
Planning for Risk-Aversion and Expected Value in MDPs

Marc Rigter, Paul Duckworth, Bruno Lacerda, Nick Hawes
Oxford Robotics Institute, University of Oxford, United Kingdom

{mrigter, pduckworth, bruno, nickh }@robots.ox.ac.uk

Abstract

Planning in Markov decision processes (MDPs) typically op-
timises the expected cost. However, optimising the expecta-
tion does not consider the risk that for any given run of the
MDP, the total cost received may be unacceptably high. An
alternative approach is to find a policy which optimises a risk-
averse objective such as conditional value at risk (CVaR).
However, optimising the CVaR alone may result in poor per-
formance in expectation. In this work, we begin by showing
that there can be multiple policies which obtain the optimal
CVaR. This motivates us to propose a lexicographic approach
which minimises the expected cost subject to the constraint
that the CVaR of the total cost is optimal. We present an al-
gorithm for this problem and evaluate our approach on four
domains. Our results demonstrate that our lexicographic ap-
proach improves the expected cost compared to the state of
the art algorithm, while achieving the optimal CVaR.

Introduction
Markov decision processes (MDPs) are a common frame-
work for decision-making under uncertainty, and have been
applied to many domains such as inventory control (Ahiska
et al. 2013) and robot navigation (Lacerda et al. 2019). The
solution for an MDP typically optimises the expected total
return, defined as either a reward to maximise or a cost to
minimise. In this work, we consider the cost minimisation
setting (Fig 1a). For any single run of the MDP, the total
cost received is uncertain due to the MDP’s stochastic tran-
sitions. In some applications we wish to compute risk-averse
policies which prioritise avoiding the worst outcomes, rather
than simply minimising the expected total cost irrespective
of the variability.

As an example, consider an inventory control problem
where a decision-maker decides how much stock to pur-
chase each day, while subject to uncertain demand from
customers. The policy which optimises expected value pur-
chases large quantities of stock to maximise the expected
profit. However, if demand is much lower than expected,
significant losses may be incurred. A risk-averse policy pur-
chases less stock, and is therefore less profitable on average,
but avoids the possibility of large losses.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of distributions over the total cost,
Ctotal, for different approaches: (a) expected value optimi-
sation, (b) CVaR optimisation, and (c) our approach, which
optimises the expected value subject to the constraint that
CVaR is optimal. Shaded regions indicate the α-portion of
the right tail of each distribution.

In this work, we focus on conditional value at risk
(CVaR), a well known coherent risk metric (Rockafellar,
Uryasev et al. 2000), in the static risk setting. In MDPs, the
static CVaR at confidence level α ∈ (0, 1] corresponds to
the mean total cost in the worst α-fraction of runs. There-
fore, optimising the CVaR corresponds to optimising the α-
portion of the right tail of the distribution over the total cost
(Fig. 1b).

We propose that for risk-sensitive applications the pri-
mary objective should be to avoid the risk of a poor out-
come (i.e. avoid significant losses). However, if the risk of a
poor outcome has been avoided, then the secondary objec-
tive should be to optimise the expected value (i.e. maximise
the expected profit). This motivates us to propose a lexico-
graphic approach that optimises the expected total cost sub-
ject to the constraint that the CVaR of the total cost is opti-
mal. During execution, the resulting policy is initially risk-
averse. However, the policy may begin taking more aggres-
sive actions to improve the expected cost, provided that there
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is no longer any risk of incurring a bad run which would
influence the CVaR. Fig. 1c illustrates the cost distribution
for our approach, compared to optimising the expected cost
or the CVaR only. As indicated by the dashed lines, our ap-
proach obtains the same CVaR as optimising for CVaR alone
(Fig. 1b), but the expected cost is improved.

Our main contributions are: 1) showing that there can be
multiple policies that obtain the optimal CVaR in an MDP, 2)
proposing and formalising the lexicographic problem of op-
timising expected value in MDPs subject to the constraint of
minimising CVaR, and 3) an algorithm to solve this problem,
based on reducing it to a two-stage optimisation in a stochas-
tic game. To the best of our knowledge, this is the first work
to address lexicographic optimisation of CVaR and expected
value in sequential decision making problems.

We evaluate our algorithm on four domains, including a
road network navigation domain which uses real data from
traffic sensors (Chen et al. 2001) to simulate journey times.
Our experimental results demonstrate that our approach sig-
nificantly improves the expected cost on all domains while
attaining the optimal conditional value at risk.

Related Work
Many existing works address risk-averse optimisation in
MDPs. Early work considered the expected utility frame-
work (Howard and Matheson 1972), where the cost is trans-
formed according to a convex utility function to achieve risk-
aversion. However, it is difficult to “shape” the cost function
appropriately to achieve the desired behaviour (Majumdar
and Pavone 2020). Other works consider risk metrics such
as the mean-variance criterion (Sobel 1982), or the value at
risk (Filar, Krass, and Ross 1995). However, these risk met-
rics are not coherent, meaning that they do not satisfy prop-
erties consistent with rational decision-making. See Artzner
et al. (1999) or Majumdar and Pavone (2020) for an intro-
duction to coherent risk metrics.

