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Abstract

Recently, pattern databases have been extended to proba-
bilistic planning, to derive heuristics for the objectives of
goal probability maximization and expected cost minimiza-
tion. While this approach yields both theoretical and prac-
tical advantages over techniques relying on determinization,
the problem of selecting the patterns in the first place has only
been scantily addressed as yet, through a method that system-
atically enumerates patterns up to a fixed size. Here we close
this gap, extending pattern generation techniques known from
classical planning to the probabilistic case. We consider hill-
climbing as well as counter-example guided abstraction re-
finement (CEGAR) approaches, and show how they need to
be adapted to obtain desired properties such as convergence to
the perfect value function in the limit. Our experiments show
substantial improvements over systematic pattern generation
and the previous state of the art.

Introduction
In probabilistic planning as we address here, actions specify
a probability distribution over possible outcomes. Heuristic
search is a prominent approach to solve such problems (e. g.
Hansen and Zilberstein (2001); Bonet and Geffner (2003);
Trevizan et al. (2017)). Yet the arsenal of heuristics actu-
ally taking the probabilities into account has long been lim-
ited. Most works rely on a determinization of the problem
(Little and Thiébaux 2006; Steinmetz, Hoffmann, and Buf-
fet 2016b,a; Trevizan, Teichteil-Königsbuch, and Thiébaux
2017; Klauck et al. 2020). Other works addressed particu-
lar cases, namely probabilistic conformant planning (Bryce,
Kambhampati, and Smith 2006; Domshlak and Hoffmann
2007) and finding a maximum-likelihood sequential plan
(Keyder and Geffner 2008; E-Martı́n, Rodrı́guez-Moreno,
and Smith 2014). Only a single line of works in the past de-
vised admissible heuristics for stochastic shortest path prob-
lems (SSP) which are not based on determinization (Tre-
vizan, Thiébaux, and Haslum 2017). Here we follow up on
the work by Klößner et al. (2021); Klößner and Hoffmann
(2021) (henceforth: Klößner21) who address this deficiency
through the extension of pattern database (PDB) heuristics
to the probabilistic setting. Our contribution is the design of
pattern selection strategies in this context.

Copyright © 2022, Association for the Advancement of Artificial
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Like Klößner21, we consider two variations of proba-
bilistic planning, namely SSPs, where expected cost-to-goal
must be minimized, as well as MaxProb, where the probabil-
ity of reaching the goal must be maximized. Various heuris-
tic search algorithms exist for both settings (Hansen and
Zilberstein 2001; Bonet and Geffner 2003; Trevizan et al.
2017). Heuristic search algorithms for MaxProb (SSP prob-
lems) guarantee finding an optimal policy when provided
with an admissible heuristic, that provides upper (lower)
bounds for the optimal goal-probability (expected cost-to-
goal) for a state.

Pattern Database heuristics are an important subclass
of abstraction heuristics in classical planning (Korf 1997;
Culberson and Schaeffer 1998; Edelkamp 2001; Holte
et al. 2006; Haslum et al. 2007; Pommerening, Röger, and
Helmert 2013). These heuristics consider several projections
of the problem, in which only a subset of variables (a pat-
tern) is considered and other variables are ignored. Such a
PDB heuristic is constructed in two steps: (i) Generate a
collection of patterns and (ii) for each pattern, construct a
lookup table containing all abstract state costs of the pro-
jection (the pattern database). Each PDB provides a lower-
bounding heuristic that can estimate the cost-to-goal of a
state in classical planning, by looking up the cost of the cor-
responding abstract state. Estimates of a collection of PDBs
can be combined either by simply taking the maximal esti-
mate among all PDBs, or using more sophisticated methods
such as additivity constraints under which the sum over pat-
terns is admissible (Haslum et al. 2007).

By using PDB heuristics on the all-outcomes determiniza-
tion (pretending that one can choose the action outcome),
lower-bounding (respectively upper-bounding) heuristics for
SSP problems and MaxProb can be obtained. However, as
Klößner21 demonstrated, projections can also be formu-
lated on probabilistic problems in a factored representation,
and these probabilistic projections always provide better es-
timates than the aforementioned approach. Klößner21 de-
velop probabilistic variants of PDB heuristics, in which the
lookup tables are constructed from the probabilistic projec-
tion. But they do not address the important question of how
to obtain the pattern collection in the first place (instead they
use a simple enumerative strategy in their experiments).

Here we fill that gap, for both the SSP and the MaxProb
setting. We adapt two popular strategies known from classi-
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cal planning: Counterexample guided abstraction refinement
(CEGAR) (Rovner, Sievers, and Helmert 2019) and hill-
climbing search in the space of pattern collections (Haslum
et al. 2007), which we only pursue for SSP problems. We an-
alyze how these methods need to be extended for the prob-
abilistic setting. In particular, we show that substantial ex-
tensions need to be made to CEGAR, as a naı̈ve extension
loses the crucial property of convergence to the perfect value
function, i. e., the ability to eventually address all sources of
information loss.

For our empirical evaluation, we experiment with our
new pattern selection algorithms on a large set of PPDDL
benchmarks from the International Probabilistic Planning
Competition (IPPC), targeting both MaxProb and SSP prob-
lems. Our modifications show a considerable improve-
ment over current state-of-the art heuristics, represented by
MaxProb-PDBs with systematic pattern generation in Max-
Prob (Klößner et al. 2021), as well as the LP-based occupa-
tion measure heuristic hroc (Trevizan, Thiébaux, and Haslum
2017) in the SSP setting. While our new CEGAR genera-
tor achieves good results especially in MaxProb, our hill-
climbing approach achieves best results for SSP problems.

