control the amount of movement between
locations required by agents, limiting the disruption to their
patrolling and response activities. We separate the scheduler
from the second component so that the disruption minimiza-
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tion decision does not compromise incident response, which
is of greater priority. We present a model for scheduling
and significantly enhance its scalability through a quantum-
inspired simulated annealing method. The solution method
is general purpose, and therefore the specific constraints of
the scheduling model can be tweaked to fit individual ap-
plication contexts (as shown by the introduction of a ‘po-
lice presence’ provision) without losing the benefits of the
solver. The output of the scheduler provides the deployment
plan for supervisors to put into action.

Deep Learning for Incident Prediction

The capacity to accurately predict the patterns of incident
occurrence is essential to a law enforcement deployment
system. Inaccurate prediction will result in a ‘garbage in,
garbage out’ situation. Since we perform deployment to dis-
crete patrol sectors, an initial attempt to predict incidents
might discretize the prediction space accordingly. However,
the probability of an incident occurring in one sector in a
particular time period is not independent of the sectors or
time periods around it, thus our prediction method must
consider both spatial and temporal dependencies, as well as
external factors such as public holidays. To capture these
dependencies we adopt a deep-learning method called ST-
ResNet (Zhang, Zheng, and Qi 2017) which tackled crowd
flow prediction in large urban environments, which makes
it suitable for adaptation to our context. The data input for
ST-ResNet is a set of time-discretized images showing the
spatial distribution of data points in that time interval. The
ST-ResNet architecture, illustrated in Fig. 2, combines four
major components. The first three are similarly structured
with alternating convolutional neural networks and residual
units, which allows deep neutral networks without compro-
mising training effectiveness, and therefore large city prob-
lems can be considered. The three components model three
temporal properties: closeness, period, and trend, which rep-
resent increasingly large time granularities to capture tempo-
ral dependencies over both the short and long term. The out-
put of the first three components are fused by weighted lin-
ear matrix combination with learnable weights. The fourth
component models external factors such as weather, week-
ends, and public holidays using a fully connected shallow
network. The external data component output is combined
with the fused components’ output by matrix addition fol-
lowed by application of a hyperbolic tangent, tanh, to nor-
malize the combined output. This normalized output forms
the model’s prediction of the next 1 hour of data. To mea-
sure the accuracy of the training we reserve the final 1 hour’s
worth of input data for testing, with the goal of training be-
ing to minimize the mean squared error (MSE) between the
predicted data and the test data.

Applying ST-ResNet to Law Enforcement

In our use case we start with a set of emergency call records
that record the time and lat-long coordinates of incidents. To
train ST-ResNet we divide the geographic map into a grid
corresponding to a set of pixels according to a chosen reso-
lution parameter, and each incident is represented by a pixel
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Figure 1: Components of the OFFICERS Framework and how they address the challenges of our problem scenario.
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Figure 2: The four components of the ST-ResNet predictor.

indicating the grid location. Initially, we generated an im-
age for each incident and sorted them by time for input to
ST-ResNet. However, the data we use is too sparse to derive
good dependencies using this conversion method. Therefore,
we also choose a sampling rate that defines a time frame for
each image, allowing multiple incidents to be included in
a single image, resulting in a richer heatmap that can iden-
tify hotspot areas and the dependencies around them. The
results in Table 1 illustrate the importance of well-chosen
resolution and sampling rate parameters (see next section for
description of F1 metric calculation). The data is sequenced
according to the three levels of temporal granularity. The
closeness data has a length of 24 and sampling rate of 1
- meaning images snapshot incidents hourly for the previ-
ous 24 hours. The period data has a sampling rate of 24,
meaning images snapshot incidents daily, while the trend
data has a sampling rate of 168 with each image snapshot-
ting a week’s worth of incidents. This data sequence is used
to predict the next hour’s incidents, with a sliding window
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Distance Time Resolution
(m) (mins) 0.01 | 0.015 | 0.02
1000 10 0.124 | 0.143 | 0.168
2000 12 0.202 | 0.278 | 0.313
2000 60 0.375 | 0.674 | 0.750
Predicted-Actual Counts 66 19 -2

Table 1: F1 Scores (larger is better) for varying success cri-
teria and resolutions

approach using a one year data set enabling us to predict
the following year’s incidents hour by hour. External factors
consist of one-hot encoded data indicating the various pub-
lic holidays, a weekday/weekend indicator, and six cyclical
features identifying the sine and cosine values for the hour-
to-be-predicted’s point in the year, week, and day.

