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Abstract

Computing time-optimal shortest paths, in road networks,
is one of the most popular applications of Artificial Intel-
ligence. This problem is tricky to solve because road con-
gestion affects travel times. The state-of-the-art in this area
is an algorithm called Time-dependent Contraction Hierar-
chies (TCH). Although fast and optimal, TCH still suffers
from two main drawbacks: (1) the usual query process uses
bi-directional Dijkstra search to find the shortest path, which
can be time-consuming; and (2) the TCH is constructed w.r.t.
the entire time domain T , which complicates the search pro-
cess for queries q that start and finish in a smaller time pe-
riod Tq ⊂ T . In this work, we improve TCH by making
use of time-independent heuristics, which speed up optimal
search, and by computing TCHs for different subsets of the
time domain, which further reduces the size of the search
space. We give a full description of these methods and discuss
their optimality-preserving characteristics. We report signifi-
cant query time improvements against a baseline implemen-
tation of TCH.

Introduction
Recent years have seen substantial progress for computing
shortest paths in static road network. Leading algorithms in
this area, such as Contraction Hierarchies (CHs) (Dibbelt,
Strasser, and Wagner 2016) and CH-based Compressed Path
Databases (Shen et al. 2021), can solve a given query in just
micro seconds. However static networks can only roughly
approximate actual road conditions, since traffic conges-
tion (among other issues) can affect travel times through-
out the day. How to compute more accurate solutions in
these settings has become an important topic, and is a nec-
essary enabling technology for reliable route planning soft-
ware (Delling et al. 2017), such as Bing Maps and Google
Maps. One way to address this problem is to model the
road network in a time-dependent way, where the cost of
each edge is determined by a piecewise linear function that
changes depending on the time of day. Because the time-
dependent model can take into account expected traffic con-
gestion, the computed shortest paths more closely approxi-
mate actual road conditions.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The state-of-art algorithm in this area is Time-dependent
Contraction Hierarchies (Batz et al. 2013, 2009) : a fam-
ily of successful speed up techniques that embeds the road
network into a hierarchical graph. There are however two
drawbacks: (i) TCH inherits the bidirectional Dijkstra search
from static Contraction Hierarchies (Dibbelt, Strasser, and
Wagner 2016). This approach does not rely on any lower-
bounding heuristics for guidance, although such methods are
known to improve performance. (ii) In time-dependent road
networks, TCH is built by considering the entire time do-
main T , in order to answer all queries q ∈ T . However, each
individual query only corresponds to a trip within a limited
time period Tq , such that Tq ⊂ T . Embedding the travel time
metric for the entire time domain T can increase the size of
TCH search space, which again affects query performance.

In this work, we investigate how to improve the TCH al-
gorithm. First, we adapt two admissible heuristic functions
from the static network literature: landmarks (Goldberg and
Harrelson 2005) and Path Databases (Bono et al. 2019).
We show that both approaches can be easily integrated with
TCH and both can substantially improve performance. Our
second approach involves building a set of smaller TCHs,
each of which focuses on a subset of the time domain. By
choosing the appropriate TCH for each query q ∈ T we
can retain the optimality guarantees of the original algorithm
while substantially improving search performance.

We give a complete description of the new algorithms, and
evaluate them on a range of road networks, including real-
world as well as synthetic datasets. Results show substantial
improvement over the baseline TCH method.

Preliminaries
Let G = (V,E, F, T ) be a directed graph, with nodes V ,
edges E ⊆ V × V and f ∈ F maps each edge e ∈ E to a
Travel Time Function (TTF) which returns the non-negative
travel time f(t) needed to travel through the edge e for a
given specific start time t in the time domain T . Each di-
rected edge evivj ∈ E with its corresponding TTF fvivj rep-
resents the edge that connects node vi to vij. In a road net-
work, we naturally assume that the network G satisfies the
FIFO property (i.e., fvivj

(t′)+t′ ≥ fvivj
(t)+t | ∀evivj

∈ E
and ∀t′ > t ∈ T ), that is departing later or waiting at an
intermediate node cannot result in arriving earlier. Similar
to many existing works (Batz et al. 2009, 2013), we model
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Figure 1: An example of an undirected time-dependent
graph. TTFs of the red edges are shown below the graph,
and the travel cost of the other edges are constant.

the TTF as a continuous piece-wise linear function with the
time domain of 24 hours. Figure 1 shows an example of a
time-dependent network. For exposition only, we assume the
graphG is undirected and only the edges that are highlighted
in red have non-constant TTF with T = [0, 180). Next, we
explain some of the important operations of TTF.

Evaluation of f(t) ∈ F normally requires a binary
search over the sorted array of interpolate points, and runs
in O(log(|f |)) where |f | denotes the number of interpo-
late points of f . However, we use the bucket-implementation
(Batz et al. 2013), which evaluates f(t) by scanning only the
interpolate points inside the bucket corresponding to t.

Chaining computes the TTF of a path evivj → evjvk
as

fvivk
(t) = fvjvk

(t+fvivj (t)). We use fvivk
= fvivj ◦fvjvk

to denote the chaining. Since concatenating two piece-wise
linear functions can only result in a piece-wise linear func-
tion, the operation can be computed in linear time (i.e.,
O(|fvivj

| + |fvjvk
|) ). The resultant function fvivk

has the
number of interpolate points |fvivk

| ≤ |fvivj
|+ |fvjvk

| with
the lower-bound min(fvivk

) ≥ min(fvivj
) +min(fvjvk

).
Merging minimizes the TTFs f ′vivj

and f ′′vivj
on two par-

allel edges of evivj
while preserving all the shortest paths

in G. The operation fvivj
= min(f ′vivj

, f ′′vivj
) is defined

as fvivj
(t) = min{f ′vivj

(t), f ′′vivj
(t)} | ∀t ∈ T . Similar to

chaining, this operation also runs in O(|f ′vivj
|+ |f ′′vivj

|) and
results in a piece-wise linear TTF.