Background
Probabilistic Planning Tasks We address probabilistic
planning tasks formulated in PPDDL (Younes et al. 2005).
Internally, the planner represents a problem as a probabilis-
tic SAS+ task (Trevizan, Thiébaux, and Haslum 2017). A
probabilistic SAS+ task is a tuple Π = 〈V ,A, sI ,G〉. V de-
notes the variables, where each v is associated with a finite
domain Dv of at least two values. A partial state is a partial
function s : V 7→

⋃
v∈V Dv ∪ {⊥} with s(v) ∈ Dv ∪ {⊥}.

If s(v) = ⊥, we say s is undefined on v. We denote by V(s)
the set of all variables for which s is defined. s is a state if
V(s) = V . For a set of variables P ⊆ V and partial state
s, we denote by s[P ] the projection of s onto P and define
the set S[P ] := {s[P ] | s ∈ S}. We say s subsumes t,
written t ⊆ s, if s(v) = t(v) for all v ∈ V(t). The ap-
plication of partial state e onto partial state s is defined by
appl(s, e)(v) = e(v) if e is defined on v, and s(v) other-
wise. The initial state sI is a state. The goal G is a partial
state.A is the set of actions. An action a specifies its precon-
dition prea, and a probability distribution Pra over effects,
where an effect is a partial state. The possible effects of a
are denoted Eff(a) := {e | Pra(e) > 0}.

MDPs and Optimization Objectives As the baseline
model of the probabilistic system, we assume a goal-
oriented Markov Decision Process (MDP) with infinite hori-
zon as a 5-tuple 〈S,A, T , sI ,SG〉. Here, S is a finite, non-
empty set of states, A is a finite, non-empty set of actions,
T : S × A × S → [0, 1] is a transition probability func-
tion, sI ∈ S is the initial state and SG ⊆ S is a set of goal
states. We require that for each state-action pair (s, a), ei-
ther

∑
t∈S T (s, a, t) = 1, in which case a is enabled in s,

or T (s, a, t) = 0 for all t in which case a is disabled in
s. We write A(s) for the set of actions that are enabled in
s. We assume A(s) 6= ∅ for simplicity, which can be en-
forced by introducing an artificial self-loop action. The task

〈V ,A, sI ,G〉 induces the MDP 〈S,A, T , sI ,SG〉 in which
S are the states of Π and T is defined by T (s, a, t) := 0
if prea * s and T (s, a, t) :=

∑
e. appl(s,e)=t Pra(e) other-

wise. The goal states are SG = {s ∈ S | G ⊆ s}.
A policy is a mapping π : S → A with π(s) ∈ A(s) for

every state s ∈ S . The quality of a policy depends on the
optimization objective that is considered. Stochastic Short-
est Path Problems (SSPs, Bertsekas (1995)) additionally as-
sume a non-negative action cost function c : A → R+

0 and
consider the optimization objective of minimizing the ex-
pected cost until the goal is reached. We henceforth call this
objective the SSP objective. Additionally, we consider the
MaxProb objective, which considers those policies as opti-
mal which maximize the probability to reach the goal.

We associate with every policy π the MaxProb policy
value function V π : S → [0, 1] which assigns each state
s the probability of reaching the goal when starting in s and
following policy π. Formally, we define V π as the (point-
wise) least solution x of equation system (1).

x(s) =


1 s ∈ SG∑

t∈S
T (s, π(s), t)x(t) s /∈ SG (1)

We say that a policy π is proper if and only if V π(s) = 1 for
every state s ∈ S, i.e. the goal will be reached surely when
starting in any state of the problem and following π.

On the other hand, the SSP objective makes two addi-
tional assumptions: (i) there exists at least one proper pol-
icy and (ii) every improper policy accumulates a cost of
∞. Under these conditions, the SSP policy value function
Jπ : S → R+

0 associates a state s with the cost that would
accumulate in expectation until the goal is reached, when
following π. Jπ is defined only for proper policies π as the
unique solution x of equation system (2).

x(s) =


0 s ∈ SG

c(π(s)) +
∑
t∈S
T (s, π(s), t)x(t) s /∈ SG (2)

For both objectives, the goal is to compute an optimal policy
for the initial state. To this end, the optimal MaxProb value
function V ∗ and the optimal SSP value function J∗ are de-
fined by V ∗ := maxπ V

π and J∗ := minπ proper J
π , where

pointwise ordering is imposed on the value functions. The
maximum always exists (Puterman 1994), while the mini-
mum exists under the SSP assumptions stated above. A pol-
icy π? is MaxProb-optimal for s if V π

?

(s) = V ∗(s) and
SSP-optimal if Jπ

?

(s) = J∗(s). A policy is optimal if it is
optimal for all states. Furthermore, a policy π is MaxProb-
greedy with respect to the value function V if

π(s) ∈ arg max
a∈A(s)

{∑
t∈S
T (s, a, t)V (t)

}
and SSP-greedy with respect to V if

π(s) ∈ arg min
a∈A(s)

{
c(a) +

∑
t∈S
T (s, a, t)V (t)

}
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For SSP problems, the optimal policies are exactly the
greedy policies with respect to J∗, so it suffices to compute
J∗. For MaxProb, not every greedy policy with respect to
V ∗ is necessarily optimal, although the other direction still
holds. Here, actions must be chosen in a way that does not
introduce cycles. Nevertheless, an optimal policy can be ex-
tracted from the optimal value function in both cases.

