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Abstract

Most classical planners use grounding as a preprocessing
step, essentially reducing planning to propositional logic.
However, grounding involves instantiating all action rules
with concrete object combinations, and results in large encod-
ings for SAT/QBF-based planners. This severe cost in mem-
ory becomes a main bottleneck when actions have many pa-
rameters, such as in the Organic Synthesis problems from the
IPC 2018 competition. We provide a compact QBF encod-
ing that is logarithmic in the number of objects and avoids
grounding completely, by using universal quantification for
object combinations. We show that we can solve some of the
Organic Synthesis problems, which could not be handled be-
fore by any SAT/QBF based planners due to grounding.

Introduction
Automated planning has many real-world applications, such
as Space Exploration and Robotics, cf. the book by Ghal-
lab, Nau, and Traverso (2004). The three main research
directions in automated planning are heuristic-based state-
space search, symbolic search and propositional satisfiabil-
ity (SAT) based solving. While heuristic-based search often
finds some plan quickly, it may not guarantee to search the
whole search space. SAT-based solvers, on the other hand,
can also be used to prove the non-existence of plans up to a
bounded length and finding optimal plans. For some appli-
cations, quickly falsifying the existence of a plan or finding
provably optimal plans can be useful. Classical planning is
the most simple problem; its aim is to find a valid sequence
of actions from a single initial state to some goal state, where
the state is completely known and the effect of all actions is
deterministic. Kautz and Selman (1992) reduced the plan-
ning problem to the bounded reachability problem and pro-
vided a corresponding SAT encoding for a plan of length k.

Classical planning domains are usually defined by logi-
cal rules that describe the pre-conditions and effects of ap-
plying actions. Usually, a single action involves multiple
objects, corresponding to the arity of that action. The pre-
conditions and effects contain predicates, which also refer to
multiple objects. A concrete planning problem defines a uni-
verse of concrete objects, and an initial and goal condition.
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Many planning tools, both SAT-based and heuristic, first ap-
ply a grounding step: the action rules are instantiated for all
combinations of objects. However, for domains with actions
involving many objects, the grounded specification is very
large, so memory becomes the main bottleneck. Despite sev-
eral improvements, such as action splitting (Kautz and Sel-
man 1992), explanatory frame axioms (Haas 1987), invari-
ants (Rintanen 2008) and parallel plans (Rintanen, Heljanko,
and Niemelä 2006; Robinson et al. 2009), the memory still
remains a bottleneck for domains with large action arity.

QBF (Quantified Boolean Formula) encodings are known
for being more compact than SAT encodings, so they are
considered as an alternative when SAT encodings suf-
fer from memory problems. Dershowitz, Hanna, and Katz
(2005) and Jussila and Biere (2007) proposed a QBF en-
coding with ∃∀∃ quantifier alternation for reachability in
Bounded Model Checking (BMC). It generates only a single
copy of the transition function, instead of k copies in SAT,
by using quantification over state variables. Rintanen (2001)
proposed a reachability QBF encoding that is logarithmic in
the length of the plan, and uses only one transition function.
Cashmore, Fox, and Giunchiglia (2012) proposed the Com-
pact Tree Encoding (CTE), which improves upon the loga-
rithmic encoding by Rintanen (in the context of planning)
by efficient traversal of the search tree. Although these QBF
encodings are more concise than the SAT encodings, it has
been reported that the SAT encodings can usually be solved
faster than the QBF encodings by the current solvers (Cash-
more, Fox, and Giunchiglia 2012). More importantly, the
QBF encodings mentioned above still require the problem
to be grounded first, so the memory bottleneck for actions
that involve many objects has not been solved.

Matloob and Soutchanski (2016) proposed Organic Syn-
thesis benchmarks and showed that SAT encodings could not
solve any of them. This is consistent with the findings from
the IPC-2018 planning competition, in which SAT based
planners performed poorly on instances from Organic Syn-
thesis. These benchmarks contain actions that manipulate up
to 31 objects, so the grounding step exhausts the memory.
Even heuristic planners that employ grounding will exhaust
the memory for this domain. Thus, to solve these problems,
there is a need for encodings that avoid grounding altogether.

Our Contribution. In this paper, we propose a QBF en-
coding of quantifier structure ∃∀∃ which completely avoids
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grounding, by using universal variables to represent combi-
nations of objects. The encoding grows linearly in the num-
ber of action names, predicates, and path length, and loga-
rithmic in the number of objects. We provide an open-source
implementation1 of the encoding. We evaluate our QBF en-
coding on 18 domains from previous IPC competitions and
on 10 hard-to-ground domains, and try to solve them with
QBF solver CAQE. We compare the size of the encoding and
the time needed for solving them with the best SAT-based
solver Madagascar, and two of the best heuristic solvers.

Preliminaries
We introduce the main notions of the classical planning
problems and QBF. We also present a running example of
the blocks-world domain (Listing 1) in PDDL, the Planning
Domain Definition Language (Fox and Long 2003).

Classical Planning
Definition 1 A planning signature Σ = 〈P,A,O, arity〉 is
a 4-tuple where P is a set of predicate symbols, A is a set of
action names, O is a set of objects, and the function arity :
(P∪A→ N0) indicates the expected number of arguments.