Examples of coherent risk metrics include the conditional
value at risk (CVaR) (Rockafellar, Uryasev et al. 2000), the
entropic value at risk (Ahmadi-Javid 2012), and the Wang
risk measure (Wang 2000). In this work we focus on CVaR
because it is intuitive to understand, and it is the prevail-
ing risk metric used in risk-sensitive domains such as fi-
nance (Basel Committee on Banking Supervision 2014). We
consider static risk, where the risk metric is applied to the to-
tal cost, rather than dynamic risk which penalises risk at each
time step (Ruszczyński 2010). For the static CVaR setting,
approaches based on value iteration over an augmented state
space have been proposed (Bäuerle and Ott 2011; Chow
et al. 2015). Other works propose policy gradient methods
to find a locally optimal solution for CVaR (Borkar and Jain
2010; Chow and Ghavamzadeh 2014; Tamar, Glassner, and
Mannor 2015; Tamar et al. 2015; Prashanth 2014; Chow
et al. 2017; Tang, Zhang, and Salakhutdinov 2020), or gen-
eral coherent risk metrics (Tamar et al. 2016). Keramati et al.
(2020) present an RL algorithm based on optimism in the
face of uncertainty, while Rigter, Lacerda, and Hawes (2021)
propose an approach based on Monte Carlo tree search and
also consider model uncertainty.

Existing works have considered trading off the conflicting

objectives of expected cost and risk. Petrik and Subramanian
(2012) optimise a weighted combination of dynamic CVaR
and expected value. For any given set of weightings, the per-
formance for conditional value at risk may be sacrificed to
improve the expected value. In contrast, our lexicographic
approach ensures that the optimal CVaR is always attained.

An alternative approach to finding risk-averse solutions to
MDPs is to impose constraints. Constrained MDPs optimise
the expected value subject to a constraint on the expected
value of a secondary cost function (Altman 1999; Santana,
Thiébaux, and Williams 2016). By adding cost penalties to
undesirable states, constraints may be used to discourage un-
wanted behaviour. However, this approach only constrains
the expected cost and it is unclear how to choose cost penal-
ties which result in the desired risk-averse behaviour.

CVaR-constrained problems have been addressed by ex-
isting works (Chow and Ghavamzadeh 2014; Chow et al.
2017; Borkar and Jain 2010; Prashanth 2014). In this ap-
proach, the user defines a CVaR threshold. The expected
value is optimised subject to a constraint that the CVaR is
less than the chosen threshold. A disadvantage of this ap-
proach is that it may be difficult to choose an appropriate
CVaR threshold which is both feasible, and results in the de-
sired level of risk-aversion.

Lexicographic approaches to multi-objective decision
making in MDPs have been proposed (Mouaddib 2004;
Wray, Zilberstein, and Mouaddib 2015; Lacerda, Parker, and
Hawes 2015). These approaches optimise the expected value
for each objective in a lexicographic ordering. Unlike these
approaches, we consider risk-averse planning. To the best
of our knowledge, this is the first work to propose a lexico-
graphic approach to the optimisation of CVaR and expected
value in sequential decision making problems.

Preliminaries
Conditional Value at Risk
LetZ be a bounded-mean random variable, i.e.E[|Z|] <∞,
on a probability space (Ω,F ,P), with cumulative distribu-
tion function F (z) = P(Z ≤ z). In this paper, we interpret
Z as the total cost which is to be minimised. The value
at risk (VaR) at confidence level α ∈ (0, 1] is defined as
VaRα(Z) = min{z|F (z) ≥ 1 − α}. The conditional value
at risk at confidence level α is defined as

CVaRα(Z) =
1

α

∫ 1

1−α
VaR1−γ(Z)dγ. (1)

If Z has a continuous distribution, CVaRα(Z)
can be defined using the more intuitive expression:
CVaRα(Z) = E[Z | Z ≥ VaRα(Z)]. Thus, CVaRα(Z) may
be interpreted as the expected value of the α-portion of the
right tail of the distribution of Z. CVaR may also be defined
as the expected value under a perturbed distribution using
its dual representation (Rockafellar, Uryasev et al. 2000;
Shapiro, Dentcheva, and Ruszczyński 2014):

CVaRα(Z) = max
ξ∈B(α,P)

Eξ
[
Z
]
, (2)
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where Eξ[Z] denotes the ξ-weighted expectation of Z, and
the risk envelope, B, is given by

B(α,P) =

{
ξ | ξ(ω) ∈

[
0,

1

α

]
,

∫
ω∈Ω

ξ(ω)P(ω)dω = 1

}
.

(3)
where P(ω) is the probability density function if Z is con-
tinuous, and the probability mass function if Z is discrete.

Therefore, the CVaR of a random variable Z may be in-
terpreted as the expectation of Z under a worst-case per-
turbed distribution, ξP . The risk envelope is defined so that
the probability of any outcome can be increased by a factor
of at most 1/α, whilst ensuring the perturbed distribution is
a valid probability distribution.