A path P from source (s) and destination (d) is a se-
quences of nodes 〈v0, v1, v2, . . . , vk−1, vk〉, where k ∈ N+,
v0 = s, vk = d, and evivi+1 ∈ E for 0 ≤ i < k. In time-
dependent road network, the length (travel cost) of path |P|
depends on the departure time t ∈ T and |P| = fv0vk

(t),
where fv0vk

(t) = fv0v1
◦ fv1v2

. . . ◦ fvk−1vk
. Given a start

time t, sp(s, d, t) denotes the shortest path from s to d.
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Figure 2: From the source node H, the first move on the op-
timal path to any node are A (red), E(orange) and F (purple).

Ordering H A F J I B G D C E

H * A F F F F F F F E
A H * H H H H H H H H
J F F F * I D D D C E

Table 1: First moves for H, A and J for the example of Fig. 2

Compressed Path Database (CPD): is the state-of-the-
art approach (Botea 2011) for extracting shortest path in
static road networks (i.e., the cost of each edge is a constant
value). In a CPD, for each s ∈ V , a row R(s) is computed
which stores, for every d ∈ V , the first move (i.e., the first
vertex) on the shortest path from s to d. Each row R(s) is
compressed using run-length encoding (RLE), thus extract-
ing first move fm[s, d] only requires a simple binary search
through the compressed RLE encoded string. The shortest
path from s to any d (i.e., CPD(s, d)) can then be obtained
by recursively finding the first moves fm[s, d].

Example 1. Consider the graph shown in Figure 2. Table 1
shows the first move rows for nodes H, A and J, where “*”
is a wildcard (i.e., don’t care) symbol that indicates s and
d are the same, thus never need to lookup this symbol. The
RLE compresses a string of symbols into representative sub-
strings, each sub-strings has two values: a start index and
a first move symbol, e.g., the compressed RLE strings for H,
A and J are [(1,A), (3,F), (10,E)], [(1,H)] and [(1,F), (5,I),
(6,D), (9,C), (10,E)], respectively. Note that the symbol ”*”
can be combined with any other symbols, and the effective-
ness of RLE compression depends on the way nodes in each
row are ordered, e.g., the order of columns is a Depth First
Search order (from H) as suggested by Strasser, Harabor, and
Botea (2014).

Reversed Path Database (RPD): stores, for each source
node s ∈ V , a reverse row RR(s) which records, for every
d ∈ V , the first move on the shortest path from d to s (Mahéo
et al. 2021). Unlike CPD, the compression on RR(s) is not
effective. Therefore, RPDs are not compressed. This allows
accessing the first move in O(1). The shortest path from s
to d can be efficiently obtained by recursively obtaining the
fm[s, d] usingRR(d), i.e., the shortest path can be extracted
using a single row. Note that both CPD and RPD runs Dijk-
stra search to compute R(s) or RR(s) on each source node
s, and can be paralleled linear in number of processors.

The CPD and RPD are state-of-the-art heuristics in dy-
namic environment settings too (Bono et al. 2019). Simi-
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larly, given a time-dependent graph G, we build a CPD or
RPD by considering the minimal cost on each edge of G.
Since the optimal path extracted from database is no larger
than the shortest path on G (i.e., |CPD(s, d)| ≤ |sp(s, d, t)|
for ∀(s, d) ∈ G and ∀t ∈ T ), the first-move oracle defines
an admissible heuristic.

Example 2. Figure 2 shows an example, where we con-
struct a CPD on a graph with minimal edge weight shown
in Figure 1. The shortest path extracted from CPD between
H to J is a valid lower bound, i.e., (|CPD(H, J)| = 20) ≤
({sp(H, J, t) | ∀t ∈ T} = [30,40] ).

Landmarks: are another method for generating admis-
sible heuristics in time-dependent road network (Delling
and Wagner 2007). For each landmark l ∈ L, we use the
minimum travel time of each edge to compute an array
that records a pair (d(l, v), d(v, l)) on each v ∈ V , where
d(l, v) denotes the shortest travel time from l to v. Due to
the triangle inequality, the array of cost is exploited to be
the lower-bound of sp(vi, vj , t) for ∀t ∈ T , from any vi
to any vj : landmark(vi, vj) = maxl∈L{max(d(vi, l) −
d(vj , l), d(l, vi) − d(l, vj))}. The effectiveness of lower-
bound depends on the distribution of landmarks, thus we
select L on the borders of the graph following the same pro-
cedure explained in (Sturtevant et al. 2009).

Time-Dependent Contraction Hierarchy (TCH): is a
speedup technique that exploits the hierarchical nature of the
real-world transportation networks (Batz et al. 2009, 2013).
Given a graph G, a TCH can be built by repeatedly applying
a contraction operation to v ∈ V . In broad strokes:

1. Apply a total lex order L to the nodes V of G.
2. W.r.t. L, choose the least node v ∈ V that has not been

previously contracted.
3. (Contraction) Add to G a shortcut edge euw between

each pair of in-neighbour u and out-neighbour w of v
for which: 1) the lex order u and w are larger than v;
and 2) 〈u, v, w〉 is the shortest path between u and w at
some time in T . When adding the shortcut edge euw, the
TTF is computed as fuw = fuv ◦ fvw. However, the par-
allel edges can exist, and in this case, we merge existing
TTF f ′uw as fuw = min(f ′uw, fuv ◦ fvw) and maintain
a middle node profile to track the intermediate node for
corresponding interval in TTF.