In the example of Listing 1, P = {clear, ontable, on},
O = {b1, b2}, A = {unstack, stack}, and arity(on) = 2.
A schematic action corresponds to an action name with pa-
rameters, e.g. stack(?x1, ?x2). It can be grounded to a set
of concrete actions, by replacing the parameters by concrete
object combinations. Predicate symbols are also equipped
with parameters, that can be grounded by concrete objects.
To facilitate our encodings, we unify the parameter names
of all actions to a fixed sequence of x’s, and the formal
predicate parameters to a sequence of y’s. Note that adding
dummy parameters does not change the problem. The fixed
predicate parameter names will be used later for universal
object combination variables in the QBF encoding. Since
we use a sequential plan semantics, a single set of action
and predicate parameter variables is sufficient to represent
any chosen action at each time step. Each action is specified
schematically by preconditions and effects.

Definition 2 Given a signature, we define the set of atoms
and grounded atoms (or fluents) as:

Atom = {p(−→x ) | p ∈ P, |−→x | = arity(p)}
F = {p(−→o ) | p ∈ P, oi ∈ O, |−→o | = arity(p)}

Definition 3 Given a signature Σ = 〈P,A,O, arity〉. The
planning problem Π = 〈I,G, pre+, pre−, eff+, eff−〉 is a
6-tuple where

• Initial state I ⊆ F and
• Goal condition G = (g+, g−), where g+, g− ⊆ F.
• for each action a ∈ A, we have:

– positive preconditions pre+(a) ⊆ Atom

– negative preconditions pre−(a) ⊆ Atom

– positive effects eff+(a) ⊆ Atom

– negative effects eff−(a) ⊆ Atom

1https://github.com/irfansha/Q-Planner

Listing 1: blocks-world domain and problem
1 (define (domain blocksworld)
2 (:predicates (clear ?y1)(ontable ?y1)
3 (on ?y1 ?y2))
4 (:action unstack
5 :parameters (?x1 ?x2)
6 :precondition (and (clear ?x1)
7 (on ?x1 ?x2))
8 :effect (and (not (on ?x1 ?x2))
9 (ontable ?x1)(clear ?x2)))

10 (:action stack
11 :parameters (?x1 ?x2)
12 :precondition (and (clear ?x1)
13 (clear ?x2)(ontable ?x1))
14 :effect (and (not(clear ?x2))
15 (not(ontable ?x1))(on ?x1 ?x2))))
16 (define (problem BW_rand_2)
17 (:domain blocksworld)
18 (:objects b1 b2)
19 (:init (ontable b1) (on b2 b1) (clear b2))
20 (:goal (and (on b1 b2))))

In the example, (on ?x1 ?x2) is a positive precondition for
action unstack, while (ontable ?x1) is a negative effect for
action stack. We assume that the variables used in precon-
ditions and effects are (non-dummy) action parameters.

SAT Encoding
The planning problem is encoded as finding a path (of length
k) in a graph, whose nodes consist of assignments to the
fluents and whose edges are defined by the conditions and
effects of grounded actions. Usually, a SAT encoding uses
propositional variables encoding the k actions and k + 1
states in the path. A direct encoding would use k variables
for each grounded action, but since we use sequential plan
semantics (in which only one action occurs at the time), this
can be encoded by a number of variables that is logarithmic
in the number of grounded actions (still linear in k).

We will present the constraints in circuit format (with
nested ∧ and ∨), which can be transformed to CNF clauses
by a standard procedure. We will write

∧
and

∨
for con-

junctions and disjunctions over finite (indexed) sets.

Quantified Boolean Formulas
Quantified Boolean Formulas (QBF) extend propositional
formulas in SAT with universal quantification over some
variables. A QBF formula in prenex normal form is of the
shape Πφ where φ is called the matrix, which is a proposi-
tional formula, and Π = Q1X1 . . . QnXn is the prefix with
alternating existential and universal quantifiers Qi ∈ {∀, ∃}
and disjoint sets of variables Xi. The Qi specify the quan-
tification of each variable that occurs in φ. We consider only
closed formulas, i.e., the quantification of all variables is
known. A QBF is evaluated to either True or False and its
truth value can be computed by recursively solving the for-
mula over each outermost variable. A formula ∃xφ is true if
and only if φ[>/x] or φ[⊥/x] is true. A formula ∀xφ is true
if and only if both φ[>/x] and φ[⊥/x] are true. The order of
the variables within each quantified block does not matter.
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Intermediate SAT Encoding
We now provide the intermediate SAT encoding of planning
problems, as an introduction to our QBF encoding. Through-
out the section, we assume a fixed planning problem as in
Definition 3. Recall that we introduced a fixed sequence of
action parameters x.

For the encoding, we generate copies of variables for each
time step (represented by superscript) for a path of length k.
We use action variables Ai = {aib | 1 ≤ b ≤ σ} for each
0 ≤ i ≤ k − 1 and σ = dlog(|A |)e; here aib represents the
b-th bit of a logarithmic encoding of the action name that
occurs at time i in the plan. The action parameter variables
are PMi = {xij,b | 1 ≤ j ≤ ζ, 1 ≤ b ≤ γ} for each
0 ≤ i ≤ k−1, where ζ is the maximum action arity and γ =
dlog(|O |)e. Here xij,b represents the b-th bit of parameter xj
of the action scheduled at time i in the plan. We will write
−→
xij (sequence of γ variables) for the parameter xj at time i.
The state variables are Fi = {fip(−→o ) | p(−→o ) ∈ F}, i.e., one
variable for every fluent and for each 0 ≤ i ≤ k.