Markov Decision Processes
In this work, we consider stochastic shortest path (SSP)
Markov decision processes (MDPs). An SSP MDP is a tu-
ple,M = (S,A,C, T,G, s0), where S andA are finite state
and action spaces; C : S × A → R+ is the cost func-
tion; T : S × A × S → [0, 1] is the probabilistic transition
function; G ⊂ S is the set of absorbing goal states, from
which the model incurs zero cost; and s0 is the initial state.
A history of M is a sequence h = s0a0s1a1 . . . such that
T (si, ai, si+1) > 0 for all i ∈ {0, . . . , |h|}, where |h| de-
notes the length of h. We denote the set of all finite-length
histories over M as HMfin and the set of all infinite-length
histories over M as HMinf , and define the set of all histo-
ries over M as HM = HMfin ∪ HMinf . The cumulative cost
function cumulC : HM → R+ is defined such that, given
history h = s0a0s1a1 . . ., cumulC (h) =

∑|h|
t=0 C(st, at). A

history-dependent policy is a function π : HMfin → A, and
we write ΠMH to denote the set of all history-dependent poli-
cies forM. If π only depends on the last state st of h, then
we say π is Markovian, and we denote the set of all Marko-
vian policies as ΠM. A policy π induces a probability dis-
tribution PMπ over HMinf , and we define the cumulative cost
distribution CMπ as the distribution over the value of cumulC
for infinite-length histories of M under policy π. A policy
is proper at s if it reaches sg ∈ G from s with probabil-
ity 1. A policy is proper if it is proper at all states. In an SSP
MDP, the following assumptions are made (Kolobov 2012):
a) there exists a proper policy, and b) every improper policy
incurs infinite cost at all states where it is improper. These
assumptions ensure the expected value of the cumulative
cost distribution is finite for at least one policy in the SSP.

Stochastic Games
In this paper, we formulate CVaR optimisation as a turn-
based two-player zero-sum stochastic shortest path game
(SSPG). An SSPG between an agent and an adversary is a
generalisation of an SSP MDP and can be defined using a
similar tuple G = (S,A,C, T,G, s0). The elements of G are
interpreted as with MDPs, but are extended to model a two-
player game. S is partitioned into a set of agent states Sagt,
and a set of adversary states Sadv . Similarly,A is partitioned
into a set of agent actions Aagt, and a set of adversary ac-
tionsAadv . The transition function is defined such that agent

actions can only be executed in agent states, and adversary
actions can only be executed in adversary states.

We denote the set of Markovian agent policies mapping
agent states to agent actions as ΠG and the set of Marko-
vian adversary policies, defined similarly, as ΣG . Similar to
MDPs, a pair (π, σ) of agent-adversary policies induces a
probability distribution PG(π,σ) over infinite-length histories,

and we define CG(π,σ) as the cumulative cost distribution of
G under π and σ. In an SSPG, the agent seeks to minimise
the expected cumulative cost, whilst the adversary seeks to
maximise it:

min
π∈ΠG

max
σ∈ΣG

E
[
CG(π,σ)

]
. (4)

In an SSPG, two assumptions are made to ensure that the
value in (4) is finite: a) there exists a policy for the agent
which is proper for all possible policies of the adversary, and
b) for any states where π and σ are improper, the expected
cost for the agent is infinite (Patek and Bertsekas 1999).

CVaR Optimisation in MDPs
Many existing works have addressed the problem of opti-
mising the CVaR of CMπ , defined as follows.

Problem 1. LetM be an MDP. Find the optimal CVaR of
the cumulative cost at confidence level α:

min
π∈ΠM

H

CVaRα(CMπ ). (5)

Note that the optimal policy for Problem 1 may be history-
dependent (Bäuerle and Ott 2011). Methods based on dy-
namic programming have been proposed to solve Prob-
lem 1 (Bäuerle and Ott 2011; Chow et al. 2015; Pflug and
Pichler 2016). In particular, the current state of the art ap-
proach (Chow et al. 2015) formulates Problem 1 as the ex-
pected value in an SSPG against an adversary which modi-
fies the transition probabilities. This formulation is based on
the CVaR representation theorem in Eq. 2, where CVaR may
be represented as the expected value under a perturbed prob-
ability distribution. The SSPG is defined so that the ability
for the adversary to perturb the transition probabilities cor-
responds to the risk envelope given in Eq. 3.

Formally, the CVaR SSPG is defined by the tuple
G+ = (S+, A+, C+, T+, G+, s+

0 ). The state space S+ =
S × [0, 1]× (A∪ {⊥}) is the original MDP state space aug-
mented with a continuous state factor, y ∈ [0, 1], represent-
ing the “budget” of the adversary to perturb the probabilities;
and a state factor a ∈ A ∪ {⊥} indicating the most recent
agent action if it is the adversary’s turn to choose an action,
and ⊥ if is the agent’s turn. The action space is defined as
A+ = A ∪ Ξ, i.e. the agent actions are the actions in the
original MDP, and the adversary actions are a set Ξ that will
be defined next.