Fewer shortcuts improve query performance, but comput-
ing a lex order L that minimizes the number shortcuts is
NP-hard (Bauer et al. 2010). Thus, we use the heuristic order
suggested in (Batz et al. 2013). Note that the contraction op-
eration requires verifying local optimality and can be costly
in time-dependent scenario, therefore the steps 2-3 are par-
allelized. We refer the reader to the paper (Batz et al. 2013)
for more details of the parallelization.

Example 3. In Figure 3, we contract the time-dependent
graph shown in Figure 1 in alphabetical lex order. The TTF
of the shortcut edge eHJ is computed as fHJ = min(fHE ◦
fEJ, fHF ◦ fFJ) and the corresponding middle node pro-
file is {(0, E), (40, F), (80, E)} which indicates the middle
nodes are E, F and E for the time period [0, 40),[40, 80)
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Figure 3: We show the result for contracting nodes E and F
in purple, and D in red. Dashed edge are the shortcut edges
and their corresponding TTFs are shown in the figure below.

and [80, 180), respectively. Also note, without shortcut edges
(dashed), the optimal path from A to B at time 150 has 6
edges: 〈A, H, E, J, D, G, B〉. However, with shortcut edges, we
traverse only four edges: 〈A, H, J, G, B〉.

Recall that TCH adds a shortcut edge euw iff both u and
w are lexically larger than the intermediate node v, and euw
is optimal and equivalent to the path 〈u, v, w〉. Therefore,
for every pair of edges (euv, evw), there must exist a cost
equivalent up edge euw ↑ (i.e, u <L w) or down edge euw ↓
(i.e, u >L w), if 〈u, v, w〉 is sp(u,w, t) for t ∈ T . Thus, we
have the following:

Lemma 1. (tch-path): For every optimal path sp(s, d, t) in
G, there is a cost equivalent tch-path 〈s, . . . k . . . d〉 whose
prefix 〈s, . . . k〉 is an up path (i.e., s <L s + 1 <L k and
suffix 〈k . . . d〉 is a down path (i.e., k >L k + 1 >L d)

Corollary 1. (apex node): Every tch-path has a node k
which is lexically largest among all nodes on the path.

The key idea of TCH is that the shortcut edges can bypass
one or more intermediate nodes in a single step. To achieve
a speedup, authors in (Batz et al. 2013) develop the Bidirec-
tional TCH search (BTCH) to efficiently find the tch-path,
following Lemma 1. To support the bi-directional search,
BTCH divides the set of edges E into two as follows:

• E↑ = {euv ∈ E | u <L v}
(i.e., the set of all “up” edges); and

• E↓ = {euv ∈ E | u >L v}
(i.e., the set of all “down” edges).

Given a source-destination pair (s, d) and departure time
t, the main challenge of the bidirectional search is that the
backward search is prohibitive in time-dependent scenario
(i.e., we can not search backward without knowing the ar-
rival time t′). Therefore, BTCH runs in two phases:
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(i) Bi-directional Search: In the forward direction,
BTCH runs a time-dependent Dijkstra search from s, con-
sidering only the outgoing edges in E↑. Similar to the static
graph, this Dijkstra search differs mainly in that it considers
the TTFs when it generates successors. In the reverse direc-
tion, BTCH performs the backward exploration from d using
a static Dijkstra search, and considers only the lower-bound
edge weights of the incoming edges in E↓. We also main-
tain U (initially infinity) which is the smallest upper bound
distance of any path from s to d seen so far by the algo-
rithm. During the backward Dijkstra search, we store each
traversed edge in Etrv and compute the upper bound by tak-
ing the maximal value on each edge in E↓. Whenever the
two searches meet at an apex node k, we: (i) update U if
the upper bound distance from s to d via k is smaller than
current U ; and (ii) obtain a lower-bound L(s, k, d) for the
path from s to d via k. If L(s, k, d) ≥ U , we discontinue the
search on both sides from k. Every time the search meets, we
also record the apex node k in K. The bi-directional search
continues until the minimum f-value on both open lists are
no less thanU (or when both lists are empty, if no such path).

(ii) Forward Search: Once the bi-directional search
stops, for each recorded apex node k ∈ K and L(s, k, d) ≤
U , we continue a forward time-dependent Dijkstra search on
the edges Etrv by iteratively inserting k into the queue. This
forward search is funnelled into d and considers only the
edges that are previously traversed by the backward search.
The search terminates if d is expanded.

Finally, BTCH unpacks the tch-path using the mid-
dle node profile maintained on the corresponding shortcut
edges, and the optimal path sp(s, d, t) is returned. BTCH re-
mains state-of-the-art for time-dependent routing (Strasser,
Wagner, and Zeitz 2021).

Improving Search on TCH
Given a time dependent graph G, we construct the Time-
dependent Contraction Hierarchy. For a given pair of source
and destination and its departure time t, BTCH is a success-
ful and efficient methods to solve the pathfinding problem.
However, we show the search algorithm can be further im-
proved (i) by combining the BTCH with landmark heuris-
tics; (ii) by changing the search to a forward search and com-
bining with a more advanced CPD-based heuristic: TCPD
heuristic; and (iii) by splitting the time domain T into mul-
tiple T ′ (i.e., T ′ ⊆ T ), such that each query in T ′ can be
efficiently solved by TCH constructed for T ′ only.

Combining BTCH with Landmarks
In time-dependent road networks, landmarks have been
widely used in many existing techniques, such as bi-
directional A* search (Nannicini et al. 2012), core rout-
ing (Delling and Nannicini 2012) and SHARC rout-
ing (Delling 2011). Following the success of these algo-
rithms, we extend BTCH using landmarks:

(i) During the Bi-directional Search: We employ the
bi-directional A* search instead of bi-directional Dijkstra
search, and the search on each side is guided by the land-
mark heuristic, i.e., the f -value for a node v is g(s, v) +

landmark(v, d) with g(s, v) ≥ sp(s, v, t) being a tentative
upper-bound for the shortest path from s to v. We also apply
the pruning rule used in the BTCH and mark the edges that
traversed by the backward search as Etrv . The search termi-
nates when the minimum f -value for both A* searches are
larger or equal to the smallest upper-bound U so far.