The corresponding SAT encoding is based on these vari-
ables, and constraints for the initial condition I, goal condi-
tion G, transition function Tg, and a domain restriction RC.

∃A0,PM0, . . . ,Ak−1,PMk−1 ∃F0, . . . ,Fk

I(F0) ∧G(Fk) ∧
k−1∧
i=0

Ti
g(Fi,Fi+1,Ai,PMi) ∧

k−1∧
i=0

RC(Ai,PMi)

In the constraint for the initial state, each variable is posi-
tive if the proposition is in the set I and negative if it is not.
For the goal state, the variable is positive if the proposition
is in g+ and negative if it is in g−. Note that this provides a
unique initial state, but there may be multiple states that sat-
isfy the goal condition. We group the constraints (through-
out the article) based on the predicates for the sake of easy
understanding of the correctness proof.

Definition 4 Initial constraint I(F0) =∧
p∈P

∧
p(−→o )∈F

{f0
p(−→o ) | p(−→o ) ∈ I} ∧

∧
p∈P

∧
p(−→o )∈F

{¬ f0
p(−→o ) | p(−→o ) /∈ I}

Definition 5 Goal constraint G(Fk) =∧
p∈P

∧
p(−→o )∈F

{fkp(−→o ) | p(−→o ) ∈ g+} ∧

∧
p∈P

∧
p(−→o )∈F

{¬ fkp(−→o ) | p(−→o ) ∈ g−}

To encode the transition function, we will generate five
constraints for each proposition variable. These constraints

define the value of all fluents and time stamps, just before
or after some action occurs. The first four constraints corre-
spond to the positive preconditions, negative preconditions,
positive effects and negative effects, respectively. The last
constraint corresponds to the frame axiom, which indicates
that untouched propositions should not change.
Definition 6 The grounded transition function is:

Ti
g(Fi,Fi+1,Ai,PMi) =

∧
p∈P

∧
p(−→o )∈F

PCip(−→o )

where the Proposition Constraint PCip(−→o ) =

(ACp(−→o )(A
i,PMi, pre+) =⇒ fip(−→o )) ∧

(ACp(−→o )(A
i,PMi, pre−) =⇒ ¬fip(−→o )) ∧

(ACp(−→o )(A
i,PMi, eff+) =⇒ fi+1

p(−→o )
) ∧

(ACp(−→o )(A
i,PMi, eff−) =⇒ ¬fi+1

p(−→o )
) ∧

((fip(−→o ) = fi+1
p(−→o )

) ∨ACp(−→o )(A
i,PMi, eff+) ∨

ACp(−→o )(A
i,PMi, eff−))

Consider the positive precondition constraint: in plain
words it expresses that if some action occurs at time step i,
and some fluent (grounded predicate) is in the positive pre-
condition of that action, then the corresponding variable is
true at time step i. Similarly, the proposition variables cor-
responding to the positive (negative) effects should be set to
true (false) at time step i+1. The last constraint encodes the
frame axiom: it expresses that either the value of a propo-
sition variable stays the same, or some positive or negative
effect occurs that defines this proposition.

We still need to encode when a positive/negative condi-
tion/effect Φ is associated with the current action. We also
need to define the set of grounded instances of a predicate.
Definition 7 Given an action a ∈ A, a set of atoms Φ ∈
{pre+, pre−, eff+, eff−}, and sequence of objects −→o ∈ On

with n = arity(a), its grounding GD(Φ, a,−→o ) ⊆ F is a set
of fluents, defined GD(Φ, a,−→o ) := {φ[−→x /−→o ] | φ ∈ Φ(a)}.
The grounding of an action with given object pa-
rameters returns the corresponding grounded precon-
ditions/effects. In the running example, the positive
precondition of action stack for object parameters
(b1, b2) is grounded as GD(pre+, stack, (b1, b2)) =
{clear(b1), clear(b2), ontable(b1)}.

Below, we use “bin” to express the logarithmic encoding
of objects by γ bits and of action names by σ bits. We also
use “=” to denote a bit-wise conjunction of bi-implications.
Definition 8 Given the set of action names A and a set
of atoms Φ ∈ {pre+, pre−, eff+, eff−} and a fluent f , the
grounded action constraint ACf(A

i,PMi,Φ) =

∨
a∈A

∨
n=arity(a)
−→o ∈On s.t.

f∈GD(Φ,a,−→o )

(
−→
Ai = bin(a)) ∧

n∧
j=1

(
−→
xij = bin(oj))
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In the grounded action constraint, for each grounded ac-
tion a(−→o ) that contains fluent f in its grounded precon-
dition/effect Φ, we generate equality constraints for action
and parameter variables. For example, for fluent clear(b1),
Φ = pre+ and grounded action stack(b1, b2), we generate a

constraint
−→
Ai = bin(stack)∧

−→
xi1 = bin(b1)∧

−→
xi2 = bin(b2).

Finally, due to the use of logarithmic variables, invalid
actions are possible when the number of objects and actions
are non-powers of 2. To maintain consistency we restrict the
invalid action and parameter values by the RC-constraint.
Here < denotes the bit-blasted comparison operator on bi-
nary numbers.

Definition 9 Restricted constraints RC(Ai,PMi) =(−→
Ai < |A |

)
∧
∧

1≤j≤ζ

(−→
xij < |O |

)
In practice, this constraint can still be refined if one has

type information on the objects, as in typed PDDL domains.