A Metric for Assessing Performance

We propose a novel matching metric to compare the perfor-
mance of the model at different tolerances. The output of the
ST-ResNet predictor is an image showing a heatmap for the
hour and date to be predicted. Each pixel of the output image
represents the number of incidents that occur in the spatial
grid space in that hour. To generate incidents, then, for each
pixel we generate a number of incidents based on its colour
intensity. Each incident is assigned a lat-long value random-
ized within the geographic area represented by the grid cell,
and assigned a start time based on the time division (in our
problem case, we use 1 hour steps), with the precise start
minute randomly chosen within the hour. This element of
randomization allows us to generate multiple incident sce-
narios from the model. We then compare the incidents to a
set of corresponding real test data, and run a matching algo-
rithm that pairs generated and test incidents based on their
spatio-temporal distance, as illustrated in Fig. 3. We mark a
prediction as a success if it can be paired with a test incident
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Figure 3: Illustration of the matching metric used to as-
sess model prediction. Matching between two incidents is
based on satisfying both spatial and temporal distance re-

quirements.

within the time and distance threshold (e.g. incidents occur
within 2km of each other with start times no more than 60
minutes apart). We define precision as the proportion of gen-
erated incidents that can be matched to a test incident, and
recall as the proportion of test incidents that can be matched
to a generated incident. If the number of generated incidents
is too high, the excess incidents will be marked as failures
on the precision score as they cannot be matched to a test
incident, while if the number is too low, the excess test inci-
dents will be marked as failures on the recall score. However,
since it would be possible to achieve high recall by a surfeit
of incidents, and a high precision by generating a deficit, we
adopt the F1 score (Chinchor 1992), given in Eq. (1), as our
metric to balance precision and recall. Both the accuracy of
the prediction positions and the predicted counts are impor-
tant, and therefore we consider both metrics equally, rather
than prioritizing one or the other.

2 - Precision - Recall
F =

ey

Precision + Recall

Evaluating ST-ResNet for Law Enforcement

Precisely predicting the time and location of general crimes
is difficult due to randomness in incident occurrence. How-
ever, our prediction functions as a component within our
framework, and if it can accurately identify the time and
position of incidents to the granularity of our schedule (1-
hour, within a sector), we can be confident that agents can re-
spond in time. Generation of multiple prediction sets further
alleviates this issue by using Sample Average Approxima-
tion (SAA) in the second component to be robust to random
variation. The sector boundaries in our use case are based
on historically defined boundaries but are sufficiently small
to guarantee intra-sector response times for available cars.
Predicting incidents directly according to sector limits can
introduce significant bias if boundaries cut across the distri-
bution space(Chase et al. 2021), and from an ethical perspec-
tive, care must also be taken when applying this framework
to other contexts that sectors are not defined by underlying
human bias about the nature of criminal behaviour.

We train our model on a year’s data and test over the fol-
lowing half year. The resolution and sampling rate hyper-
parameters are selected by identifying the smallest value that
gives a strong performance at the required F1 distance and
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Distance | Time Method
(m) (mins) | ST-ResNet | GAN
1000 10 0.17 0.15
2000 10 0.31 0.40
2000 30 0.60 0.43
2000 60 0.75 0.43