(ii) During the Forward Search: Recall that the back-
ward search in the bi-directional phase records the edges
that have been traversed as Etrv . We argue that the lower-
boundL(v, d) computed on each node v can be directly used
as a heuristic, because L(v, d) ≤ sp(v, d, t) for ∀t ∈ T .
L(v, d) is also more effective than the landmarks as this
lower-bound computes the true minimum distance in E↓
(i.e., L(v, d) ≥ landmark(v, d)).

Combining the landmarks heuristic with bi-directional
search speeds up the search in both directions, and results
in a smaller subset Etrv compared with the Dijkstra search.
Although the forward search is funnelled into the direction
of d and is usually cheap to run, directly reusing the pre-
viously computed lower-bound further improves the query
performance as we show later in the experiments section.

Forward TCH Search with CPD-based Heuristic
Due to the fact that the travel cost on a TTF can not be
computed without a known departure time t, forward search
seems to be a natural way to solve the pathfinding prob-
lem in a time-dependent road network. This motivates us
to revise the search on TCH to be a forward search. In ad-
dition to landmarks, we consider a more sophisticated goal-
directed heuristic, called the TCPD heuristic, and we show
this heuristic (i) requires less first move extractions; and (ii)
provides a more effective lower-bound compared to the CPD
heuristic. To further improve the query performance, we also
propose several pruning rules and optimizations.

Forward TCH Search (F-TCH): For a given source s
and destination d, suppose we expand a search node n with
its predecessor p(n), a time-dependent Dijkstra search on
the TCH typically generate successors s(n), which fall into
one of the following types:

1. Up-Up successors: p(n) <L n and n <L s(n);
2. Up-Down successors: p(n) <L n and n >L s(n);
3. Down-Down successors: p(n) >L n and n >L s(n);
4. Down-Up successors: p(n) >L n and n <L s(n);

Given a departure time t, although this uni-directional Di-
jkstra search finds the shortest path sp(s, d, t), the search
is unlikely to be efficient without avoiding the non tch-
paths. Therefore, we modify the search to consider only the
tch-paths by a simple pruning rule called UTD (Up-Then-
Down) (Harabor and Stuckey 2018). Recall that a tch-path
is always an UP-Down path (i.e., Lemma 1) with an apex
node which is lexically larger than all the other nodes on the
path. The F-TCH needs to generate (i) the type 1 and 3 suc-
cessors, which covers the Up or Down tch-paths (i.e., s or d
is the apex node) by continuously moving up or down; (ii)
the type 2 successors, which covers the Up-Down tch-paths
(i.e., an intermediate node k is an apex node and k >L v for
v ∈ 〈s, . . . k−1〉 | 〈k+1, . . . d〉) by switching the direction at
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Figure 4: From the source node H, the optimal first move to
any node are A (red), E(orange), F (purple) and J (pink)

the apex node. Therefore, the only type of successors that is
disallowed by UTD is the Down-Up successors which leads
to a non tch-path.

TCH-CPD (TCPD) heuristic: Given a time-dependent
graph G, we construct a CPD using the minimal edge
cost of each edge, and use this CPD in a forward TCH
search as a heuristic to further improve the search. How-
ever, path extraction for CPD requires a number of lookups
(i.e.,fm[s, d]) equal to the number of edges on the optimal
path, thus can be costly when used as a heuristic. To mitigate
such defects, we propose to combine the CPD with TCH.
Our idea is motivated by a recent paper (Shen et al. 2021)
that shows combining CPD with contraction hierarchies in a
static graph reduces the first move extractions significantly.
However, combining CPD with TCH is more complicated.

Given a TCH constructed on a time-dependent graph G,
we obtain a contracted graph by taking the lower-bound
value of each TTF. In order to build CPD, we further mod-
ify the F-TCH to compute the first moves on the optimal
tch-path, from each source node s toward ∀d ∈ V . For a
given source node s, we divide the search node v with its
parents p(v) into two types: (i) Up-reach search node vu:
p(vu) <L vu. (ii) Down-reach search node vd: p(vd) >L vd.
At each search node v, we allow the search to independently
expand each type of search nodes once with g(s, vu) and
g(s, vd) being the best tentative distance respectively. The
search terminates when the open list becomes empty, and for
each node v, we have (i) g(s, vu) which computes the short-
est up tch-paths; and (ii) g(s, vd) which covers all the short-
est up-down or down tch-paths. Therefore, the first move
from s to any v on the optimal tch-paths can be easily ob-
tained from the path min(g(s, vu), g(s, vd)).

Example 4. In Figure 4, the contracted graph is taken from
the TCH in Figure 3. Assume we compute the first move row
on the source node A. A simple F-TCH would falsely prune
the successor J when expanding search node F because the
best tentative solution from A to F is 〈A, H, F〉 and the succes-
sor J is a down-up successor (i.e., H >L F <L J). However,
the modified F-TCH computes the optimal path 〈A, F, J〉 cor-
rectly as it manages up and down search nodes separately,
i.e., the down-up successor pruning is only performed when
expanding a down-reachable search node. Also note the first
moves from source node H are now on the optimal tch-path.

With the modified F-TCH search, we now construct the
TCPD following the same general procedures already de-

scribed. Given a source and destination, we denote the path
extracted from TCPD as TCPD(s, d).