New Ungrounded QBF Encoding
Similar to the intermediate SAT encoding, the QBF encod-
ing of a plan of length k corresponds to finding a path
of length k from the initial state to some goal state. The
SAT encoding used propositional variables for each object-
instance of predicate symbols and each time step. Note that
the values of these propositional variables only depend on
the action variables, i.e., given a sequence of actions and
(complete) initial state, the intermediate states until the final
state are completely determined. From the constraints on the
propositional variables, one can also observe that their val-
ues are independent of each other, so these constraints can
be enforced independently, at each time step and for each
action.

For the QBF encoding, the idea is to avoid grounding by
representing all object combinations as universal variables
and generate constraints on the predicate variables directly.
Essentially the universal object combination variables and
existential predicate variables replace the existential propo-
sitional variables in the intermediate SAT encoding.

In the sequel, we assume a fixed planning problem as in
Definition 3, and a fixed planning signature as in Defini-
tion 1. Recall that we introduced fixed variables x for formal
action parameters and fixed variables y for formal predicate
variables. These variables are used in the transformation.

The QBF encoding will use the same action variables
(A) and action parameter variables (PM) as the SAT encod-
ing. We define object combination variables and predicate
variables separately. The object combination variables are
OC = {yj,b | 1 ≤ j ≤ η, 1 ≤ b ≤ γ}, where η is the maxi-
mum arity of predicates and γ is as defined before. Here, yj,b
represents the b-th bit of the jth object variable and −→yj (se-
quence of γ variables) represents the jth object variable. The
(ungrounded) predicate variables are Pi = {qip | p ∈ P} for
each 0 ≤ i ≤ k.

Prefix:

∃
−→
A0∃
−→
x0

1∃
−→
x0

2 ∃
−→
A1∃
−→
x1

1∃
−→
x1

2

∀−→y1∀−→y2

∃ q0
clear ∃ q0

ontable ∃ q0
on

∃ q1
clear ∃ q1

ontable ∃ q1
on

∃ q2
clear ∃ q2

ontable ∃ q2
on

Initial state:
((bin(b2) = −→y1) ⇐⇒ q0

clear) ∧
((bin(b1) = −→y1) ⇐⇒ q0

ontable) ∧
((bin(b2) = −→y1) ∧ (bin(b1) = −→y2) ⇐⇒ q0

on) ∧

Goal state:
((bin(b1) = −→y1) ∧ (bin(b2) = −→y2)) =⇒ q2

on ∧

For time steps i = 0,1:
clear:(
(
−→
Ai = bin(stack) ∧ (

−→
xi1 = −→y1 ∨

−→
xi2 = −→y1)) ∨

(
−→
Ai = bin(unstack) ∧

−→
xi1 = −→y1)

)
=⇒ qiclear ∧

(
−→
Ai = bin(unstack) ∧

−→
xi2 = −→y1) =⇒ qi+1

clear ∧

(
−→
Ai = bin(stack) ∧

−→
xi2 = −→y1) =⇒ ¬ qi+1

clear ∧

((qiclear = qi+1
clear) ∨ (

−→
Ai = bin(unstack) ∧

−→
xi2 = −→y1)

∨ (
−→
Ai = bin(stack) ∧

−→
xi2 = −→y1)) ∧

ontable:

(
−→
Ai = bin(stack) ∧

−→
xi1 = −→y1) =⇒ qiontable ∧

(
−→
Ai = bin(unstack) ∧

−→
xi1 = −→y1) =⇒ qi+1

ontable ∧

(
−→
Ai = bin(stack) ∧

−→
xi1 = −→y1) =⇒ ¬ qi+1

ontable ∧

((qiontable = qi+1
ontable) ∨ (

−→
Ai = bin(unstack) ∧

−→
xi1 = −→y1)

∨ (
−→
Ai = bin(stack) ∧

−→
xi1 = −→y1)) ∧

on:

(
−→
Ai = bin(unstack) ∧

−→
xi1 = −→y1 ∧

−→
xi2 = −→y2) =⇒ qion ∧

(
−→
Ai = bin(stack) ∧

−→
xi1 = −→y1 ∧

−→
xi2 = −→y2) =⇒ qi+1

on ∧

(
−→
Ai = bin(unstack) ∧

−→
xi1 = −→y1 ∧

−→
xi2 = −→y2) =⇒ ¬ qi+1

on ∧

((qion = qi+1
on ) ∨ (

−→
Ai = bin(stack) ∧

−→
xi1 = −→y1 ∧

−→
xi2 = −→y2)

∨ (
−→
Ai = bin(unstack) ∧

−→
xi1 = −→y1 ∧

−→
xi2 = −→y2))

Figure 1: Ungrounded Encoding for blocks-world for k = 2
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The corresponding Ungrounded Encoding is:

∃A0,PM0, . . . ,Ak−1,PMk−1 ∀OC ∃P0, . . . ,Pk

Iu(P0,OC) ∧Gu(Pk,OC) ∧
k−1∧
i=0

Ti
u(Pi,Pi+1,OC,Ai,PMi) ∧

k−1∧
i=0

RC(Ai,PMi)

In the sequel, we will define the auxiliary constraints for
the initial and goal states and the transition functions. The
domain restriction RC does not depend on the universal vari-
ables OC, so it remains unchanged from the SAT encoding
(Definition 9). We refer to the example in Figure 1 for an
illustration of the encoding running example of Listing 1. At
the end of this section, we comment on the equivalence of
the SAT and the QBF encoding. Basically, when the univer-
sal variables in the ungrounded QBF encoding are expanded,
the resulting conjunction of constraints is equivalent to the
constraints in the intermediate SAT encoding.