The CVaR SSPG transition dynamics are as follows.
Given an agent state, (s, y,⊥) ∈ S+

agt, the agent applies an
action, a ∈ A, and receives costC+((s, y,⊥), a) = C(s, a).
The state then transitions to the adversary state (s, y, a) ∈
S+
adv . The adversary then chooses an action to perturb the
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original MDP transition probabilities from a continuous ac-
tion space defined as:

Ξ(s, y, a) =
{
ξ ∈ R|S|

∣∣ 0 ≤ ξ(s′) ≤ η ∀s′

and
∑
s′∈S

[
ξ(s′) · T (s, a, s′)

]
= 1
}
, (6)

where η = ∞ if y = 0, and η = 1/y otherwise; T is the
original MDP transition function. Eq. 6 restricts the adver-
sary actions so the probability of any history is increased
by at most 1/y, and the perturbed transition probabilities
remain a valid probability distribution. After the adversary
chooses the perturbation action ξ ∈ Ξ(s, y, a), the game
transitions back to an agent state (s′, y · ξ(s′),⊥) ∈ S+

agt ac-
cording to the following transition function where the prob-
ability of each successor s′ in the original MDP is perturbed
by the factor ξ(s′):

T+((s, y, a), ξ, (s′, yξ(s′),⊥)) = ξ(s′)T (s, a, s′). (7)

Finally, we define the initial augmented state as
s+

0 = (s0, α,⊥) ∈ S+
agt, where the y state variable is set to

the CVaR confidence level α. We also define G+ as the set
of goal states on the augmented state space corresponding to
goal states in the original MDP.

Chow et al. (2015) showed that the minimax expected
value equilibrium for G+ corresponds to the optimal CVaR.
Proposition 1. (Chow et al. 2015) Let G+ be a CVaR SSPG
corresponding to original MDPM. Then:

min
π∈ΠM

H

CVaRα(CMπ ) = min
π∈ΠG+

max
σ∈ΣG+

E
[
CG

+

(π,σ)

]
. (8)

Proposition 1 holds because the y state variable keeps
track of the total multiplicative perturbation to the probabil-
ity of any history. Thus, the constraints in Eq. 6 ensure that
the maximum perturbation to the probability of any history
from the initial state is 1/α, and that the perturbed distribu-
tion over histories is a valid probability distribution. There-
fore, the admissible adversarial perturbation actions in G+

correspond to the risk envelope in Eq. 3. According to Eq. 2,
the CVaR is the expected value under the perturbations in
the risk-envelope that maximise the expected cost.

To compute the solution to Eq. 8, we denote the
value function for the augmented state by VCV(s, y,⊥) =
minπ∈ΠM

H
CVaRy(CMπ ). This value function can be com-

puted using minimax value iteration over G+ using the fol-
lowing Bellman equation:

VCV(s, y,⊥) = min
a∈A

[
C(s, a)+

max
ξ∈Ξ(s,y,a)

∑
s′∈S

ξ(s′)T (s, a, s′)VCV(s′, yξ(s′),⊥)

]
. (9)

We denote the policy corresponding to the value function
obtained by solving Eq. 9 by πCV. As the augmented state
space contains a continuous variable and the action space
is also continuous, Chow et al. (2015) use approximate dy-
namic programming with linear function approximation.

(a)

(b)

Figure 2: (a) Example Markov decision process with initial
state s0 and goal state sg . Letters indicate actions. Costs
are assumed to be zero unless indicated otherwise in red.
(b) Corresponding Markov chain induced by the solution to
Equation 8 when α = 0.1.

Example 1. In Fig. 2 we present an illustrative example of
the approach to CVaR optimisation from Chow et al. (2015).
Fig. 2a depicts an example MDP. Fig. 2b shows the solution
to Eq. 8 to optimise the CVaR when α = 0.1, illustrated as
a Markov chain (MC): the adversary perturbs the transition
probabilities so that the probability of transitioning from s0

to s2 is increased from 0.1 to 1 and, conversely, the proba-
bility of transitioning from s0 to s1 is decreased from 0.9 to
0. The expected value in this MC is 10, and by Proposition 1
this is the optimal CVaR at α = 0.1 in the original MDP.

Remark 1. State s1 is reachable in the original MDP, but as-
signed zero probability by the adversary. At states assigned
zero probability by the adversary, y = 0 in the CVaR SSPG.
When y = 0, the adversary has unlimited power to perturb
the transition probabilities (Eq. 6). Therefore, when y = 0
the minimax value iteration in Eq. 9 optimises for the min-
imum worst-case cost, as the adversary has the power to
make the agent transition deterministically to the worst pos-
sible successor state for all future transitions. We will refer
to the approach from Chow et al. (2015) as CVaR-Worst-
Case because of this property that for histories assigned zero
probability by the adversary, this method optimises for the
minimum worst-case total cost. In the following section we
show that this behaviour is unnecessarily conservative to op-
timise CVaR. We propose a method for finding an alterna-
tive policy to execute in such situations that optimises the
expected value while maintaining the optimal CVaR.

Lexicographic Optimisation of CVaR
In this section we present the contributions of this paper. We
begin with a formal problem statement.

Problem 2. LetM be an MDP. Find the policy π∗ that op-
timises the expected cost subject to the constraint that π∗
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obtains the optimal CVaR at confidence level α:

π∗ = arg min
π∈ΠM

H

E
[
CMπ
]
,

s.t. CVaRα(CMπ ) = min
π′∈ΠM

H

CVaRα(CMπ′ ).
(10)

Our approach to this problem extends the approach to
CVaR optimisation from Chow et al. (2015), which we have
outlined. We begin by emphasising that in the approach
in Chow et al. (2015), some histories in the original MDP
have zero probability under the adversarial perturbations ob-
tained by solving Eq. 8. For example, all histories passing
through s1 in Fig. 2a are not reachable under the adversarial
perturbations, as illustrated in Fig. 2b. Intuitively, this sug-
gests that such histories do not contribute to the CVaR, as
the CVaR can be computed as the expected value under the
perturbed transition probabilities (Proposition 1).