Theorem 1. Given a pair of (s, d) and departure time t ∈ T
in a TCH, |TCPD(s, d)| is a lower-bound for |sp(s, d, t)|.

Proof. Given a TCH constructed in G, there must exists a
cost equivalent tch-path for every sp(s, d, t) and t ∈ T .
In a lower-bound graph of TCH, TCPD computes and en-
code the first move on the optimal path, from any s to any
d by examining all possible (i) up; (ii) up-down; and (iii)
down tch-path. Thus |TCPD(s, d)| defines a lower-bound,
i.e., |TCPD(s, d)| ≤ |sp(s, d, t)| for ∀t ∈ T .

Due to Theorem 1, |TCPD(s, d)| defines an admissible
heuristic and can be easily combined with forward TCH
search. Recall that the lower-bound on a shortcut edge
min(fuw) ≥ min(fuv)+min(fvw), thus |TCPD(s, d)| is a
tighter lower bound, i.e., |TCPD(s, d)| ≥ |CPD(s, d)| . Next
we introduce several optimization techniques to further im-
prove the query performance.

Downward Successors Pruning: Although the F-TCH
prunes the up-successors, when expanding the node n, it
has to generate every down-successor v no matter whether
p(n) >L n or p(n) <L n. However, not every down-
successor v can lead to a path 〈n, . . . d〉 that reaches the des-
tination d from the apex node n. Therefore, we reuse the
concept of CPD and propose a reachabilty oracle, called
Reach, that tells whether there is a down path 〈s, . . . d〉,
from a given node s to any node d. Whenever the F-
TCH generates the down-successors n, we use Reach(n, d)
to prune non-reachable successors. Eliminating the down-
successors early helps the search to reduce the branching
factor. Next, we discuss the construction of Reach.

To build Reach, we first compute a down-reachability ta-
ble (DT) by running a Depth First Search (DFS) on each
source node s that only generates the down successors (i.e.,
s(n) >L n). Although DT is a simple truth table, without
a better ordering, it does not compress well. But note that
the TCH is a hierarchical data structure that is rooted from
one or more important nodes, and these nodes are assigned
to the largest lex order possible. Therefore, we run a DFS
from the node that has the largest lex order. Similarly, the
search only visits the down-successors, not earlier expanded
by a node with larger lex order. We order the columns of DT
according to the order of nodes accessed by this DFS, and
compress it using RLE. With this novel ordering,Reach can
be compressed effectively (e.g., in a graph with millions of
nodes, Reach only needs a few MB to store), and each bi-
nary search Reach(s, d) runs in near constant time.

Cost Caching: When TCPD is used as a heuristic, it needs
to continuously extract the path TCPD(s, d) at each node ex-
pansion of s. To further reduce the number of fm[s, d], we
apply a simple cost caching strategy. When we extract a path
from s to d, we cache distance dist(v, d) = |TCPD(v, d)|
for each vertex v on the extracted path TCPD(s, d). Later
on, for a subsequent path extraction TCPD(s′, d), we termi-
nate early if the path extraction reaches the vertex v such that
dist(v, d) is cached, and we use the cached distance to get
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the path length from s′ to d. Similar cost caching strategies
have also appeared in CPD-based search (Shen et al. 2020),
and CPD-heuristics (Bono et al. 2019), since they signifi-
cantly reduce the first move extractions.

Reverse TCH Path Database: Another way to improve
the path extraction of TCPD(s, d) is to speed up each
fm[s, d] by building a reversed tch path database (RTPD)
that is similar to the RPD as discussed earlier. Recall that a
RPD computes a reverse first move tableRR that records the
first move on optimal path from any s to a given target node
d. Similarly, on each source node s, we compute RR(s) in
TCH using a modified F-TCH which considers only the in-
coming edges of TCH. RTPD and TCPD essentially com-
pute the same first moves, but only store in a different way,
thus all the properties of TCPD preserved.

Splitting the Time-domain
In order to handle any arbitrary query that is issued at t ∈ T ,
a TCH is usually built by considering the entire time do-
main T . However, each individual query only requires us to
consider a much shorter time period Tq = [t, t′], where t′
is the optimal arrival time when traveling from s to d at t.
Therefore, the TCH has two drawbacks: (i) In each edge,
the TTF stores all interpolate points w.r.t T , thus requires
more time to evaluate the travel time for t, and results in a
looser lower and upper bounds than Tq . (ii) For each short-
cut edge euw, euw is added if ∃T ′ ⊆ T such that 〈u, v, w〉
is an optimal path from u to w during T ′, such a shortcut
edge may be unnecessary for Tq . To mitigate these disad-
vantages of TCH, we propose to split T into n number of
equal-sized time buckets Ti (i.e., Ti = [ti, ti+1] = |T |/n for
0 ≤ i ≤ n− 1) for processing start times t ∈ [ti, ti+1). For
each bucket Ti, we build a TCH to cover all |sp(s, d, t)| ≤ tu
by adding an upper-bound tu, and building TCHi(T ) over
time range [ti, ti+1 + tu]. First, we show how to choose
the upper-bound tu to form a single-layer TCH, denoted
as STCH, such that ∃ TCHi ∈ STCH and TCHi(T ) ⊇ Tq
for all queries q ∈ T . We then describe a multi-layer TCH
which combines STCHs with customized tu. For each indi-
vidual query q ∈ T , we show q can be improved using TCH
built in STCH with minimal tu.

Single-layer TCH In the time-dependent shortest path
problem, highly accurate solutions are needed, especially
when a user needs to plan a short-term trip. Therefore, our
main focus is on city-sized road networks. From point to
point in a city-sized graph, the shortest path sp(s, d, t) does
not typically take a large amount of time (e.g., travel within
Melbourne almost always requires less than four hours).
Suppose |sp(s, d, t)| < tu for every possible start s, des-
tination d and start time t. We build a TCH for each start
time bucket Ti = [ti, ti+1] which only considers travel in the
time [ti, ti+1+tu]. Then we can answer a shortest path query
sp(s, d, t) correctly by using TCHi built for time bucket Ti
where t ∈ Ti if travel time is no more than tu.