The initial and goal constraints must apply to particular
object combinations, so for each predicate, we specify in
which for-all branches, i.e., for which objects instantiations,
they are positive or negative:
Definition 10 The Ungrounded Initial constraint is defined
as Iu(P0,OC):∧

p∈P

( ∨
p(−→o )∈I

|−→o |∧
j=1

(bin(oj) = −→yj)
)
⇐⇒ q0

p

Definition 11 The Ungrounded goal constraint is defined
as Gu(Pk,OC) = G+ ∧G−, where

G+ =
∧
p∈P

( ∨
p(−→o )∈g+

|−→o |∧
j=1

(bin(oj) = −→yj)
)

=⇒ qkp,

G− =
∧
p∈P

( ∨
p(−→o )∈g−

|−→o |∧
j=1

(bin(oj) = −→yj)
)

=⇒ ¬ qkp

For each predicate, if any of the action constraints is true
in the preconditions or effects, then the corresponding vari-
able is constrained to the appropriate value. We will expand
on the action constraints ACup in the definition 13.
Definition 12 The ungrounded transition function

Ti
u(Pi,Pi+1,OC,Ai,PMi) =

∧
p∈P

UPCip

where the ungrounded predicate constraint UPCip =

(ACup(Ai,PMi,OC, pre+) =⇒ qip) ∧
(ACup(Ai,PMi,OC, pre−) =⇒ ¬ qip) ∧
(ACup(Ai,PMi,OC, eff+) =⇒ qi+1

p ) ∧
(ACup(Ai,PMi,OC, eff−) =⇒ ¬ qi+1

p ) ∧
((qip = qi+1

p ) ∨ACup(Ai,PMi,OC, eff+) ∨
ACup(Ai,PMi,OC, eff−))

The constraints are similar to the SAT encoding. For ex-
ample, the positive precondition constraint states that a pred-
icate must have been true at step i, whenever some action
with this predicate in its precondition and matching action
parameters occurs at time step i. The final constraint is called
the frame axiom; it says that either the value of predicate
stays the same, or some matching positive or negative effect
has occurred. Next, we define in which OC-branch action
Ai with parameters PMi matches condition/effect Φ.

Definition 13 Given Φ ∈ {pre+, pre−, eff+, eff−}, the un-
grounded action constraint

ACup(Ai,PMi,OC,Φ) =
∨
a∈A

(
(
−→
Ai = bin(a)) ∧

∨
p(xl1 ,...,xln )∈Φ(a)

n∧
j=1

(
−→
xilj = −→yj)

)
Similar to the initial and goal constraints, the value of

the predicate variables must be constrained in each for-all
branch. As we discussed before, each for-all branch cor-
responds to one instantiation of object combinations. The
ungrounded action constraint specifies which branches are
evaluated to true. In plain words, for every for-all branch
where the predicate parameters variables are equal to the
universal variables, the ungrounded action constraint is eval-
uated to true. Note that the predicate parameters from the
preconditions and effects are simply a subset of the action
parameter variables, by the static semantics of PDDL.

Regarding the frame axioms, we use the following per-
formance optimizations in our implementation: We do not
propagate static predicates, i.e., predicates that do not appear
in any of the action effects. Instead, we introduce only one
instance, reused across all time steps. In particular, the type
predicates in typed planning domains are handled as static
predicates. Equality-predicates are treated specially, since
they impose constraints between action parameters only, in-
dependent of the universal variables. We simply generate
(in)equality constraints between action parameters directly,
similar to the RC-constraint. We discuss this in more detail
in the technical report (Shaik and van de Pol 2021).

Correctness
We demonstrate correctness, by showing how the SAT en-
coding can be stepwise transformed into the equivalent QBF
encoding. Let δ = 2γ× η be the number of object combina-
tions, and n = |P |. Then the constraints on the propositions
in time step i and i+ 1 in the SAT encoding are:

∃ fip1(−→o1) . . . ∃ fip1(−→oδ) · · ·

∃ fipn(−→o1) . . . ∃ fipn(−→oδ)∧
p∈P

∧
p(−→o )∈F

PCip(−→o )

Here the existential blocks of propositional variables are
grouped based on the predicate symbols. Since each of the
propositions appears in only one constraint, we can push the

333



existential variables inside the conjunction. Thus the con-
straints are equivalent to the following groups of constraints
in non-prenex form:

∃ fip1(−→o1) . . . ∃ fip1(−→oδ)

∧
p1(−→o )∈F

PCip1(−→o )

∧ · · · ∧

∃ fipn(−→o1) . . . ∃ fipn(−→oδ)

∧
pn(−→o )∈F

PCipn(−→o )

Since all the constraints have a uniform shape, we can
abbreviate the conjunction by a for-all quantification in QBF.
So the previous formula is equivalent to the grouping with
object combination variables in the QBF encoding:

∀OC (∃ qip1
UPCip1

∧ · · · ∧ ∃ qipn UPCipn)

Remember that the action and parameter variables are
the same for both SAT and QBF encoding. This proves the
equivalence between the SAT and the QBF encodings.

