Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

Optimal Mixed Strategies for Cost-Adversarial Planning Games

Rostislav Horéik!, Alvaro Torralba?, Pavel Rytii!, Luka$ Chrpa', Stefan Edelkamp'

! Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
2 Aalborg University, Denmark
{xhorcik, pavel.rytir, chrpaluk, edelkste} @fel.cvut.cz, alto@cs.aau.dk

Abstract

This paper shows that domain-independent tools from classi-
cal planning can be used to model and solve a broad class of
game-theoretic problems we call Cost-Adversarial Planning
Games (CAPGs). We define CAPGs as 2-player normal-form
games specified by a planning task and a finite collection of
cost functions. The first player (a planning agent) strives to
solve a planning task optimally but has limited knowledge
about its action costs. The second player (an adversary agent)
controls the actual action costs. Even though CAPGs need
not be zero-sum, every CAPG has an associated zero-sum
game whose Nash equilibrium provides the optimal random-
ized strategy for the planning agent in the original CAPG.
We show how to find the Nash equilibrium of the associated
zero-sum game using a cost-optimal planner via the Double
Oracle algorithm. To demonstrate the expressivity of CAPGs,
we formalize a patrolling security game and several IPC do-
mains as CAPGs.

Introduction

Research in classical planning focuses on developing
domain-independent methods and tools to model and solve a
broad range of planning tasks, where an agent chooses a se-
quence of actions to achieve a set of goals. This paper shows
that these domain-independent tools can also be applied to
game-theoretic problems studied within Al, particularly to
security games (Tambe 2012). Many applications of security
games use the language of the normal-form games working
with an elementary indecomposable notion of a pure strat-
egy, even though pure strategies can be expressed as a com-
plex sequence of actions. Consequently, each application in-
troduces a domain-dependent formalism capturing the inner
structures of pure strategies. We demonstrate that it is pos-
sible to model this internal structure as a classical planning
task. As a result, we obtain a general framework to model a
broad class of security games and solve them using any cost-
optimal planner combined with game-theory techniques.
We define a class of cost-adversarial planning games
(CAPGs) specified by a planning task that the first player
(P-player) strives to solve optimally but the action costs are
influenced by the second player (C-player). More precisely,
CAPGs are 2-player normal-form games, where the P-player

Copyright (©) 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

160

chooses a plan and the C-player chooses a cost function from
a given collection of cost functions. Even though, this inter-
action is simpler than other forms of multi-agent adversarial
planning, where both agents can select arbitrary plans (Braf-
man et al. 2009; Speicher et al. 2018), it can still capture
many relevant scenarios. For example, by increasing the cost
of certain actions, the C-player can force the P-player to
choose alternative plans. Furthermore, this allows us to con-
sider randomized strategies, which is very relevant in some
practical applications.

Cost-adversarial planning games are almost zero-sum
games. Every almost zero-sum game is best-response equiv-
alent to a zero-sum game. This allows computing the opti-
mal mixed strategy for the P-player by computing a Nash
equilibrium in the equivalent zero-sum game. Nash equilib-
rium (NE) is a standard solution concept for normal-form
games; see e.g. (Shoham and Leyton-Brown 2009). A NE
of a zero-sum game can be computed in polynomial time
via a transformation to a linear program. However, this ap-
proach is unsuitable for CAPGs because the resulting linear
program can be too large. Moreover, the transformation is
computationally demanding. Thus to find a NE of a CAPG,
we employ the Double Oracle algorithm (McMahan, Gor-
don, and Blum 2003) which might be seen as a combination
of the column and the constraint generation method used
to solve large linear programs. This approach can leverage
domain-independent cost-optimal planning to solve CAPGs
with large state spaces efficiently.