Table 2: F1 Scores for ST-ResNet vs GAN Models

time settings. The results in Table 1 indicate that a resolution
of 0.02 gives the best result without having a geographic
granularity larger than the patrol sectors the agents patrol.
Training with a sampling rate of 1 hour also provides the best
balance of results, as we found that shortening the sampling
rate to 30 minutes resulted in a model built on very sparse
data that significantly underestimated the incident counts. 1
hour provides a reasonable time window as we will sched-
ule patrols on an hourly basis. To evaluate the value of ST-
ResNet against other methods, we compare it to a prediction
approach based on Generative Adversarial Networks (GAN)
that was itself proven superior to a Gaussian Process-based
approach in (Chase et al. 2021). Since the GAN model also
predicts the lat-long coordinates of incidents, we can apply
the F1 metric to directly compare on an equal footing with
the ST-ResNet model, as shown in Table 2. We find that ST-
ResNet is able to attain a much higher F1 score, which is
likely due to the rich spatio-temporal dependencies that can
compensate for the minor random variations in the data.

Given the results shown, we conclude that ST-ResNet is
a strong candidate for crime and emergency incident pre-
diction with a high degree of accuracy, due to its capacity
to model incident occurrence with spatio-temporal depen-
dencies. The dependency modelling is a key feature, as the
patrol sectors create artificial boundaries that do not reflect
independence in the incident distribution. Therefore, it is im-
portant to treat the underlying space as interconnected so as
to provide accurate information to the patrol scheduler.

Deployment Scheduler

Given a set of response agents and a set of sectors, the sched-
uler allocates each agent to patrol a sector for a discrete time
period (e.g. 1 hour for our use case), with allocations per-
mitted to change throughout the shift. The allocation must
satisfy the individual sectors’ agent demand with the goal of
minimizing the total migration time across the shift. Migra-
tion time is the time taken for an agent to move from one
sector to the next at the end of each time period. Patrol be-
haviour within each sector is handled autonomously by the
agents, allowing them to draw on their local knowledge and
training in a range of crime prevention activities.

For the police patrol use case, given n patrol cars to as-
sign, m deployment sectors, and 7" number of time steps,
our goal is to minimize the total traveling time between sec-
tors at the end of each time step. At each time step, we are
given the demands that are required for each location by the
second framework component, and we require that the total
demand across all locations is equal to the number of cars,
n. We assume that the travel time to move between each lo-



Notation Represents
n Number of cars
m Number of sectors
T Number of time steps to consider
1 Car index
J Location index
t Time index, member of set {1,...,T}
Yl j Variable: Indicates assignment of car ¢ to
' location j in time ¢
f;ll 2 Variable: indicates ¢ moves from
location 77 to jo from time ¢t — 1 to time ¢
T}, s Parameter: Time to travel from
location j1 to jo
d§ Parameter: number of cars required in

location j in time .

Table 3: Key notations used in the Scheduling model

cation is also known. To evaluate the travel time we define
a variable, x; ; o whlch takes value 1 When Y; ;, and Yi js
both take value 1, indicating that the car ¢ goes from location
71 to location js at the end of time ¢ — 1. This can be defined

using the following conditional expression:

1, ifyishyt. =1
*f_41 . = ’ 2,91 7 7,72 v . 0.t > 0 2
1,J1,J2 {07 otherwise 501525 ( )

The notation used in the model is given in Table ??.

Classical Optimization Formulation
The classical constrained optimization model is as follows:

m T

n m
. t—1
mind, >, D D Tiwviils,

i=1 j1=1 jo#j1 t=1

3)
s.t.

Zyﬁ,j =di,Vje{l,....m} Vte{l,....T}, 4
i=1

m

Soyl;=1Vief{l,...,n} Vte{l,....T}, (5)
j=1
v, <1422 Vi, fa,t >0, (6)
yio byl > 22t Vi, ot > 0, ™

The objective function (3) minimizes the total cost across
all cars, sectors and time steps, excluding only cases where
the origin and destination sectors are the same, since this
incurs no travel time. Alternative formulations could con-
sider a min-max approach to limit the maximum travel, but
this can be enforced through fairness constraints if required.
Equation (4) ensures the demand is satisfied for each sector
in each time step. (5) ensures that each car is assigned to
exactly 1 location in each time step. Constraints (6) and (7)
linearize the conditional definition of xf;ll 2 in (2) to sat-
isfy the requirements of the MIP construct, enumerating all
possible combinations of yf}ll and yf ja-
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Due to the linearized formulation of the travel time con-
straints, we require O(nm?T') variables and O(nm?T)
equations for this formulation. Thus, while conceptually
straightforward, the resulting MIP is large and intractable
to solve by exact methods.