Implementation and Experiments
We implemented our encoding of PDDL problems to QBF
problems in QCIR format as a Python program, which is
available online.2 The tool handles domains with types and
equality predicates by treating them as static predicates; it
also handles negative preconditions and constants, but it can-
not yet handle domains with conditional effects. To solve
the encoded problems for a given length k, we transform
them to QDIMACS format, and use the QBF solver CAQE
(Rabe and Tentrup 2015) with the internal preprocessor Blo-
qqer (Biere, Lonsing, and Seidl 2011). Some initial experi-
ments with other preprocessors and solvers indicated that
CAQE+Bloqqer is a very good combination; we leave a sys-
tematic comparison as future work. Finally, our tool extracts
a concrete plan from CAQE’s output, and validates that the
plan is indeed correct. In the sequel, we refer to the combi-
nation of our encoding, CAQE and Bloqqer as “Q-Planner”.

We performed two experiments: in the first experiment,
we run Q-Planner on a number of Hard-to-Ground (htg)
domains. These include planning problems from 4 Organic
Synthesis domains: 2 from IPC-18 (non-split Satisfying and
Optimizing track) and the 2 original benchmarks (Alkene
and Mitexams) (Masoumi, Antoniazzi, and Soutchanski
2015). The simplified domains submitted to IPC-18 received
an outstanding domain submission award. In addition, we
also consider other Hard-to-ground domains (htg): Genome-
edit-distance (without costs), Pipesworld from Corrêa et al.
(2021) and Childsnack, Visitall, Blocks and Logistics from
Lauer et al. (2021). For these domains, we consider a subset
of instances which capture the hardness in grounding. We
compare Q-Planner with 3 state-of-the-art planners, speci-
fied below.

In the second experiment, we encoded all problems from
previous IPC planning competitions that our translation can
handle, resulting in 18 domains. We are mainly interested in
the number of instances that can be solved in each domain

2https://github.com/irfansha/Q-Planner

QBF/SAT Non-SAT

Domains (Total) QP M FDS PL

L
A

Alkene (18) 18 1 18 18
OS-Sat18 (20) 12 - 3 15
OS-Opt18 (20) 18 - 9 20
MitExams (20) 6 - 1 12
Ged (20) 7 5 20 20
Pipesworld (20) 16 9 19 18

L
P Childsnack (16) 6 11 16 15

Visitall (18) 2 - 6 18

L
O Blocks (12) 6 4 12 11

Logistics (12) - - 12 12

Total (176) 91 30 116 159

Table 1: Instances solved with 300 GB memory and 3 hour
time limit. Running 4 tools on 10 Hard-to-ground domains,
among them 6 large action arity (LA), 2 large predicate arity
(LP), and 2 large objects (LO) domains.

(within a given time and memory limit). In this experiment,
we compared Q-Planner with Madagascar, using a simple
SAT encoding (no invariants or parallel plans) to compare
the effect of our ungrounded encoding on the encoding size,
solving time, and memory usage.

Experimental Setup
For the first experiment, we compare Q-planner (QP) with 3
other planners: (1) Madagascar (version M) (Rintanen 2014)
with relaxed existential step encoding and invariant syn-
thesis, a SAT based planner based on grounding; (2) Fast
Downward Stone Soup 2018 (FDS) (Helmert and Röger
2011), a non-SAT based planner which was the winner of
IPC-2018 competitions in the satisfying track; and (3) Pow-
erlifted (PL) (Corrêa et al. 2020), a non-SAT based planner
which avoids grounding and is the state-of-the-art for Or-
ganic Synthesis. We use recommended configurations for all
three planners for fair comparisons. We allow 300GB main
memory and 3 hours per instance.

For the second experiment, we want to compare the
ungrounded QBF encoding (using Q-Planner) with the
grounded SAT encoding (using Madagascar). To eliminate
other factors, we use Madagascar in its simplest configu-
ration without invariants and without parallel plans (here
called M-simple), i.e., a standard sequential SAT encod-
ing with direct encoding of objects and actions. Since the
CAQE solver calls SAT-solver Crypto-minisat (Soos, Nohl,
and Castelluccia 2009), we also use Crypto-minisat to solve
the SAT encodings in Madagascar. We allow 8GB main
memory and 5000 seconds time for solving each instance.

For both experiments, we increase the path length in steps
of 5 (consistent with Madagascar). We ran all computations
for our experiments on the Grendel cluster.3

3http://www.cscaa.dk/grendel/, each problem uses one core on
a Huawei FusionServer Pro V1288H V5 server, with 384 GB main
memory and 48 cores of 3.0 GHz (Intel Xeon Gold 6248R).
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Figure 2: htg instances solved in given peak memory.

Figure 3: htg instances solved in given time.

Results
We now discuss the results of the experiments.4 For the first
experiment (Table 1), Q-Planner solves 54 Organic Syn-
thesis instances where as Madagascar only solves 1 using
115GB memory. These results are consistent with the IPC-
2018 competitions, where 2 variants of Madagascar could
not solve any of the (non-split) organic synthesis bench-
marks in the satisfying track based on SAT solving. This
is due to the presence of actions with many parameters (up
to 31), thus even with action splitting and other optimiza-
tions the grounded encodings are too big. In total, Q-Planner
solves 91 instances whereas Madagascar only solves 30 in-
stances. For the Childsnacks domain Madagascar performs
better than Q-Planner. This happens only for instances with
a few action parameters, where Madagascar finds long plans
quickly, using parallel plans. In most cases, Madagascar ex-
hausts all 300GB memory before reaching the time limit,
highlighting the memory bottleneck in htg domains.