The paper is organized as follows. After we recall all nec-
essary definitions and results from planning and game the-
ory, we introduce cost-adversarial planning games (CAPGs).
To demonstrate the expressivity of CAPGs, we discuss two
case studies showing what kind of problems one can model
as CAPGs. In particular, we introduce a domain inspired by
security games, which models wildlife protection against il-
legal poachers (Yang et al. 2014). Our experimental evalua-
tion shows that this approach is viable, and NEs can be found
in most cases where current cost-optimal planners are capa-
ble of solving the underlying planning task of the P-player.

Background

We assume the reader is familiar with optimal classical
planning. To keep our definition general, we define cost-
adversarial planning games over labelled transition systems

so that the definition is independent of the formalism used
to specify the underlying planning tasks.

Every planning task II induces a labeled transition sys-
tem (LTS) thatis a tuple O = (S, L, T, s1, Sy), where S is
a finite set of states, £ is a finite set of labels, 7 C Sx L xS
is a set of transitions, s; € S is an initial state,and S, C S

is a set of goal states. We write s L s to refer to a tran-
sition from s to s’ with the label I. A sequence of labels
7 = (li,...,l,) is called a plan for Oy if there exists

Si—1 Ly s; € T forevery ¢ € {1,...,n} such that sp = s;
and s,, € S,. The set of all plans for Or is denoted P(II).
In optimal classical planning, there is also a cost function
c: L — R{ assigning each label [its non-negative real-
valued cost ¢(1). Given a cost function ¢, we can define the
cost of the plan 7 by c(m) = Y., ¢(l;). A plan 7 is an
optimal plan if its cost is minimal among all plans.

We need to recall a few definitions and basic facts from
game theory; for details see e.g. (Shoham and Leyton-Brown
2009). A 2-player normal-form game (shortly game) is
a quadruple G = (X,Y,uy,us) where X (resp. Y) is a
finite set of pure strategies of Player 1 (resp. Player 2),
up: X XY — R(resp. us: X x Y — R)is a utility func-
tion of Player 1 (resp. Player 2). When the game G is played,
both players choose simultaneously a strategy from their re-
spective sets of pure strategies X, Y. The outcome of G for
Player ¢ is given by the utility function w,. The players strive
to maximize their utilities.

If a game is played repeatedly, it might be reasonable for
the players to randomize their strategies in order to increase
their expected utilities. A mixed strategy for Player 1 is a
probabilistic distribution p: X — [0, 1]. The set of all mixed
strategies of Player 1 is denoted Ax. For a mixed strategy
p € Ax, we define its support spt(p) = {x € X | p(z) >
0}. Note that a pure strategy « corresponds to a mixed strat-
egy 9, such that spt(d,) = {x}. Mixed strategies Ay for
Player 2 and their supports are defined analogously.

The utility function u; can be extended to A := Ax X
Ay by ui(p,q) = D sesp(p) 2uyespi(q) P(@)a(H)ui (@, y).
In other words, u;(p, q) is the expected utility of Player ¢ if
Player 1 plays p and Player 2 plays q.

An important class of games are zero-sum games, i.e.,
games where u; 4+ u2 = 0. In zero-sum games, it suffices to
consider only a single utility function u = —u; = o that
Player 1 strives to minimize and Player 2 maximize.

A standard solution concept for games is Nash equilib-
rium defining stable pairs of mixed strategies.

Definition 1. Let G = (X, Y, uq, us) be a game. A pair of
mixed strategies (p*, ¢*) € A is called a Nash equilibrium
(NE) if for all (p, g} € A we have

uz(p*, q) < ua(p*,q"). (1)

In other words, none of the players would change her strat-
egy knowing the strategy of the opponent because they mu-
tually play best responses against each other.

If G is zero-sum and we have only a single utility func-
tion 4 = —u; = us, the defining condition (1) becomes
u(p*,q) < u(p*,q*) < ulp, q*).

Ul(p, q*) S ul(p*7q*),

161

ls

oW O,

Iy

Figure 1: LTS for a simple game.