Enforcing Police Presence We enhance our model based
on the concept of police ‘presence’ - the effect of deploy-
ing patrols not simply to respond to incidents, but to project
a psychological effect - reassurance to honest citizens, and
intimidation to criminals. We inject unpredictability into the
movement of cars within their patrol sectors, by introducing
a ‘diversity’ requirement, that stipulates a maximum number
of consecutive time steps that each car may remain in the
same sector for. When a car is at a particular location at time
t, it must be at a different location after a certain duration
after ¢. This requirement means that sectors will be patrolled
by different officers at different times. Since the activities
undertaken within the sector are at the autonomous discre-
tion of the individual officers, the local patrol behaviour will
change with the manpower allocation, making it harder to
plan nefarious endeavours. For this problem we set a limit
of 2 consecutive time steps on the amount of time a car can
spend in a sector. This does not preclude returning to the
sector later, but will ensure a reasonable degree of mobility
among the team members. To implement this, the following
constraint can be added to the MIP in (3)-(7):

ittt <1 Vit ®)
Comparison with Constraint Programming An alterna-
tive approach is to formulate the problem as a CP model.
One concern with the application of constraint programming
is over the ability to solve the CP model (in our case, to min-
imize the overall travel time) efficiently, with say, the CP
Optimizer, with the global cardinality constraint replacing
the demand constraint. This would work but the time taken

could be large relative to our solution approach.

Simulated Annealing and QUBO

A general QUBO formulation can be written as follows:

min 2T Qz
ze{0,1}n

€))

where () is an n X n matrix and x are binary decision vari-
ables. Penalty methods and slack variables are used to trans-
form the constraints (Lucas 2014). QUBO is closely related
to the Ising model in quantum mechanics, and there has been
great interest in using quantum adiabatic optimization tech-
niques to solve NP-hard optimization problems via QUBO
solvers. Here, we study if the deployment scheduling prob-
lem, where solution quality and execution speed are both
important, can be solved more efficiently and effectively by
a metaheuristic QUBO solver than a classical MIP solver
(such as IBM’s CPLEX solver). QUBO formulations permit
quadratic terms and thus we are able to express products of
binary variables in the objective function directly. We can
take advantage of this non-linearity and avoid the inefficient



=1 _ t—1 ¢ PP
need to express ;. = y; . - y; ;. explicitly in the for-

mulation, and more importantly, remove constraints (6) and
(7), rewriting the optimization problem as:

n m m T
mind >N T i vl

=1 j1=1ja7#j1 t=1
subject to (4) and (5). This rewritten formulation is more
efficient than the original MIP in (3)-(7), but it is not in true
QUBO format, not being ‘unconstrained’. To complete the
transformation, we apply the penalty method, introducing
penalty parameters A and B to move the constraints, (4)
and (5) into the objective expression. We can also include
the ‘presence’ constraint with a third penalty term and pa-

rameter, C, to generate the following expression:

(10)

. 1t
min Z T, 52, Yi gy Yi g

1,J1,72,t

2
m
+BZ nyj -1 —l—Cny;lyf?l
it \j=1 W45t

This QUBO formulation can be passed to a QUBO solver
and in our case we use Fujitsu’s DA. This formulation only
requires O(nmT) variables, thus we have saved a multi-
plicative factor of m variables. Hence, the QUBO represen-
tation is more compact than the MIP formulation. In order
to minimize the original unconstrained problem, we have to
tune the penalty parameters, A, B, and C'. We employ Hy-
peropt (Parzen Tree Estimator) (Bergstra et al. 2011) to do
this. At each Hyperopt parameter, we check the feasiblity of

the problem and record when the parameter is suitable.

n 2
LAy (zyf,j—d;)

gt \i=1

Y

Annealing Results

We base our case study input on the real world problem
in (Chase et al. 2021), scheduling police patrols for 3 differ-
ent teams, X, Y, and Z, serving respectively 9, 13, and 17
patrol sectors, with manpower equal to the number of sectors
served by each team. Time steps are hourly, and we consider
both 6-hour and 12-hour shifts. We use two solvers to gen-
erate our experimental results - the IBM CPLEX solver pro-
vides the performance figures for the MIPs, and the Fujitsu
DA solver provides the figures for the QUBO formulations.