In this paper, we investigate finding an alternative policy
to execute when we reach such histories which are assigned
zero probability by the adversary in the CVaR SSPG. By
finding an appropriate alternative policy to execute in these
situations, we are able to optimise the expected value whilst
maintaining the optimal CVaR. We now state two properties
of these histories which will be useful to ensure the policies
obtained by our algorithm maintain the optimal CVaR. Full
proofs are in the supplementary material.

Proposition 2. Let π denote a CVaR-optimal policy for con-
fidence level α, and let σ denote the corresponding adver-
sary policy from Eq. 8. For some history, h, if PMπ (h) > 0
and PG(π,σ)(h) = 0, there exists a policy π′ ∈ ΠMH which
may be executed from h onwards for which the total cost re-
ceived over the run is guaranteed to be less than or equal to
VaRα(CMπ ).

Proof Sketch: We prove Proposition 2 by showing that the
original policy, π, satisfies this condition. Denote by HMg
the set all of histories ending at a goal state, and let hg ∈
HMg denote any such history. Using the CVaR representation
theorem in Equation 2, we can show that if hg has non-zero
probability under π in the original MDP, but is assigned zero
probability by the adversary in the CVaR SSPG, then the
total cost of hg must be less than or equal to VaRα(CMπ ):

PMπ (hg) > 0 and PG(π,σ)(hg) = 0 =⇒

cumulC (hg) ≤ VaRα(CMπ ). (11)

Now consider any history, h, which has not reached the goal.
Assume that PMπ (h) > 0 and PG(π,σ)(h) = 0. For all histo-
ries hg ∈ HMg reachable after h under π (i.e. for which
PMπ (hg) > 0), we have that PG(π,σ)(hg) = 0. Therefore, by
Equation 11 all histories hg reachable after h under π are
guaranteed to have cumulC (hg) ≤ VaRα(CMπ ). This proves
that by continuing to execute π, the total cost received over
the run is guaranteed to be less than or equal to VaRα(CMπ ).

Proposition 2 shows that if a state is reached which is as-
signed zero probability by the adversary, then there must ex-
ist a policy which can be executed from that state onwards

for which the total cost is guaranteed not to exceed the VaR.
The following proposition states that by switching to any
policy that guarantees that the cost will not exceed the VaR,
the optimal CVaR is maintained.

Proposition 3. During execution of policy π optimal for
CVaRα(CMπ ), we may switch to any policy π′ and still at-
tain the same CVaR, provided that π′ is guaranteed to incur
total cost of less than or equal to VaRα(CMπ ).

Proof Sketch: CVaRα(CMπ ) is computed by integrating over
the distribution of costs greater than or equal to VaRα(CMπ )
(Equation 1). Because switching to π′ does not result in any
costs greater than VaRα(CMπ ), the strategy of switching to π′
cannot increase the CVaR. Switching to π′ cannot decrease
the CVaR as π already attains the optimal CVaR. Therefore,
the strategy of switching to an appropriate π′ must attain the
same CVaR.

CVaR-Expected-Value
Proposition 3 establishes that during execution of πCV we
can switch to another policy, π′, without influencing the
CVaR, provided that the total cost of executing π′ is guar-
anteed not to exceed VaRα(CMπCV

). Proposition 2 establishes
that such a policy exists if the current history is assigned zero
probability by the adversary in the CVaR SSPG. However,
as we shall illustrate in the following example there may be
multiple policies which satisfy this criterion. Of these poli-
cies, we would like to find the one which optimises our sec-
ondary objective of expected value as stated in Problem 2.
Example 2. Consider again the model in Fig. 2. We estab-
lished in Example 1 that the optimal CVaR at α = 0.1 is
10, which can be computed as the expected value under the
Markov chain in Fig. 2b. The corresponding VaR at α = 0.1
is also 10. All of the histories passing through s1 are as-
signed zero probability by the adversarial perturbations in
the CVaR SSPG. At s1, we can continue to execute any pol-
icy for which all histories are guaranteed to reach the goal
with total cost less than or equal to the VaR threshold of
10. Executing either d or e at s1 satisfies this property, and
maintains the optimal CVaR of 10. The approach of Chow
et al. (2015), which we refer to as CVaR-Worst-Case, would
choose action e as in this situation it optimises for the min-
imum worst-case cost (see Remark 1). However, d achieves
better expected value and still attains the optimal CVaR of
10. Therefore, to solve Problem 2, the policy should choose
d. On the other hand, executing c attains a sub-optimal CVaR
of greater than 10, as some histories would receive a total
cost of 20.

We wish to develop a general approach to finding the
policy, π′, which optimises the expected value, subject to
the constraint that the worst-case total cost must not exceed
VaRα(CMπCV

). We know that such a policy exists for histo-
ries assigned zero probability by the adversary in the CVaR
SSPG. Therefore, by switching from πCV to π′ when such
histories occur, we can optimise the expected value while
still attaining the optimal CVaR, thus solving Problem 2.