Nash equilibrium is a reasonable solution concept, es-
pecially in zero-sum games. Nash (1951) proved that each
game has at least one Nash equilibrium. In fact, a game can
have more than one NE. In general games, it is problematic
for the players to select one among all NEs because the out-
come could be different for different NEs (consider e.g. the
well-known prisoners’ dilemma). Nevertheless, this problem
does not occur in zero-sum games. The value u(p*, ¢*) is al-
ways the same for any NE (p*, ¢*). Moreover, p* is a mini-
max strategy whereas ¢* is maximin strategy as follows from
Neumann’s theorem (von Neumann 1928).

Theorem 2. Let G = (X,Y,u) be a zero-sum game and
(p*, ¢*) its NE. Then
u(p*,q¢*) = min max u(p,q) = max min u(p,q).
(p e) pPEAXx qEAY (p q) qEAY pEAX (p q)
Thus to solve a zero-sum game, both players need to find
strategies preparing them best for the worst opponent’s strat-
egy. The value vg = u(p*,q*) is called the value of the
game.

Example 3. Consider a planning task II inducing the LTS
in the Figure 1 with an initial state sy and a goal state
s1. There are three labels {l1, 12,13} with respective costs
1,5,53. The set of plans P(II) consists of three plans of
length 1. We define a game over II. Player 1 is supposed
to choose a plan getting her to the goal state. Player 2 (a
robber) is waiting for Player 1 either along the transition

S0 R $1 Or Sg L, s1. If Player 1 encounters Player 2,
Player 2 steals her 100 cost units. Formally, we have a game
g = <{ll, ZQ, lg}, {l1, 12}, Ui, U2> where 'U;Q(li’ lj) = 100 if
¢ = j and 0 otherwise, and w1 (l;, ;) = —c(l;) — ua(ls, ;).
Player 1 seeks a mixed strategy over plans that would max-
imize her expected utility (equivalently minimize her ex-
pected costs) provided that Player 2 behaves rationally max-
imizing his utility.

Note that the game is “almost” zero-sum as the sum
ui(ls, 1) + ua(l;,l;) = —c(l;) does not depend on Player
2’s strategy. In this kind of game, we are interested in find-
ing the optimal strategy for Player 1, which will consist of a
mixed strategy over the possible plans to reach the goal.

Definition 4. We call a game G = (X, Y, u;,us) almost
zero-sum if u; (x,y) + uz(x,y) = f(z) for some function
fr X —>R

To each almost zero-sum game G = (X, Y, uq, uz), we
associate its equivalent zero-sum game Gy = (X,Y,u)
where u(z,y) = —ui(x,y) = uz(x,y) — f(x). An almost
zero-sum game G is best-response equivalent to its associ-
ated zero-sum game Gy; see (Dritsoula, Loiseau, and Musac-
chio 2017). Thus they have the same NEs as is stated in the
next theorem.

Theorem 5. Let G = (X,Y,uy,us) be an almost zero-
sum game such that ui(z,y) + uz(x,y) = f(x) and Gy =
(X,Y,u) its associated zero-sum game where u(x,y) =
—uy(x,y) = uz(x,y) — f(x). Then (p*,q¢*) is a NE of G

iff it is a NE of Gy.
Proof. Note that u;(p,q*) < ul(p*, q*) iff u(p*,¢*) =
—u1(p*,q*) < —ui(p,¢*) = u(p,q*). Similarly, we have

uz(p*,q) < us(p*, ¢*) iff u(p*, q) = us(p*,q) —

uz(p*,q*) — f(p*) = u(p*, q*).