Since we are only interested in a policy that is optimal
when starting in the initial state sI , it also suffices to com-
pute a partial policy π̂ : S → A ∪ {⊥} which is restricted
to the states it may actually reach. To this end, we say π̂
is closed for state s0 if we may never reach a state s for
which π̂(s) = ⊥ when starting in s0. In this case V π̂ and
J π̂ are naturally defined on these reachable states by re-
stricting the defining equation systems to these states only.
There exist many heuristic search algorithms for the SSP
and MaxProb setting which can compute an optimal partial
policy closed for the initial state without relying on the ex-
haustive expansion of the entire state space. While the ex-
act inner workings of these algorithms are not relevant in
this paper, it suffices to know that these algorithms guaran-
tee to find optimal policies with respect to the MaxProb and
SSP objectives when provided with a heuristic function h
with the following characteristics. In the MaxProb setting,
h must be an upper bound on the optimal value function
(h(s) ≥ V ∗(s)), while for SSPs the heuristic must be a
lower bound (h(s) ≤ J∗(s)). In both cases, such a heuristic
is denoted admissible for the respective objective.

Pattern Databases for MaxProb and SSPs Klößner21
introduce a probabilistic variant of projection heuristics
which is formulated on MDPs. Given a pattern P ⊆ V , they
define this projection MDP as 〈S[P ],A, sI [P ], TP ,SG [P ]〉
where the transition function is defined as

TP (σ, a, τ) :=


∑

e. appl(σ,e[v])=τ

Pra(e) σ ⊆ prea[P ]

0 otherwise

and the cost function for the SSP objective is inherited.
Denoting with V ∗P and J∗P the optimal value functions

of this MDP with respect to MaxProb and SSP problems,
they show that the heuristics hMaxProb

P (s) = V ∗P (s[P ]) and
hSSP
P (s) = J∗P (s[P ]) are admissible for the respective objec-

tive. Also, these heuristics dominate their determinization-
based counterparts, which utilize the classical projection on
the determinization to detect dead-ends in MaxProb, while
considering the cost-to-goal in the SSP setting.

Moreover, Klößner21 derive efficiently verifiable con-
straints under which it is possible to combine multiple PDB
heuristics by addition (SSP) and multiplication (MaxProb)
of their individual estimates while remaining admissible.
The exact constraints are not of particular interest to us, as
our constructions are mostly agnostic to the particular type
of additivity/multiplicativity constraint. Throughout this pa-
per, we will assume an arbitrary combination strategy Q
which maps any pattern collectionC to a set of additive/mul-
tiplicative subcollections Q(C) ⊆ P(C) depending on the
setting. The additive/multiplicative pattern collection heuris-
tic hC for any family of heuristics hP defined on patterns P

is then generally defined by either

hC(s) = max
C′∈Q(C)

{ ∑
P∈C′

hP (s)

}
in the context of SSP problems, or

hC(s) = min
C′∈Q(C)

{ ∏
P∈C′

hP (s)

}
in the context of MaxProb.

Pattern Generation by Counterexample
Guided Abstraction Refinement

Counterexample guided abstraction refinement (CEGAR) is
an incremental technique to compute abstractions which is
popular in both model checking and automated planning
(e.g. Clarke et al. (2003), Hermanns, Wachter, and Zhang
(2008), Seipp (2012), Seipp and Helmert (2018)). In its core,
CEGAR iteratively refines an abstraction of the state space
until the abstraction satisfies a property of interest or a re-
source limit is reached. Especially interesting for us is its use
in a generation algorithm for pattern collections in classical
planning by Rovner, Sievers, and Helmert (2019), using pro-
jection as the underlying abstraction type.

In this setting, the general refinement procedure for a sin-
gle projection with respect to pattern P is summarized as
follows. One or more optimal abstract plans of the projec-
tion are computed and it is checked whether one of them
constitutes an optimal plan for the original task. First, it is
checked whether the abstract plan is executable in the origi-
nal problem. If the execution fails, this is due to a precondi-
tion on some variable v /∈ P which is not satisfied at some
point during plan execution (a precondition flaw). However,
even if the abstract plan is executable, the sequence of ac-
tions may not lead to a goal state, as the goal value of some
variable v /∈ P may not have been reached (a goal flaw). If
no abstract plan solves the original problem, the projection
is refined by inserting one or more such variables, otherwise
the found plan constitutes an optimal plan for the original
problem and the procedure terminates by reporting the solu-
tion. In theory, this procedure is complete in the sense that
an optimal plan will eventually be found when repeating this
procedure, as the number of variables is limited.

Determinization-Based CEGAR
By leveraging the all-outcomes determinization of the plan-
ning task, we can theoretically use any instantiation of this
framework to generate patterns for probabilistic problems.
Unfortunately, the aforementioned completeness guarantee
does not transfer to probabilistic setting since we are check-
ing for plans instead of policies. Also, the CEGAR refine-
ment procedure may terminate extremely early by finding a
plan in the determinization of the task.