Example 5. Consider the example in Figure 3. Assume we
split the time domain T = [0, 180] into 6 time buckets, i.e.,
|Ti| = 30 for 0 ≤ i ≤ 5. Since ∀sp(s, d, t) ≤ 90 for t ∈ T

and (s, d) ∈ G, we set the upper bound tu = 90. Notice that
contracting the node D for T0 (i.e., T0 = [0, 120]) cannot add
the shortcut eJG, as 〈J, I, G〉 is a shorter path than 〈J, D, G〉
(i.e., 20 + 10 ≤ min(fJD ◦ fDG)).

Multi-layer TCH Although we can predict an upper-
bound tu that is large enough for solving all queries, the
upper-bound tu may not be efficient, because many, if not
most travel time of queries q ∈ T may be much smaller than
tu. In order to solve q using a TCH such that TCH(T ) is as
small as possible, we propose to form multiple STCHs with
different tu into a Multi-layer TCH (MTCH). In the offline
phase, we build MTCH as following:

1. At the root R of MTCH, we construct a TCH w.r.t the
entire time domain T . In addition, we build a TCPD as
discussed earlier.

2. For each lower layer j ofR, we build STCHj by splitting
T into n time buckets Ti, and the upper-bound tu can be
set to any customized value, but only needs to be less
than t′u, where t′u is the upper-bound used in STCHj−1.

During the online phase of MTCH, given a query sp(s, d, t)
with t ∈ Ti, we first obtain an upper-bound U(s, d) using
the maximal travel cost for the path extracted from TCPD
between s and d. Therefore, we know the query can be
solved in Tq = [t, t + U(s, d)]. For TCHs built in time
bucket Ti, we check each layer of MTCH via a top-down
scan from STCH0 to STCHj . The scan terminates when
TCHi(T ) 6⊇ Tq , and returns TCHi with minimal TCHi(T )
that covers Tq . If TCHi is found, we answer the query us-
ing the TCHi. Otherwise, we answer the query by running a
forward TCH search in R, with TCPD guided as a heuristic.
MTCH is guaranteed to solve all queries q ∈ T in R, and
each q ∈ Ti is safely improved by using the TCHs main-
tained in lower layers.

Experiments
We test our proposed algorithms against the baseline
implementation of Time-dependent Contraction Hierar-
chies (TCH), taken from the repository1 of original au-
thors (Batz et al. 2013). The implementation is also known
as KaTCH. In a recent study (Strasser, Wagner, and Zeitz
2021), it was shown that KaTCH is the state-of-the-
art algorithm and outperforms a range of optimal algo-
rithms, including CATCHUp (Strasser, Wagner, and Zeitz
2021), TD-CALT (Delling and Nannicini 2012), and TD-
SHARC (Delling 2011). Meanwhile, our approaches: (i) the
Single-layer TCH (STCH) is built by splitting the time do-
main into 24 hourly buckets and the upper-bound tu is set to
4 hours as no trip in our tested maps exceeds this limit. (ii)
The Multi-layer TCH (MTCH) is built by adding three lay-
ers of STCH under the root R. For each layer, we maintain
24 hourly time buckets and set tu to 4h, 2h and 1h corre-
spondingly.

For the heuristics, we further compare our approaches
with Compressed Path Databases (Strasser, Harabor, and
Botea 2014) and take the implementation from the publicly

1https://github.com/GVeitBatz/KaTCH
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Map #V #E
Build Time (Mins) Memory (MB)

TCH STCH MTCH TCH STCH MTCH
- CPD TCPD RTPD - TCPD - TCPD - CPD TCPD RTPD - TCPD - TCPD

NY 96k 260k 1.72 2.92 2.94 3.21 2.99 31.87 9.04 95.12 269 346 353 9596 1279 3286 3193 9198
GC 39k 81k 0.03 0.18 0.17 0.18 0.25 3.56 2.51 12.46 32 36 36 1614 231 334 829 1138

SYD 192k 421k 0.37 5.17 4.99 6.19 1.88 111.99 11.01 341.03 214 290 294 37168 1421 3254 3711 9147
MEL 314k 690k 0.62 15.55 14.65 17.93 3.50 342.74 24.52 1030.67 417 587 609 99237 2710 7132 6815 19927
NY-5 96k 260k 30.76 31.94 31.96 32.30 22.15 50.68 37.18 122.48 4242 4319 4325 13569 12254 14262 23289 29297

Table 2: Total number of vertices (#V) and edges (#E) in maps, build time in Mins, and memory in MB for TCH-based data
structure with different heuristics.

available repository.2 By CPD, we mean the Compressed
Path Databases that is built on the contracted graph of TCH.
On the other hand, our approach L12 indicates using 12
landmarks for travel time estimation (we varied the num-
ber of landmarks from 4 to 16, and 12 appears to be the
best). TCPD and RTPD refer to TCH-based Compressed
Path Databases and Reverse TCH Path Database respec-
tively. We also use the letter B and F to denote the Bidi-
rectional search and Forward search respectively. For exam-
ple, B-TCH(L12) denotes our algorithm bidirectional TCH
search with landmarks heuristic, and F-TCH(L12) denotes
the forward TCH search with landmarks heuristic, while ap-
plying all optimizations introduced.