Setting a Baseline First, we examine the scheduler with-
out the diversity constraint. Whilst we would prefer to im-
plement the presence feature in a practical setting, this pro-
vides a good baseline to establish whether a QUBO solver
can outperform an industry standard MIP solver on a gen-
eral problem and the results are given in Table 4. We set the
DA to run for 10® iterations in Parallel Tempering mode, and
for 40 Hyperopt iterations. With similar execution times, DA
outperforms CPLEX, especially when the problem size in-
creases. In area X, the small problem size enables CPLEX
to prove optimality quickly, whereas DA does not prove op-
timality, and therefore continues to run despite finding a fea-
sible solution quickly. As the instance size increases, the
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n,m,T | CPLEX | DA | CPLEX | DA
Obj | Obj | Time(s) | Time (s)
X 99,6 | 5725 | 525 77 1418
Y [ 13,13,12 | 301 | 2549 | 2716 2714
Z | 17,17,12 | 1504.7 | 538.6 | 4789 4785

Table 4: Comparison of DA and CPLEX. Objective mea-
sures the total migration time of the schedule in minutes.

CPLEX
8||Time
15(|T1
15||T2
15||T3
15||T4
15(|T5
15(|T6
15(|T7
15||T8
15||T9
15(|T10
15(|T11
15(|T12

Car ‘

=R N O N N B B B A Y

Figure 4: DA and CPLEX solutions for team Z. Each colour
represents a different patrol sector.

search space for the MIP grows and the advantage for DA
and, by implication, quantum annealing, becomes evident.
In Fig. 4, we present a representative excerpt from the sched-
ules provided by each solver for team Z. Each column cor-
responds to a car, and each colour denotes a different patrol
sector. As the colour changes down the column, the car pa-
trols different sectors. The DA schedule is more stable with
better individual travel times having only 3 cars with over 50
mins total travel time, while CPLEX has only one car with
under 50 mins travel time.

Police Presence Constraint In Table 5, we compare the
results and pure annealing time of DA with the CPLEX per-
formance with a 10 minute solving time limit, which is com-
parable to the DA time. We find that setting the number of
iterations to be 1.5 x 10® and the Hyperopt iterations to be
6 offers a good trade off to get a total annealing time of ap-
proximately 10 minutes, which is good for a daily deploy-
ment plan generator in a real life scenario. Currently, we
have excluded the QUBO construction time which can be
expensive. However, techniques such as precomputation can
be adopted to reduce this time.

From Framework to Fieldwork

Deployment of the framework for law enforcement planning
presented in this paper must satisfy two sets of requirements:
the technical, and the human.

Firstly, a deployable system must be implementable at
reasonable cost. The methods we have presented for both
the incident prediction and the scheduler are usable on a sin-
gle, albeit powerful, machine. We developed our approach
within a service-based system architecture, where a cen-
tral server process manages a web frontend for users to re-



m,n, T CPLEX | CPLEX | DA annealing | DA
time (s) | Obj time (s) Obj
13,11,12 | 602 420 269 330
17,17, 10 | 603 2686 358 1761
18,18,20 | 608 9964 608 8350
20,20,14 | 607 8509 586 5434
20,20,16 | 609 9437 610 6566
20,20,18 | 610 11113 634 8880

Table 5: Solution times and objectives for police presence.