As an example, we consider the IPPC domain triangle-
tireworld. This domain is explicitly designed to provoke the
worst-case behaviour of determinization-based planners. A
problem instance of this domain is depicted in Figure 1.
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start goal

Figure 1: An instance of the triangle-tireworld domain. Lo-
cations with spare tires are black.

In this domain, a vehicle has to traverse a triangle-shaped
roadmap to arrive at a destination. The vehicle can move
between two adjacent locations. When moving, the vehicle
may get a flat tire with some positive probability, after which
it can no longer move anywhere. However, spare tires are
scattered across the map which may be loaded and used to
change the broken tire. In particular, there are spare tires on
each of the outermost points on the triangle. At most one tire
may be loaded at a time. Initially no spare tire is loaded.

In the example, the unique optimal policy for the Max-
Prob and SSP objective uses the outermost path, as this is the
only path on which a spare tire is always available if needed.
However, an optimal plan in the determinization would sim-
ply take the shortest possible path to the goal, as we can al-
ways optimistically choose the effect which does not lead to
a flat tire. This plan only modifies the vehicle location vari-
able and otherwise only depends on variable preconditions
that are initially satisfied. Consequently, CEGAR terminates
immediately when starting with the single vehicle variable,
as the induced optimal abstract plan solves the determiniza-
tion of the original problem. Obviously, the PDB heuristic
constructed from this pattern is not very informative.

Policy-Based CEGAR
The complications discussed above arise as an artifact of de-
terminization. We now revise the refinement procedure and
recover the completeness guarantees from determinization-
based CEGAR so that the CEGAR algorithm will even-
tually find an optimal policy. To this end, we instead in-
spect optimal abstract policies for the MDP projection with
respect to a pattern P . To accommodate this change, the
procedure to check for precondition and goal flaws in an
abstract policy πP must now consider all possible execu-
tions of the policy in the concrete state space when starting
from sI . To properly execute πP in the concrete state space,
we define the concrete partial policy π(s) := πP (s[P ]) if
πP (s[P ]) ∈ A(s) and π(s) = ⊥ otherwise. To check if π
has any flaws, we need to verify:

1. Executing π from sI in the original state space may not
lead to a state s in which a precondition flaw with respect
to some variable v /∈ P occurs: ⊥ 6= preπ(s)[v] 6= s[v].

2. Executing π from sI cannot lead to a state s for which
a goal flaw with respect to some variable v /∈ P occurs:
s[P ] is an abstract goal, but s is not because s[v] 6= G[v].

The first condition makes sure that π is closed for the initial
state and thus constitutes a solution. The second condition
makes sure that this solution is also proper.

Theorem 1 If πP is an optimal abstract policy and π has
no flaws, then π is optimal.

Proof (sketch). Since precondition flaws do not occur, the
abstract state σ is reachable by πP from sI [P ] only if there
is some concrete state s with s[P ] = σ which is reachable
by π from sI . Let f be some function mapping an abstract
state σ to such a concrete state f(σ), and let f(sI [P ]) = sI .

Considering equation system (1) for the states reachable
with πP from sI [P ] only, it is easy to see that the assignment
x(σ) = V π(f(σ)) is a solution. As V πP is the least solution
and πP is optimal, we get V ∗(sI [P ]) = V πP (sI [P ]) ≤
V π(sI) ≤ V ∗(sI). Since V ∗(s) ≤ V ∗(s[P ]) for all states
s ∈ S (Klößner et al. 2021), π must be optimal. The claim
also holds for SSP objectives by using equation system (2)
with analogous arguments. �

We instantiate this policy-based CEGAR framework by
adapting the pattern generation algorithm by Rovner, Siev-
ers, and Helmert (2019), which operates on multiple disjoint
projections. In a nutshell, this algorithm starts with the dis-
joint pattern collection containing only a singleton pattern
for each goal variable. Each pattern is associated with an ab-
stract plan for its corresponding projection. In each iteration,
the algorithm collects the flaws for each optimal abstract
plan associated with these patterns. A flaw is then chosen
uniformly at random and added to the corresponding pat-
tern. To keep the invariant that the patterns are disjoint, if a
variable is selected for the refinement that is already present
in another pattern, both patterns are merged instead.

We customize their algorithm at three specific points we
will talk about in detail in the following. Firstly, we now
associate each pattern with an abstract policy for the associ-
ated probabilistic projection. Secondly, we amend the flaw
finding procedure to accept policies instead of plans. Lastly,
we consider the extension to wildcard policies, which are
similar to wildcard plans in their original description.

Computing an optimal abstract policy To compute an
abstract policy, we first compute the full pattern database for
the projection using topological value iteration (Dai et al.
2011), where the previous PDB is used as an admissible
initialization hint to accelerate the convergence. Afterwards,
an optimal policy is extracted from the optimal value func-
tion by expanding the abstract state space from the initial
state. In each step, an optimal action is selected randomly
among all greedy operators and its non-goal state successors
are marked for expansion. This yields a partial optimal ab-
stract policy for the initial state. For MaxProb, we are forced
to expand all greedy operators instead of choosing a single
one randomly, as choosing greedy operators arbitrarily may
introduce cycles which prevent the policy from being op-
timal. Afterwards, we explore the generated search graph
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backwards with duplicate checking, starting from the goal
states. When encountering a predecessor, the greedy action
responsible for its generation is selected for it by the policy.
Because of duplicate checking, the chosen operators do not
introduce cycles and the policy is optimal. For pseudocode
of this procedure, we refer to Kolobov et al. (2011).