Dataset: For experiments, we consider the real-world
dataset taken from the public repository.3 The dataset con-
tains the road network for New York (NY) and the histor-
ical travel time that is estimated every hour during the en-
tire 2013 year. In order to compute TTF for each edge, we
take the travel time data from Tuesday to Thursday follow-
ing (Batz et al. 2013) and average them for each hour af-
ter filtering out the data by two standard deviation. Overall,
the NY dataset has 12.59% of edges that are time-dependent
with time domain [0h, 24h). Since there are not many time-
dependent datasets available online, we also create a few
synthetic datasets to evaluate our algorithms: (i) In order to
simulate the data on other cities, we take the road networks
for Gold Coast (GC), Sydney (SYD), and Melbourne (MEL)
from the OpenStreetMap4 and use the traffic pattern taken
from NY dataset, to assign each type of road the same per-
centage of time-dependent edges. (ii) In order to simulate
a more accurate TTF, we change the TTF of NY dataset by
taking the 5 mins data points on a cubic spline created using
the original data. We denote this dataset as NY-5.

Queries: We generate queries following the same method
as in (Wu et al. 2012). For each road network, we discretise
the map into a 1024 × 1024 grid with cell side length l.
Then, we randomly generate ten groups of queries such that
i-th group contains 1000 (s, d) pairs with Euclidean distance
between them within 2i−1 × l to 2i × l, i.e., 10,000 queries
in total. During each hour in the time-domain [0h, 24h), we
report the performance for each algorithm to determine the
length of the shortest path, without outputting the complete

2https://bitbucket.org/dharabor/pathfinding
3https://uofi.app.box.com/v/NYC-traffic-estimates
4https://www.openstreetmap.org

description of the paths. Individual queries are run 10 times;
we omit the best and worst runs and average the rest.

All algorithms are implemented in C++ and compiled
with -O3 flag. We use a 2.6 GHz Intel Core i7 machine with
16GB of RAM and running OSX 10.14.6. For reproducibil-
ity, all of our implementations are available online.5

Preprocessing Cost and Space
All indexes were built on a 32 core Nectar research cloud
with 128GB of RAM running Ubuntu 18.04.4 LTS (Bionic
Beaver). Table 2 shows the build time and memory required
for TCH, STCH and MTCH, as well as constructing heuris-
tic CPD, TCPD and RTPD. Note that for STCH and MTCH,
TCPDs are constructed on top of TCH in each time bucket
Ti. All CPD-based heuristics include the costs for construct-
ing and storing the underlying hierarchical data structure and
the reachabilty oracle Reach (for all datasets, Reach takes
<10 secs to build and <5MB to store).

For heuristics of the TCH, our proposed TCPDs are built
in similar time to CPDs, but take slightly more space to
store. On the other hand, RTPDs shows higher build time
and space-consumption than both CPDs and TCPDs. Com-
paring with TCH, both STCH and MTCH are generally
more expensive to build and store. However, interestingly,
we see STCH is cheaper to compute than TCH in the NY-5
dataset. This is because the TTF of NY-5 has more interpo-
late points (i.e., every 5 mins) than the other datasets. During
TCH construction, adding shortcut edges requires search to
verify the local optimality which can adversely affect the
performance when considering the entire time domain T .
The memory of STCH and MTCH can be large after includ-
ing the TCPDs heuristics. However, during the query time
of entire day, STCH and MTCH roll over the TCHs built for
each hourly bucket, so the actual memory required in RAM
is only 1/24 of the memory reported in Table 2.

Query Processing Time
In this experiment, we compare the average query process-
ing time for our algorithms against the baseline implemen-
tation of TCH. During the entire time domain [0h, 24h), we
evaluate all queries by setting the departure time t at each
hour. We report the average runtime of each algorithm.

5https://github.com/bshen95/Improving-TCH
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Figure 5: Runtime comparisons between TCH and different heuristic searches on TCH. The x-axis represents every hour during
the time domain [0h, 24h). The y-axis shows the average runtime of different algorithms in µs.
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Figure 6: Runtime comparisons between the baseline implementation of TCH, and our algorithms STCH and MTCH with-
/without TCPD heuristics. The x-axis and y-axis are same as in Figure 5.
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Figure 7: Runtime comparisons on NY-5 datasets, we show
the results for different heuristics on TCH (left), STCH and
MTCH with/without TCPD heuristics (right).

Heuristic search: Figure 5 compares the query performance
between the bidirectional TCH search (B-TCH) and our
proposed heuristic searches on TCH. Examining the re-
sults, we see that all heuristic searches are substantially
faster than the baseline implementation of TCH. For bidi-
rectional TCH search, our proposed algorithm B-TCH(L12)
improves B-TCH by around 30% of time. Moving to for-
ward TCH search, the landmark heuristic F-TCH(L12) be-
comes faster than B-TCH(L12) for most datasets (e.g., NY,
GC and SYD). In addition, the TCPD heuristic outper-
forms the landmark heuristics for forward TCH search in
all datasets. Using RTPD heuristics dominates all methods.

We also compared against CPD heuristics, the performance
of F-TCH(CPD) is however significantly slower than other
approaches (see Table 3).
Splitting the time domain: Figure 6 compares B-TCH
against our algorithms. From the results, it is clear that
B-STCH significantly outperforms B-TCH, and B-MTCH
further improves the query performance. We also see
that TCPD heuristics improve both algorithms, but F-
MTCH(TCPD) costs additional time to switch to the corre-
sponding TCH, thus only shows competitive results with F-
STCH(TCPD). One can build RTPDs in STCH and MTCH
by storing each of RTPD with same amount of space as
shown in Table 2. However, the improvement is only a few
microseconds, thus omitted. We also remark that the MTCH
can be extended to speed up only certain period of the time
domain (e.g., during the peak hours: 6 - 10 AM or 16 - 19
PM ) or further improved by adding more layers with smaller
tu. However, how to efficiently choose upper-bound tu and
split the time domain is left as future work.
Tolerance of more accurate TTF: In Figure 7, we repro-
duce the experiments on NY-5 datasets, where the travel
times are evaluated every 5 mins. Clearly, our proposed al-
gorithms are tolerant to the more accurate TTF. In addition,
unlike the NY dataset, both F-MTCH and F-MTCH(TCPD)
outperform the STCH approaches. This is because the TCH
constructed for tu = 1h and 2h in MTCH can be more effi-
ciently evaluated than STCH (i.e., tu = 4h).
Query statistics: Table 3 provides more insights. For the
searches that are conducted on TCH, B-TCH(L12) signifi-
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Map Stat B-TCH F-TCH B-STCH F-STCH B-MTCH F-MTCH
- L12 L12 CPD TCPD RTPD - TCPD - TCPD