We also provide cactus plots showing how many instances
can be solved within a given memory (Fig. 2) or time limit

4All benchmarks, logs and statistics are avaialable at Zenodo,
https://doi.org/10.5281/zenodo.6367523.

Domains Q-planner M-simple
#solved size #solved size

Ty
pe

d
IP

C
do

m
ai

ns

Blocks 28 0.14 30 4.8
DriverLog 11 0.27 11 5.7
Elevator 34 0.20 43 2.1
Hiking 9 0.49 6 75.8
Satellite 6 0.23 6 1.7
Tidybot 1 1.7 13 519.9
Termes 2 0.68 3 14.3
Thoughtful 0 1.7 5 857.5
Visitall 7 0.41 13 2.5

U
nt

yp
ed

IP
C

do
m

ai
ns

Blocks-3op 17 0.16 19 63.2
Movie 30 0.15 30 0.28
Depot 4 0.32 6 70.9
Gripper 3 0.19 5 0.80
Logistics 12 0.34 12 4.0
Mprime 17 0.36 34 1954
Mystery 3 0.36 13 399.1
Grid 2 0.52 2 47.9
Freecell 2 1.1 6 631.1

Total sum 188 9.32 257 4656

Table 2: Instances solved within 5000s and 8GB internal
memory. We also show the size (in MB) of the encoding
for the maximum instance after preprocessing (if possible).

(Fig. 3). In both aspects, Q-Planner clearly outperforms
Madagascar significantly in the htg domains.

Concerning the non-SAT based planners: FDS performs
well, solving 116 instances. On most of the remaining in-
stances it exhausts all memory in the grounding phase. The
Powerlifted planner solves 159 instances. Its excellent per-
formance is as expected, since it also avoids grounding on
actions while using optimized database queries on grounded
states. Still, there are some Organic Synthesis instances
where Powerlifted exhausts all memory. Q-Planner, on the
other hand, might exceed the time-limit, but never used more
than 28GB, even for refuting the existence of a plan of
shorter length, when it could not solve the instance com-
pletely. The technical report contains more experiments and
information on optimal plans (Shaik and van de Pol 2021).
Interestingly, Q-Planner solves one instance uniquely in the
hardest set of benchmarks, i.e., MitExams.

Concerning the results of the second experiment (Ta-
ble 2), the Ungrounded QBF Encoding never exceeds
1.7MB, so it is orders of magnitude more compact than the
simple SAT encoding, which sometimes exceeds 1950MB.
When comparing the performance of solving, the situation
is different: In most domains, Madagascar solves more in-
stances than Q-Planner, using less time and memory, despite
the larger encodings. This is consistent with the observations
of Cashmore, Fox, and Giunchiglia (2012) on SAT vs QBF.

From the results on 18 IPC domains, it is clear that (at
least with the current QBF solvers) our QBF encoding is not
a replacement for SAT encodings, but rather a complement
for domains where grounding is hard.
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Related Work
We first discuss some approaches in the literature that avoid
grounding in SAT encodings by allowing quantification, us-
ing EPR, CP, or SMT. Then we discuss related work on QBF.

Navarro Pérez and Voronkov (2013) presented an encod-
ing of planning problems in EPR (Effectively Propositional
Logic). While EPR can encode conditional effects, satisfia-
bility is NEXPTIME-complete (Lewis 1980). Our QBF en-
coding stays in the 3rd level of the polynomial hierarchy,
combining a compact encoding with more efficient solving.

Other approaches, such as numerical planning as SMT
(Satisfiability Modulo Theories) by Bofill, Espasa, and Vil-
laret (2016) and numerical planning as CP (Constraint Pro-
gramming) by Espasa et al. (2019), also avoid grounding for
compact encodings. It would be interesting to apply those
approaches to Organic Synthesis.

Cashmore, Fox, and Giunchiglia (2013) proposed a QBF
encoding with partial grounding, which uses universal vari-
ables for a subset of ungrounded propositions only. They use
universal variables for only one object. This leads to prob-
lems with propagating untouched propositions. To avoid in-
correct plans, they need to introduce the restriction that pred-
icates can have at most one ungrounded parameter. This is
costly: if a predicate parameter is grounded, several action
parameters must also be grounded.

We see our work as a generalization of their technique.
We use object combinations in the universal layer of the
encoding, thus avoiding grounding completely. This results
in more compact QBF encodings. The software for partial
grounding encoding is not available for comparison. Partial
grounding of some parameters is trivial in our approach (it
can be done on the domain file directly). However, we ex-
pect that partial grounding would be suboptimal. In case of
organic synthesis, partially grounding some predicates still
results in very large encodings.

The main focus of compact QBF encodings for reachabil-
ity, synthesis and planning has been on reducing the num-
ber of transition function copies (Rintanen 2001; Cashmore,
Fox, and Giunchiglia 2012). While avoiding unrolling re-
duces the encoding size, it comes at the cost of losing in-
ference between different time steps. On the other hand, our
approach using universal quantification to avoid grounding,
while keeping the inference between time steps, might be a
better way to use the advances in the QBF solving for plan-
ning problems. Since the encodings are generated directly
from (restricted) First-order Logic representations, the re-
sulting encodings are compact and more scalable.