Flaw finding strategies To find the flaws of the optimal
abstract policy in the original problem, we search the in-
duced graph of the policy, starting from sI . However, the
choice of the search algorithm used to expand this graph is
not obvious. Depending on the algorithm used, a flaw might
be found much sooner or later during exploration of the pol-
icy graph. More importantly, not every flaw is equally likely
to be encountered during plan execution. Consider the exam-
ple of a policy that provokes a flaw with respect to variable v
with a probability of 1% and a flaw with respect to variable
w with 50% chance. Intuitively, we expect that refining the
abstraction with w yields a greater benefit, as the current ab-
stract policy relies on illegal behaviour with a much higher
probability. In contrast, refining with v will most likely in-
crease the quality of the abstraction by very little.

The strategy that we deduce from this observation selects
a variable with respect to which a flaw happens with highest
probability among all candidates. Unfortunately, this strat-
egy is costly in practice, as it involves the computation of n
hitting probabilities in the Markov chain induced by the pol-
icy, where n is the number of variables that can potentially
occur in a flaw. Therefore, we derive three approximations
of this strategy:

1. A Monte-Carlo strategy in which successor states are
sampled according to their probability (Algorithm 1).

2. A strategy that sorts exploration candidates by increasing
likelihood of their generating path (Algorithm 2).

3. Breadth-first search, as a strategy that approximates this
behaviour for problems in which the successor distribu-
tions are close to uniform.

In the pseudocode, the function GETFLAWS(s) returns all
goal and precondition flaws that occur in state s as a set of
variables. The function INSERTORUPDATE(Q, S, P) inserts
the state s with priority p into the priority queue Q if it is
missing, or updates the priority of s with p if this value is
higher than the previous priority. We always stop at the first
flaw we encounter during the execution.

Wildcard policies Lastly, we briefly consider the exten-
sion of policy-based CEGAR to wildcard policies, which are
in direct correspondence with wildcard plans. Instead of set-
tling for a single optimal abstract operator, we also collect all
abstract operators which are equivalent, i.e. they transition to
the same abstract states with the same probability. Exhaus-
tively checking whether one of the policies represented by
this wildcard policy is optimal for the original task wastes
even more resources than in classical planning, so we avoid
this approach. Instead, we employ the greedy algorithm that
chooses a single random action in each state that does not
lead to a flaw and expands only the successors of this action.
If all operators fail, all associated flaws are reported.

Algorithm 1: Monte-Carlo Sampling (MCS) Strategy

1: function FINDFLAWSMCS(π, s0)
2: return FINDFLAWSMCREC(π, s0, ∅)
3:
4: function FINDFLAWSMCSREC(π, s, closed)
5: if s ∈ closed ∪ SG then
6: return ∅
7: flaws← GETFLAWS(s)
8: if flaws 6= ∅ then
9: return flaws

10:
11: closed = closed ∪ {s}
12: successors = {t. T (s, π(s), t) > 0}
13: while successors 6= ∅ do
14: sample t← successors according to T
15: successors = successors \ {t}
16: flaws← FINDFLAWSMCREC(π, t, closed)
17: if flaws 6= ∅ then
18: return flaws

Admittedly, we could even go one step further and collect
all greedy operators for a state during extraction of the op-
timal abstract policy, to capture all possible optimal abstract
policies. However, we do not pursue this extension for two
reasons. First of all, doing so potentially expands a larger
part of the abstract state space, as we now have to add all
successors of all greedy operators during the policy extrac-
tion step. This is required in MaxProb anyway, but causes
additional work for the SSP objective and introduces even
more overhead in the flaw finding procedure as well. Sec-
ondly, it does not suffice to pick greedy operators arbitrarily
in MaxProb to obtain an optimal policy, so the greedy algo-
rithm above is not even sound in this setting.

Algorithm 2: Most-Likely Path (MLP) Strategy

1: function FINDFLAWSMLP(π, s0)
2: // priority queue, sorted by ascending priority
3: open← {〈s0, 1〉}
4: closed← ∅
5:
6: while open 6= ∅ do
7: choose 〈s, p〉 ← open with highest p
8: open← open \ {〈s, p〉}
9: if s ∈ closed ∪ SG then

10: continue
11: closed← closed ∪ {s}
12: flaws← GETFLAWS(s)
13: if flaws 6= ∅ then
14: return flaws
15:
16: for all t s.t. T (s, π(s), t) > 0 do
17: pnew = p · T (s, π(s), t)
18: INSERTORUPDATE(open, t, pnew)
19:
20: return ∅
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Pattern Generation by Hillclimbing
Pattern selection using local search (Haslum et al. 2007)
is a conventional approach to generate a pattern collection
for PDBs in classical planning. In this framework, a pattern
collection is constructed as a local optimum of hillclimbing
search in the space of pattern collections. Initially, the search
starts with the pattern collection that contains a single vari-
able pattern {v} for every goal variable v. The search neigh-
borhood of a pattern C is the set of all possible extensions
C ′ = C ∪ (P ∪{v}) ) C of the collection, where P ∈ C is
any pattern ofC, augmented by a single new variable v /∈ P .
To rank the neighboring pattern collections, Haslum et al.
use a counting approximation which collects a set of sample
states from the state space and counts how often the canon-
cial PDB heuristic hcan

C′ induced by the neighboring pattern
collection improves upon the estimate for the sample states
compared to the heuristic of the current collection hcan

C , rank-
ing the pattern collection with the most improvements best.
The search terminates with the current collection if the num-
ber of improvements for the best candidate is below a user-
defined threshold, or if a resource limit is reached.