quest deployment plans and upload incident data. A worker
process generates the patrol schedules, with a modular ap-
proach taken to the framework components, and a Python
API allowing plug-and-play integration of external methods.
Our ST-ResNet model is trained on a Tesla V100 GPU, but
only making use of 4 cores for TensorFlow. Hyperparam-
eter tuning is provided by the Ray Tune library integrated
with the worker by a Flask app. The optimization model
that determines the car demand per sector uses CPLEX, but
achieves scalability by partitioning and can be executed on
desktop hardware, in this case an Intel Core i7 3.40GHz
with 16GB RAM. The annealing results were generated with
a local datacenter-installed DA chip, but equivalent perfor-
mance can be achieved using the Fujitsu DA cloud service,
accessible from any system running Python. This approach
also permits future-readiness, allowing a genuine quantum
annealing method to be substituted when services such as
DWave can operate at sufficient scale. Thus, all parts of the
framework we propose have been implemented without the
need for investment in an expensive computing cluster, in
line with the needs of the case study agency, removing a sig-
nificant barrier to wider adoption.

Secondly, the deployed system must fit within the existing
working practices and operating procedures of the deploying
agency so as to gain approval from both end users and man-
agement. We have developed our modeling assumptions in
consultation with a real law enforcement agency. Our sys-
tem user interface was developed through a collaborative
design process to ensure that the tools, visuals, and termi-
nology were in line with current operating procedures. The
scheduler operates in line with current shift structures and
deployment timings as agents on the ground have structured
their lives around the existing shifts and are familiar with a
degree of latitude in patrolling their sectors. Shift timings are
easily adjustable system parameters, with users able to select
the start and end times to a granularity of 30 minutes. The
system passed User Acceptance Testing (UAT) with both the
transformation team and the end users, although plans for a
live field trial were disrupted by the COVID-19 pandemic.
The live field trial should focus on a set of sectors that are
active enough to provide insight into performance improve-
ments. The trial should go through phases, first guiding ac-
tual patrols on a smaller region (such as Area X from the an-
nealing results) and finally on a larger region, such as Area
Z. If performance meets targets set by the agency, the path
would be open for tender to developers to implement the
system prototype as commercial calibre software.

451

Conclusion

We have presented a general framework for planning daily
law enforcement deployments, consisting of three core com-
ponents, of which we have presented viable generally appli-
cable solution methods for two, using deep learning and sim-
ulated annealing. We have demonstrated the effectiveness of
these methods using police patrol as a case study, outlin-
ing the necessary criteria for deployment of a system imple-
mentation, and discussed the ethical implications of such a
system. Future work should move to field trials, while con-
tinuing to refine the methods, and examining the potential
for Al to tackle ethical safeguards.
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Ethical Impact

The ethics of law enforcement has been a hot topic over the
last year, and concerns about police bias arising primarily in
the US, but also in other countries such as the UK, have
highlighted the potential for misuse in an automated pa-
trol system. In (Richardson, Schultz, and Crawford 2019),
three case studies are presented highlighting cases where
corrupt police practices and manipulated crime records, such
as racially biased stop-and-frisk activity, was either directly
used in prediction, or evidence of corrupt practices show a
high likelihood of ‘dirty’ data being used, with a lack of
transparency and accountability preventing assessment of
the extent of the data corruption. Dirty data results in a feed-
back loop where biased input encourages biased behaviour.
Our case study uses call records generated automatically by
the public and therefore the distribution of incidents is not
based on police decision-making, although the assignment
of types and the extent of the response are. Additionally, in
our case study there exists a high degree of trust between
public and police, and a lack of racially segregated housing
areas, both of which help to reduce the potential for bias.
However, this may not hold true if our framework is applied
to another case with different data, and a key part of the fu-
ture development of this work to general law enforcement
problems must lie in ethical safeguards. Safeguards include
limiting use of data based on subjective police judgements,
and disregarding data from periods of time when corrupt
practices have been discovered, as well as crime types that
are known to have strong prejudice connected (e.g. drugs-
related offences in the US). Future work should focus on the
development of intelligent tools to identify and compensate
for bias, such as correlation with data from similar but less
corrupt areas, analysis of demographics, not as predictors of
crime but as predictors of bias, and machine learning mod-
els to learn patterns of bias that can be applied to temper
prediction models. Predictive policing has the potential for
generating powerful insights that can do great social good,
but can similarly do great harm if misused.
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