Conclusion and Future Work
In this paper, we propose the Ungrounded QBF Encoding for
classical planning problems, which results in compact en-
codings by avoiding grounding completely. The size of this
QBF encoding grows linearly in the number of action names,
predicates and the path length, and logarithmic in the num-
ber of objects. We provide an open source implementation
of the Ungrounded Encoding, translating classical planning
problems in PDDL to QBF problems in QCIR format. The
resulting QBF formulas can be preprocessed and solved by

existing QBF tools (we used Bloqqer and CAQE).
The experiments show that our encoding effectively

avoids the memory bottleneck due to grounding. This is rel-
evant for domains with actions that involve many objects,
such as Organic Synthesis. Our main result is to solve many
instances of Organic Synthesis, which so far could not be
handled by any SAT/QBF based planner. We solve 54 prob-
lems in the 4 Organic Synthesis domains. We compare our
implementation with the state-of-the-art SAT based plan-
ner Madagascar, which only solves 1 instance, using 115GB
memory. Even on other htg domains, we outperform Mada-
gascar when grounding is the bottleneck. In total we solve 91
instances where as the Madagascar solves 30 instances. We
also compare with the non-SAT based planners Fast Down-
ward Stone Soup 2018 (FDS) and Powerlifted, which per-
form better than any SAT/QBF approach.

Future Work. There are several research directions from
here. One direction is to extend the Ungrounded Encoding to
planning problems with uncertainty or planning with adver-
saries. QBF encodings have been demonstrated to be useful
for such domains, such as conformant planning (Rintanen
1999, 2007). To this end, the Ungrounded Encoding must
be extended, in order to handle some dependencies between
state predicates, and to handle conditional effects.

Another direction is to improve the efficiency of the Un-
grounded Encoding: One could consider to incorporate au-
tomatically generated grounded invariants (Rintanen 2008)
or lifted invariants (Fiser 2020) to speed up the search. Sim-
ilarly, one could consider extending the Ungrounded Encod-
ing with compact QBF encodings, such as the non-copying
Iterative Squaring Encoding (Rintanen 2001) and the Com-
pact Tree Encoding (Cashmore, Fox, and Giunchiglia 2012).
These encodings could in principle lead to an even more
concise encoding (logarithmic in the length of the plan),
but we expect less spectacular benefits than compared to
SAT encodings, since our encoding is already quite small. It
would also be interesting to investigate ungrounded versions
of parallel plans (Rintanen, Heljanko, and Niemelä 2006),
but currently the sequentiality of plans is deeply embedded
in our encoding.

Finally, we hope to inspire new research on pre-
processing and solving QBF problems, by submitting our
problems to the QBFeval competition. Our encodings are
very concise, but the current QBF solvers do not yet take ad-
vantage of the structure of the Ungrounded Encoding. While
SAT solvers are rather mature, the field of QBF solvers is
still improving rapidly. An advance in QBF solvers could
make the Q-Planner approach competitive to the SAT ap-
proach for general classical planning problems.
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Helmert, M.; and Röger, G. 2011. Fast Downward Stone
Soup : A Baseline for Building Planner Portfolios. In Sev-
enth International Planning Competition.
Jussila, T.; and Biere, A. 2007. Compressing BMC Encod-
ings with QBF. Electronic Notes in Theoretical Computer
Science, 174(3): 45–56.
Kautz, H. A.; and Selman, B. 1992. Planning as Satisfiabil-
ity. In Proceedings of the Tenth ECAI, volume 92, 359–363.
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Navarro Pérez, J. A.; and Voronkov, A. 2013. Planning with
Effectively Propositional Logic. In Voronkov, A.; and Wei-
denbach, C., eds., Programming Logics - Essays in Mem-
ory of Harald Ganzinger, volume 7797 of Lecture Notes in
Computer Science, 302–316. Springer.
Rabe, M. N.; and Tentrup, L. 2015. CAQE: A Certifying
QBF Solver. In Kaivola, R.; and Wahl, T., eds., FMCAD,
136–143. IEEE.
Rintanen, J. 1999. Constructing Conditional Plans by a
Theorem-Prover. J. Artif. Intell. Res., 10: 323–352.
Rintanen, J. 2001. Partial Implicit Unfolding in the Davis-
Putnam Procedure for Quantified Boolean Formulae. In Pro-
ceeding of the Eighth International Conference LPAR, vol-
ume 2250 of Lecture Notes in Computer Science, 362–376.
Springer.
Rintanen, J. 2007. Asymptotically optimal encodings of
conformant planning in QBF. In Proceedings of the Twenty-
Second AAAI Conference, 1045–1050.
Rintanen, J. 2008. Regression for Classical and Nondeter-
ministic Planning. In Proceeding of the Eighteenth ECAI,
volume 178 of Frontiers in Artificial Intelligence and Appli-
cations, 568–572. IOS Press.
Rintanen, J. 2014. Madagascar: Scalable Planning with
SAT. In Proceeding of the Eighth IPC.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artif. Intell., 170(12-13): 1031–1080.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-Based Parallel Planning Using a Split Representation
of Actions. In Gerevini, A.; Howe, A. E.; Cesta, A.; and
Refanidis, I., eds., Proceedings of the Nineteenth ICAPS.
AAAI.
Shaik, I.; and van de Pol, J. 2021. Classical Planning as
QBF without Grounding (extended version). ArXiv/CoRR,
2106.10138.
Soos, M.; Nohl, K.; and Castelluccia, C. 2009. Extending
SAT Solvers to Cryptographic Problems. In Proceedings of
the Twelfth International Conference SAT, volume 5584 of
Lecture Notes in Computer Science, 244–257. Springer.

337