For SSP problems, we could use this algorithm on the
all-outcomes determinization of our task to construct a pat-
tern collection. However, for the search to be meaningful,
the heuristic used to rank the pattern collections should be
equal or close to the PDB heuristic that we would construct
from C as the generated pattern collection, in our case being
hSSP
C instead of hcan

C . In general, the classical variant may de-
viate from the probabilistic variants by an arbitrary amount.
Also, a local optimum may be reached very early if the clas-
sical variants are used, which again happens in the example
of triangle-tireworld depicted in Figure 1, where any pattern
collection that includes the location of the vehicle induces an
expected cost-to-goal estimate of nc for any state in which
the tire is flat in the determinization, where n is the distance
to the goal and c is the cost of driving.

Conveniently, the above high-level description solely de-
pends on the definition of the heuristic hC induced by a pat-
tern collection, so we may generate pattern collections for
SSPs using the heuristic hSSP

C directly during hillclimbing.
However, if we want to use the counting approximation to
rank the neighborhood, we need to specify how to sample
random states in the problem. Haslum et al. use a random
walk from the initial state of specific length for this, which
has the significant advantage that only reachable states of
the problem are sampled. The length of this random walk is
derived from the current cost-to-goal estimate of the initial
state in the classical setting, whereas we can use the current
expected cost-to-goal estimate in the SSP setting (rounded
up), which we found to be sufficient in practice.

While we could also use the heuristic hMaxProb
C for hill-

climbing in MaxProb, we do not consider this extension for
two reasons. Firstly, as already observed by Klößner21, pat-
terns with few variables frequently provide only trivial goal
probability estimates of one. This is highly problematic for
hillclimbing, which may hence get stuck in a local minimum
very early and much easier in MaxProb than in the SSP set-
ting. Secondly, the length of a random walk to collect sample
states is difficult to choose in MaxProb, as we have no way

to approximate the distance between the initial state and the
goal states, possibly leading to strong bias towards either.
Due to these difficulties, we only consider hillclimbing for
SSP problems in our experiments.

Regarding efficient implementation of this algorithm,
Haslum et al. point out that some of the computations in-
volving the PDBs can be done incrementally. In the deter-
ministic case where the canonical PDB heuristic hcan

C is used,
the comparison of hC(s) with hC

′
(s) given the sample state

s can be implemented by checking whether

hP
′
(s) +

∑
P∈S\{P ′}

hP (s) > hC(s)

for any additive subset S ∈ Q(C ′) that includes P ′. As-
suming the additive subsets are easy to compute, hP

′
(s) re-

mains the only unknown in this term. Here, hP
′
(s) can be

computed efficiently by using hP as a heuristic for A∗. We
emphasize that the same can be done with any applicable
MDP heuristic search algorithm when using hSSP

C . Hence,
the full PDB does not need to be constructed for all search
neighbors. Furthermore, the full PDB for pattern P ′ can be
constructed once necessary by using topological value iter-
ation supplied with hP as an initialization hint for the value
function, leading to faster convergence.

Experiments
We implemented both of our algorithms in our probabilistic
planning adaptation of the Fast Downward planner (Helmert
2006), which is publicly available (Klößner et al. 2022). As
a baseline for our experiments, we consider systematic pat-
tern generation (Pommerening, Röger, and Helmert 2013)
(SYS), as previously used by Klößner et al. (2021) in their
experiments with probabilistic pattern databases. In a nut-
shell, this generator constructs the collection of patterns of
size ≤ K, but prunes some patterns which can be identified
as redundant based on the causal graph of the (determinized)
problem. We set K = 2 in our experiments. We also con-
sider the plan-based variant of the Disjoint CEGAR algo-
rithm with regular (cCG) and wildcard plans (wcCG), and
hillclimbing (cHC) on the determinization of the task, us-
ing the canonical PDB heuristic to rank pattern collections.
For all of these algorithms, we use the base implementa-
tions of Fast Downward. Our policy-based CEGAR genera-
tor with regular policies (CG) and wildcard policies (wCG)
and flaw finding strategies Monte-Carlo Sampling (mcs),
Most-Likely Path (mlp) and Breadth-First Search (bfs), as
well as our hillclimbing adaptation (HC) were implemented
by modifying these implementations where necessary. The
generated pattern collection is always used to construct a
probabilistic PDB heuristic with additivity or multiplicativ-
ity constraints as described by Klößner21. We use the or-
thogonality criterion for all configurations.