We first compute the minimum worst-case total cost at
each state, Vworst(s), using the following minimax Bellman
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equation which assumes that the agent always transitions de-
terministically to the worst-case successor state:

Vworst(s) =

min
a∈A

[
C(s, a) + max

s′∈S

(
1(T (s, a, s′) > 0) · Vworst(s′)

)]
,

(12)

where 1 denotes the indicator function. Let πworst denote
the policy corresponding to Vworst. We also compute the
optimal worst-case Q-values:

Qworst(s, a) = C(s, a)+max
s′∈S

1(T (s, a, s′) > 0)·Vworst(s′).
(13)

Now, assume that the history so far is h, and that the cost
so far in the history is cumulC (h). To maintain the optimal
CVaR according to Proposition 3, we can allow an action a
to be executed at h if

cumulC (h) +Q∗worst(s, a) ≤ VaRα(CMπCV
). (14)

For any action awhich satisfies Eq. 14, after taking awe can
then execute πworst and guarantee that the total cost will not
exceed VaRα(CMπCV

). Thus, by finding a policy which opti-
mises the expected value subject to the constraint that ac-
tions must satisfy Eq. 14, we can find the policy with best
expected value which is guaranteed to have total cost less
than or equal to VaRα(CMπCV

) and maintain the optimal CVaR.
Note that which actions are allowed in Eq. 14 depends

not only on the current state, but also on the cost received so
far. To arrive at an offline solution we create an augmented
MDP,M′ = (S′, A, T ′, C ′, G′, s′0), where we restrict which
actions can be executed depending on the cost received so
far. We start by augmenting the state space of the original
MDP such that S′ = S × [0,VaRα(CMπCV

)]. This augmented
state keeps track of how much cost has been incurred. The
action set A is the same as the original MDP. The transition
function ensures that actions are only enabled if they satisfy
Eq. 14, and propagates the accumulated cost appropriately:

T ′((s, c), a, (s′, c′)) = T (s, a, s′) if c+Qworst(s, a) ≤ VaRα(CMπCV
)

and c′ = c+ C(s, a),
0 otherwise.

(15)

The cost function is C ′((s, c), a) = C(s, a); the goal
states are G′ = G × [0,VaRα(CMπCV

)]; and the initial state
is s′0 = (s0, 0). The value function corresponding to the fol-
lowing standard MDP Bellman equation is the optimal ex-
pected value subject to the constraint that VaRα(CMπCV

) will
not be exceeded for any possible history.

VM
′
(s, c) =

min
a∈A

[
C ′(s, a)+

∑
(s′,c′)

T ′
(
(s, c), a, (s′, c′)

)
·VM

′
(s′, c′)

]
.

(16)
Solving Eq. 16 is not straightforward due to the additional

continuous state variable which prohibits standard discrete
value iteration. Therefore, we instead apply value iteration

Algorithm 1: CVaR-Expected-Value
get πCV and VCV(s, y) by solving Equation 9
get π′ by solving Equation 16
s+ ← s+

0

c← 0
function ExecuteEpisode()

do
a← πCV(s

+)
ξ = argmaxξ∈Ξ(s,y,a)

∑
s′∈S ξ(s

′) · T (s, a, s′) ·
VCV(s

′, y · ξ(s′),⊥)
s+ ← (s′, y · ξ(s′),⊥), where s′ is successor after

executing a in the MDP
c← c+ C(s, a)

if s+ ∈ G+ :
return

while ξ(s′) > 0

while s /∈ G :
a← π′(s, c)
s← s′, where s′ is successor after executing a in

the MDP
c← c+ C(s, a)

return

with linear interpolation (Bertsekas 2007) for the continuous
variable in the same manner as (Chow et al. 2015).

We write π′ to denote the optimal policy corresponding
to the value function VM

′
. By first executing πCV, and then

executing π′ on histories assigned zero probability by the
adversary in the CVaR SSPG, we switch to using the pol-
icy with best expected value subject to the constraint that
the optimal CVaR is maintained. Therefore, this approach
solves Problem 2. This approach, which we refer to as CVaR-
Expected-Value is described in Algorithm 1.

In this approach, we decide which actions are pruned
out based on VaRα(CMπCV

). To estimate VaRα(CMπCV
), one ap-

proach would be to compute the worst-possible history in
the Markov chain induced by Eq. 8. However, this is com-
putationally challenging as the number of reachable histories
in the continuous state space may be very large. Therefore,
we take the simple approach of first executing πCV (CVaR-
Worst-Case) for many episodes and compute a Monte Carlo
estimate for VaRα(CMπCV

) (Hong, Hu, and Liu 2014), which
we then use to restrict actions according to Eq. 15.

Experiments
The code and data used to run the experiments is included in
the supplementary material and will be made publicly avail-
able. We experimentally evaluate the following three ap-
proaches: CVaR-Worst-Case (CVaR-WC), CVaR-Expected-
Value (CVaR-EV), and Expected Value (EV). Expected Value
is the policy which optimises the expected value only. All
algorithms are implemented in C++ and Gurobi is used to
solve linear programs where necessary. We use 30 interpola-
tion points for α to solve Eq. 9, and 100 interpolation points
for the cumulative cost to solve Eq. 16. The experiments
used a 3.2 GHz Intel i7 processor with 64 GB of RAM.

We compare the approaches on the following four do-
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mains. The three synthetic domains are from the literature,
and the fourth domain we introduce is based on real data.