NY

#Generated 409.030 238.549 194.885 146.910 128.333 231.202 73.821 191.762 60.718
#Expanded 188.190 87.927 52.343 33.512 26.761 127.227 16.281 111.311 13.217
#FirstMove - - - 437.900 104.098 - 72.327 8.354 71.835
#ReachTest - - 469.593 320.587 263.588 - 155.519 - 126.272

Runtime 135.462 82.297 72.773 143.242 65.966 50.428 53.158 32.372 45.806 30.484

GC

#Generated 157.091 125.512 89.900 75.883 68.356 115.409 48.613 102.002 41.311
#Expanded 98.240 72.178 43.035 33.852 28.400 78.561 19.883 71.528 16.536
#FirstMove - - - 287.394 61.682 - 49.488 10.170 54.765
#ReachTest - - 265.317 202.391 168.863 - 113.855 - 91.703

Runtime 34.048 30.106 21.637 36.205 19.509 17.188 21.747 11.182 19.940 13.822

SYD

#Generated 396.275 283.144 243.200 200.175 163.915 258.679 104.310 219.491 84.920
#Expanded 203.671 123.877 81.389 60.884 43.175 151.042 28.513 134.567 22.991
#FirstMove - - - 857.854 130.283 - 98.494 11.558 97.879
#ReachTest - - 823.346 624.071 447.878 - 274.051 - 218.711

Runtime 140.094 107.453 104.462 235.888 86.982 72.609 76.488 50.362 71.604 46.152

MEL

#Generated 558.484 420.292 394.894 333.293 262.745 374.386 161.660 322.278 133.948
#Expanded 293.440 189.117 139.651 108.987 73.811 219.413 43.616 196.001 36.044
#FirstMove - - - 1630.162 193.499 - 143.565 13.761 139.118
#ReachTest - - 1592.497 1283.166 909.075 - 520.653 - 428.705

Runtime 227.828 184.182 215.427 570.812 175.058 146.730 126.825 92.807 122.892 93.952

NY-5

#Generated 427.587 248.241 201.013 151.863 133.485 238.443 75.512 195.478 61.123
#Expanded 191.516 88.954 51.879 33.236 26.944 129.906 16.548 112.625 13.321
#FirstMove - - - 354.327 106.424 - 73.479 8.428 72.187
#ReachTest - - 475.553 325.475 270.539 - 157.568 - 126.871

Runtime 173.661 101.496 94.273 148.735 78.185 62.465 71.651 37.887 57.855 31.426

Table 3: Average runtime in µs and number of nodes #Generated and #Expanded by each algorithm. For forward search, we
report the number of reachability tests (#ReachTest) and #FirstMove extractions performed using Reach and different CPDs.

cantly improves B-TCH due to the smaller number of nodes
generated and expanded using landmarks heuristic. Al-
though F-TCH(CPD) requires smaller number of nodes gen-
erated and expanded, it still performs worse than B-TCH as
the number of first move extractions is large, even after ap-
plying the cost caching discussed earlier. On the other hand,
F-TCH(TCPD) retrieves the first moves on the optimal tch-
paths which significantly reduces #FirstMove. Also, #Gen-
erated and #Expanded are also reduced because TCPD com-
putes tighter lower-bounds. Overall, F-TCH(TCPD) outper-
forms the other heuristics in terms of average runtime for all
maps, and RTPD further improves the performance by ex-
tracting each first move in constant time. For the searches
that are conducted on STCH and MTCH, both B-STCH and
B-MTCH outperform B-TCH, because building the TCHs
for small time period (i) has smaller number of shortcut
edges; (ii) stores tighter lower and upper bound; and (iii)
maintains much smaller number of interpolate points on
each TTF. In addition, TCPD heuristic further improves the
performance for STCH and MTCH, and achieves speed up
against baseline algorithm B-TCH by 3-6 factors.

Conclusion and Future Work
We show how search in time-dependent road networks
can be substantially improved by applying several heuris-
tics. Forward search using heuristics based on landmarks
or CPDs is able to improve upon the usual bi-directional
search. We also show that we can improve TCHs by building

a set of TCHs to be used depending on the start time, and a
given upper bound on the shortest path. The resulting TCHs
allow for faster query processing, using a heuristic search to
quickly find an upper bound, and then choosing the appro-
priate TCH to answer the query.

Regarding bounded-suboptimal search, there exist many
techniques that compute solutions faster at the cost
of slightly suboptimal paths, such as TD-CRP (Baum
et al. 2016), TD-CFLAT (Kontogiannis et al. 2017), and
ATCH (Batz et al. 2013). The CPDs can also be used to find
bounded-suboptimal paths (Bono et al. 2019), e.g., when-
ever we compute a lower-bound using CPDs, we can find a
solution by following the path extracted from CPDs. We be-
lieve the TCPDs and RTPDs should have the same advantage
and can be easily extended for bounded suboptimal search,
which we leave as future work.
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