We ran our experiments on a cluster with Intel Xeon E5-
2650 v3 processors @2.30 GHz, with a time limit of 1800
seconds and a memory limit of 4GB, using Downward Lab
(Seipp et al. 2017). For convergence tests, we used a preci-
sion of ε = 10−5. For configurations involving randomness,
we used 10 different random seeds and averaged the results.
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Domains N SYS cCG CG wcCG wCG
mcs mlp bfs mcs mpl bfs

blocksworld 90 24 25.2 26 24.8 25.2 25.6 24 24.8 24
canadian-nomystery 120 76 90.6 89 89.2 89.2 76.8 71.6 66.8 66
canadian-rovers 120 103 111.9 110.9 110.5 110.3 111.3 110 109.9 110
canadian-tpp 120 58 74.5 70.9 73.1 73.2 67.9 72.1 73.2 72.1
coresec 30 16 12 14.2 12 13.2 12 14 12 13.4
drive 90 90 90 90 90 90 90 89.90 90 90
elevators 90 76 85.1 84.7 84.8 84.9 86.8 72.3 72.9 72.8
exploding-blocksworld 84 42 40 40 40.1 40.1 39.9 38.6 38.9 38.9
random 72 43 44.6 44.9 45 45 38.6 38.5 38.2 38.6
rectangle-tireworld 36 12 12 12 12 12 12 12 12 12
schedule 60 30 35.4 35.9 36 36 34.5 35.1 35.1 35.4
search-and-rescue 90 65 78 78.1 78 78 78 78.2 78 78
triangle-tireworld 120 57 59 62 62 62 52.8 62 62 62
zenotravel 42 18 18 18 18 18 18 17 16.7 16.6
canadian-nomystery 120 15 47.8 47.7 47.1 47.2 14.9 49.4 51 51.3
canadian-rovers 120 101 110.3 108.8 108.7 108.8 101 109 108 108.5
canadian-tpp 120 72 92.7 92.1 92.1 91.9 71.4 87.1 89.8 89.8
drive 15 15 15 15 15 15 15 13 13 13
exploding-blocksworld 15 8 4.1 4.2 4.6 4.4 4.4 4.2 4.7 4.7
search-and-rescue 15 5 5.5 5.9 5 5 5.4 5.9 5 5.1
Sum 1569 926 1052.9 1051.9 1049.8 1051.6 956.3 1005.1 1005.0 1003.9

Table 1: Coverage (sum) for the acyclic (top rows), cyclic (bottom rows) MaxProb benchmarks. Coverage is averaged over ten
random seeds for the CEGAR configurations. The highest coverage in a domain is highlighted in boldface. Domains with full
or zero coverage for all configurations are omitted to decrease table size. N is the total number of problems per domain.

For configurations requiring an LP solver, we used CPLEX
12.6.3.0. We limit the time for pattern generation to a max-
imum of 180 seconds for all of these algorithms. The hill-
climbing configurations collect 1000 sample states to com-
pute the counting approximation. For all pattern generators,
we fixed the maximum size of a single PDB to 1 million
states, and the total collection size to 10 million states.

Benchmarks
We use the set of benchmarks used by Klößner21 for their
evaluation in the MaxProb and SSP settings, briefly de-
scribed in the following. The benchmark set includes the
PPDDL domains from the IPPC 2004 & 2008. For domains
present in both iterations, we used only the newer version.
We consider those domains with avoidable dead-ends for
the SSP setting and domains with unavoidable dead-ends for
the MaxProb setting. We also experimented with a finite-
penalty approach for domains with unavoidable dead-ends
in the SSP setting. However, the results add nothing new in
comparison, so we omit them due to space constraints. For
all SSP domains, we assume unit costs.

For MaxProb, the benchmark also contains domains from
resource-constrained planning and an automated penetration
testing domain (coresec). Further, the MaxProb benchmark
contains acyclic variants of each domain except coresec,
which is naturally acyclic. These are obtained by introduc-
ing a finite budget which is consumed by all actions via a
variable at PPDDL level. These include variants of IPPC
domains which naturally only contain avoidable dead-ends,
since unavoidable dead-ends are introduced in the process.

For acyclic problems, we use AO∗ as the heuristic search
algorithm, whereas we used iLAO∗ (Hansen and Zilberstein

2001) with FRET (Kolobov et al. 2011) for cyclic problems.
All algorithms are run until ε-convergence, i.e. the values of
states reachable by the current greedy policy did not change
by more than ε compared to the previous value update.

MaxProb Analysis
We first consider MaxProb analysis. The coverage table
for these experiments is depicted in Table 1. Firstly, we
see that the CEGAR configurations achieve a substantially
higher coverage than the previous state of the art in sys-
tematic pattern generation, which beats CEGAR only in two
domains. Among the different CEGAR configurations, the
wildcard variations consistently perform worse than their
regular counterpart. For wildcard plans, this does not seem
too surprising, as here it is even more likely for classical
CEGAR to terminate early with a working optimal plan for
the determinization, which only amplifies the previously dis-
cussed issues. For the variations computing wildcard poli-
cies, we notice a nearly fivefold increase in average con-
struction time for the configurations using the sampling
strategy to find flaws, and similarly for the other strategies.
This clearly indicates that an enormous overhead is intro-
duced when considering wildcard policies during the flaw
finding procedure, which is rarely compensated for. All in
all, these results discourage the usage of wildcard plans, as
well as wildcard policies, in MaxProb.