Inventory Control (IC) We consider the stochastic in-
ventory control problem (Puterman 2005; Ahmed et al.
2017), with 10 decision stages. The current number of units
in the inventory is n, and the maximum number of units is
N = 20. The action set is a ∈ {0, . . . , N −n}, representing
the amount of stock to purchase at each stage. There is an
expense of pu = 1 for purchasing each item of stock. Items
are sold according to the stochastic demand for each stage,
d ∈ {0, . . . , N}. A revenue of r = 3 is received for each
unit sold. For any items of stock which do not sell, there is a
holding expense at each stage of ph = 1 per unit. Thus, the
profit received at each stage is

min{d, n+ a} · r − a · pu −max{n+ a− d, 0} · ph
We assume that the demand is modelled as random walk.

At each stage, d = dprev + ∆d, where dprev is the demand
at the previous stage, and ∆d is uniformly distributed be-
tween ±5. At the first stage, dprev = 10. The demand at the
previous stage is included in the state space.

We model all domains as SSP MDPs, where a positive
cost function is minimised. To convert rewards to a positive
cost function, we take the standard approach (Kolobov 2012)
of defining the cost function to be the maximum possible re-
ward minus the reward received. In Inventory Control, the
maximum possible profit is: max(profit) = 400. The cost
for an episode is max(profit) minus the cumulative profit re-
ceived over all stages. Therefore, a cost of under 400 repre-
sents a net profit, and a cost over 400 represents a net loss.

Betting Game (BG) We adapt this domain from the liter-
ature on CVaR in MDPs (Bäuerle and Ott 2011). The state is
represented by two factors: (money, stage). The agent be-
gins withmoney = 5. The amount of money that the agent
can have is limited between 0, and max(money) = 100. At
each stage the agent may choose to place a bet from bets =
{0, 1, 2, 3, 4, 5} provided that sufficient money is available.
If the agent wins the game at that stage, an amount of money
equal to the bet placed is received. If the agent loses the
stage, the money bet is lost. If the agent wins the jackpot,
the agent receives 10× the amount bet. For each stage, the
probability of winning is 0.7, the probability of winning the
jackpot is 0.05, and the probability of losing is 0.25. After
10 stages, the cost received is max(money)−money.

Deep Sea Treasure (DST) This domain is adapted
from the literature on multi-objective optimisation in
MDPs (Vamplew et al. 2011). A submarine navigates a grid-
world to collect one of many treasures, each of which is as-
sociated with a reward value, r (illustrated in the supple-
mentary material). At each timestep, the agent chooses from
8 actions corresponding to directions of travel and moves to
the corresponding square with probability 0.6 and each of
the adjacent squares with probability 0.2. The episode ends
when the agent reaches a treasure or the horizon of 15 steps
is reached. The agent incurs a cost of 5 at each timestep, and
a terminal cost of 500 − r. There is a tradeoff between risk
and expected cost as if the submarine travels further it may
collect more valuable treasure, and therefore incur less cost,
but risks running out of time before reaching any treasure.

Figure 3: Autonomous Vehicle Navigation domain: MDP
state space (yellow balloons) and transitions (red and blue
edges) overlaid onto map of Los Angeles, USA. The green
and purples circles indicate the start and goal locations.

Autonomous Navigation (AN) An autonomous vehicle
must plan routes across Los Angeles, USA between a start
and goal location as illustrated in Fig. 3. We access real
road traffic data collected by Caltrans Performance Mea-
surement System (PeMS) by over 39,000 real-time traffic
sensors deployed across the major metropolitan areas of Cal-
ifornia (Chen et al. 2001). We select a subset of 263 sensors
along the major freeways, shown as yellow markers in Fig-
ure 3. We specify two types of transitions: i) freeway tran-
sitions (red) along a specified freeway where the transition
time distribution is generated from historical PeMS traffic
data (discrete with 10 bins), and ii) between-freeway transi-
tions (blue) where each state is connected to its three near-
est neighbours on other freeways and the transition time is
normally distributed around the expected duration obtained
from querying the Google Routes API. In this domain, the
cost is the journey duration in minutes. To simulate rare traf-
fic jams on the freeways, uniform noise in [0, 0.1] is added
to the slowest freeway transitions (and probabilities renor-
malised). This is motivated by knowledge that rare but se-
vere traffic can affect transition durations on freeways, and
introduces a tradeoff between risk and expected cost.

Results
The results of our experiments are in Table ??. The rows in
the table indicate the method and the confidence level that
the method is set to optimise. The columns indicate the per-
formance of the policy for each objective over 20,000 eval-
uation episodes in each domain. We measure performance
for CVaR0.02 (i.e. the mean cost of the worst 2% of runs),
CVaR0.2 (worst 20%), and the expected value. We expect
the CVaR-EV method to match the CVaR-WC performance
on its CVaR measurement column. We also expect CVaR-EV
to achieve lower cost than CVaR-WC in expectation.