The total coverage of the regular CEGAR configurations
is nearly identical. If we go into more detail and compare
the average number of states evaluated during the search
between our best policy-based CEGAR configuration and
plan-based CEGAR, we can see that policy-based CEGAR
has an extreme advantage over plan-based CEGAR in par-
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Domains N hroc SYS cHC HC cCG CG-mcs CG-mlp CG-bfs
blocksw 8 154,108.0 163,292.0 161,748.0 160,888.3 9,180,857.1 10,698,053.3 12,001,092.1 11,844,380.7
elevators 14 130,611.9 116,976.7 115,784.9 114,372.6 104,147.5 101,571.3 100,976.1 100,953.3
random 5 14,354.2 17,695.0 2,307.6 740.8 2,308,825.0 4,712,126.4 4,712,126.4 4,712,126.4
schedule 3 60.7 60.7 60.7 60.7 60.7 60.7 60.7 60.7
tri-tirew 5 168,412.8 221,642.4 92,423.4 52,055.0 221,646.1 69,441.0 52,055.0 81,601.7
zenotrvl 3 18,944.7 9,972.7 97.7 100.0 617.1 98.9 98.8 98.8
Mean 38 81,082.0 88,273.3 62,070.4 54,702.9 1,969,359.0 2,596,892.0 2,811,068.2 2,789,870.3

Table 2: Evaluated states for the SSP benchmarks. Each entry reports the average over domain instances covered by all algo-
rithms, as well as over ten random seeds (hillclimbing, CEGAR). The lowest number per domain is highlighted in boldface. N
is the number of commonly covered instances per domain.

Domains N hroc SYS cHC HC cCG CG
mcs mlp bfs

blocksw 15 12 8 12 12 8 8 8 8
elevators 15 14 14 14 14 14.8 14.9 14.8 14.8
random 15 8 7 8 7.1 4.7 6 7 6.7
schedule 15 3 4 4 4 4 4 4 4
tri-tirew 10 5 5 5 5 5 5 5 5
zenotrvl 15 3 3 3 4 3.3 3.3 3.2 3.2
Sum 85 45 41 46 46.1 39.8 41.2 42 41.7

Table 3: Coverage (sum) for the SSP benchmarks. Cover-
age is averaged over ten random seeds for hillclimbing and
CEGAR configurations. The highest coverage in a domain
is highlighted in boldface. Wildcard CEGAR configurations
perform considerably worse and are omitted from this table.
N is the total number of problem instances for each domain.

ticular domains, including triangle-tireworld (−97.5%), as
well as in the automated penetration testing domain coresec
(−54.8%), for which plan-based CEGAR also runs into the
problem of pathological early termination. We conclude that
policy-based CEGAR is a good alternative choice over plan-
based CEGAR in domains where such early termination is a
common occurrence. However, we also observe an increase
for some domains, for example canadian-rovers (+20.8%
acyclic, +28.3% cyclic), where this problem rarely occurs.

Regarding flaw finding procedures, we find only few do-
mains where we can see a clear distinction. Our sampling
strategy performs best, yet the advantage over our other
strategies seems marginal in total. The difference in the av-
erage number of evaluated states in all problems measures
below 2% between each of the strategies. We therefore con-
clude that the flaw finding strategy only has a negligible in-
fluence on the quality of the constructed pattern collection.

SSP Problems
Finally, we present our results for the SSP setting, which
includes the hillclimbing algorithms. Here, we also com-
pare against the regrouped operator-counting heuristic hroc

(Trevizan, Thiébaux, and Haslum 2017), a state-of-the-art
heuristic for this setting which is competitive with proba-
bilistic PDBs. The coverage table is depicted in Table 3. Pat-
tern construction by hillclimbing produces the best results in
this setting, also outperforming hroc, which achieves slightly
better coverage than the simplistic systematic pattern gen-

eration. The classical hillclimbing variant achieves virtually
the same coverage as our adaptation, which however evalu-
ates fewer states on average in the benchmarks random and
triangle-tireworld, as can be seen in Table 2.

Regarding pattern generation by CEGAR, the variations
which use wildcard plans and policies again perform much
worse due to the introduced overhead. On the other hand,
policy-based CEGAR achieves a slightly higher cover-
age than plan-based CEGAR here, due to covering more
instances in the problem domain random. For triangle-
tireworld, policy-based CEGAR again evaluates much fewer
states on average (−76.5%), yet this advantage does unfor-
tunately not lead to a higher coverage. All in all, we again
make the observation that policy-based CEGAR leads to no-
ticeable improvements in a domain where plan-based CE-
GAR terminates early, but behaves similarly otherwise.

The hillclimbing configurations tend to perform even bet-
ter than CEGAR in this setting. However, we point out that
in classical planning, Rovner, Sievers, and Helmert (2019)
achieved significantly better results when combining the
PDBs generated by the disjoint CEGAR algorithm with sat-
urated cost partitioning (Seipp and Helmert 2014; Seipp,
Keller, and Helmert 2020), as the patterns produced by CE-
GAR are typically too large to be combined using ordinary
additivity constraints. As of yet, it is unclear whether or how
we can pursue a similar strategy to combine the patterns pro-
duced by CEGAR, so it is not yet safe to say that hillclimb-
ing is all in all the better strategy to use for SSP problems.
For now, our results suggest this is the case.

Conclusion
We introduced two novel pattern generation algorithms de-
signed for the probabilistic planning settings of MaxProb
and stochastic shortest-path problems. Both algorithms im-
prove considerably over systematic pattern generation, the
previous state-of-the art in terms of pattern generation al-
gorithms for these settings. Our policy-based CEGAR al-
gorithm recovers the convergence guarantees of plan-based
CEGAR, and our experiments indicate a significant im-
provement in problem domains where this convergence
poses an issue. Our adaption of hillclimbing improves upon
the determinization-based approach and constitutes a sim-
ple yet effective pattern construction technique for the SSP
setting which performs best in our experiments.
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Code and Benchmarks of the ICAPS’22 submission ”Pattern Se-
lection Strategies for Pattern Databases in Probabilistic Planning”.
https://doi.org/10.5281/zenodo.6382098.
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