In the Inventory Control domain, EV performs the best
for expected value, but the worst for the CVaR objectives.
For the CVaR0.02 objective, EV obtains 416, representing an
average net loss of 16 on the worst 2% of runs. In contrast,
when optimising for CVaR0.02 (i.e. α = 0.02), both CVaR-
WC and CVaR-EV obtain values of 386 (profit of 14) for
the CVaR0.02 objective. This illustrates that the risk-averse
approaches avoid the possibility of losses on poor runs. Sim-
ilarly, we see that CVaR-EV and CVaR-WC equally out-
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Inventory Control (IC) Betting Game (BG) Deep Sea Treasure (DST) Autonomous Navigation (AN)
Method CVaR0.02 Expected Value CVaR0.02 Expected Value CVaR0.02 Expected Value CVaR0.02 Expected Value
CVaR-WC (α= 0.02) 386.49 (0.23) 286.18 (0.50) 95.0 (0.0) 95.0 (0.0) 502.25 (0.78) 402.74 (0.43) 210.20 (1.36) 167.35 (0.11))
CVaR-EV (α= 0.02) 386.92 (0.24) 250.38 (0.66) 95.0 (0.0) 95.0 (0.0) 502.98 (0.83) 352.06 (0.57) 211.16 (1.40) 164.14 (0.12)
Expected Value 416.42 (0.60) 235.62 (0.70) 100.0 (0.0) 58.26 (0.22) 575.0 (0.0) 315.15 (0.66) 315.99 (2.12) 120.19 (0.38)
Method CVaR0.2 Expected Value CVaR0.2 Expected Value CVaR0.2 Expected Value CVaR0.2 Expected Value
CVaR-WC (α= 0.2) 360.65 (0.31) 272.51 (0.48) 91.97 (0.08) 82.95 (0.06) 422.29 (0.62) 349.45 (0.42) 172.05 (0.80) 134.12 (0.21)
CVaR-EV (α= 0.2) 360.29 (0.31) 250.08 (0.63) 91.86 (0.08) 75.63 (0.16) 422.80 (0.63) 340.12 (0.49) 171.58 (0.80) 132.77 (0.22)
Expected Value 370.54 (0.37) 235.62 (0.70) 97.36 (0.07) 58.26 (0.22) 453.07 (1.09) 315.15 (0.66) 217.86 (0.71) 120.19 (0.38)

Table 1: Results from evaluating each method for 20,000 episodes. Rows indicate the optimisation method. Columns indicate
the performance for the CVaR and expected value objectives in each domain. The bolded results indicate the method with best
performance for expected value given that the CVaR objective is optimal (i.e. Problem 2). Brackets indicate standard errors.

perform EV at optimising the CVaR0.2 objective. For both
α = 0.02 and α = 0.2, CVaR-EV significantly improves
the expected value compared to CVaR-WC, meaning that the
average profitability is improved while still avoiding risks.

Histograms for the total costs received by CVaR-WC (α =
0.02), CVaR-EV (α = 0.02), and EV are shown in Figure 4
for the Inventory Control domain. Equivalent plots for the
other domains are in the supplementary material. We see
that while EV performs the best in expectation, it incurs
the most runs where the cost is above 400, corresponding
to net losses. Therefore, EV performs worse at CVaR0.02.
For CVaR-WC and CVaR-EV, the right tail of the distribu-
tions are equivalent, resulting in the same performance for
CVaR0.02. However, for CVaR-EV, the left side of the distri-
bution is spread further left, improving the expected value.

Similarly, in the Betting Game domain EV performs the
best for expected value, but worse for the CVaR objec-
tives. For CVaR-WC and CVaR-EV with α = 0.02, the
optimal policy is never to bet, and this policy attains the
best performance for the CVaR0.02 objective. For α = 0.2,
both CVaR-WC and CVaR-EV achieve similar performance
for CVaR0.2. However, CVaR-EV attains significantly lower
cost in expectation. This occurs because winning the jackpot
is usually sufficient to guarantee that the VaR will not be ex-
ceeded. In these situations, CVaR-WC stops betting. On the
other hand, CVaR-EV bets aggressively in these situations,
as bets can safely be made without the risk of having a bad
run which would influence the CVaR.

For both the Deep Sea Treasure and Autonomous Nav-
igation domains, we make the same observation that both
CVaR-WC and CVaR-EV achieve the same CVaR perfor-
mance when optimising each of the CVaR0.02 and CVaR0.2

objectives. However, CVaR-EV obtains better expected value
performance. In both domains, we also see that EV performs
the best in expectation, but less well at the CVaR objectives.

The computation times in Table ?? indicate that for three
out of four domains, the computation required for CVaR-EV
is only a moderate (5%-30%) increase over the computation
required for CVaR-WC. For Inventory Control, the increase
in computation time is more substantial (150%).

Conclusion
In this paper, we have presented an approach to optimis-
ing the expected value in MDPs subject to the constraint
that the CVaR is optimal. Our experimental evaluation on

four domains has demonstrated that our approach is able to
attain optimal CVaR while improving the expected perfor-
mance compared to the current state of the art method. In
future work, we wish to improve scalability by extending
our approach to use labelled real-time dynamic program-
ming (Bonet and Geffner 2003) rather than value iteration
over the entire state space.

CVaR-Worst-Case (α = 0.02)

CVaR-Expected-Value (α = 0.02)

Expected Value

Figure 4: Histograms for the total cost received over 20000
evaluation episodes in the Inventory Control domain. To-
tal costs of greater than 400 (dashed black line) represent
losses, whereas total costs of less than 400 represent profit.

Method IC BG DST AN
CVaR-Worst-Case 19637 6215 8156 18327
CVaR-Expected-Value 48527 6526 10653 23020
Expected Value 8303 34.5 505 1876

Table 2: Computation times for each approach in seconds.
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