Thus to solve an almost zero-sum game, it suffices to find
a NE (p*, ¢*) of its associated zero-sum game. Moreover,
Player 1’s utility ui(p*,¢*) = —wvg, is just the opposite
of the value of G that is given by the minimax strategy
min,ea , Maxqea, u(p, ¢). Consequently, Player 1’s util-
ity uq (p*, ¢*) is always the same in any NE (p*, ¢*). Thus
Player 1 is indifferent on which equilibrial strategy to play.
Nevertheless, the Player 2’s utility may differ in different
NEs because uz(p*, ¢*) = vg, + f(p*), i.e., Player 1 can
influence Player 2’s utility.

flp) <
O

Example 6. Consider the almost zero-sum game G from
Example 3. Its associated zero-sum game is Gy =
<{l1, 12, 13}, {ll, lg}, u> where u(li, ZJ) = C(li) + U/Q(li, lj)
The game has several NEs. At first, Player 1 plays either
I with probability 1/2 or Iy with probability 1/2. Player 2
plays l; with probability 0.52 or [, with probability 0.48.
The expected utility for Player 2 in this case is 50. The ex-
pected Player 1’s utility is —53. In the remaining equilib-
ria, Player 1 plays always /3 and Player 2’s strategy is arbi-
trary. The expected Player 1’s utility is again —53 but Player
2’s utility is 0 now. So Player 1 is indifferent which NE to
choose but her choice influences Player 2’s utility. Still, note
that the optimal utility of Player 1’s is well defined, so we
can compute an optimal strategy for Player 1.

In practical applications, we often look for an approxima-
tion of NE. We call a pair of mixed strategies (p’, ¢') an e-NE
if both players can improve their utilities at most by € when
playing p', q".

Definition 7. Let G = (X, Y, uy, uz) be a game and € > 0.
A pair of mixed strategies (p’,¢’) € A is called an e-Nash
equilibrium (e-NE) if for all (p, ¢} € A we have

uz(p',q) < ua(p',q')+e (2)

The advantage of e-NE is that it is guaranteed that there
exists a NE with “small” supports; see (Lipton, Markakis,
and Mehta 2003). Even if the supports of NE might have
size of X or Y, there is an ¢-NE whose size of sup-

ui(p,q) <ui(p',q') +e,

pOI'tS IS bounded by 121nn (u71na:c uTzn)(ugnam _ ugnzn)
where n = T = maxXgze x yey U1 (T, y),
u71nzn _ HllnateX YEY ul(x y) and analogously for umaa:
and ugvn,

Double Oracle

If we want to compute a NE of a zero-sum game G =
(X,Y,u) and we know its utility function w on X X Y, we
can find it by linear programming in polynomial time in the

162

Algorithm 1 Double Oracle Algorithm

Input: Zero-sum game G = (X,Y,u), nonempty finite
subsets X1 C X,Y; CY,ande > 0

1. Leti:=0

2: repeat

3: =141

4: Find NE (p}, ¢;') of subgame (X;,Y;, u)

5: Find some z;41 € br(q}) and y;41 € br(p})

6: Let Xi+1 =X; U {xi+1} andY; 11 =Y, U {yi+1}

7: Let v, == u(z;41, ¢) and U; :== w(p}, yit1)
8: until 7; fyz <e

Output: -NE (pf,¢) of G

size of the representation of u; see e.g. (Shoham and Leyton-
Brown 2009, Section 4.1). However, in this paper we deal
with situations when X or Y might be very large or it might
be difficult to compute the utility function for all possible
pure strategies.

To overcome this difficulty, we recall the Double Ora-
cle Algorithm (DO) introduced in (McMahan, Gordon, and
Blum 2003) that can compute a NE or e-NE if it is stopped
before the final iteration. It iteratively computes a NE of a
subgame without evaluating the utility function in all points.
When X’ C X and Y/ C Y are nonempty subsets, we de-
fine the subgame G’ = (X' Y’ u) of G by restriction of u
to X’ x Y’ (denoted by the same letter).

The subgames in particular iterations of DO are con-
structed from best responses. Given a mixed strategy q €
Ay, the best response set for Player 1 is defined as br(q) =
{z € X | u(x,q) = mingex u(z’,q)}. Analogously, for
p € Ax the best response set for Player 2 is: br(p) = {y €
Y | u(pa) = MaXyey u(pa y/)}

The pseudocode of the DO algorithm is listed in Algo-
rithm 1. The algorithm starts with the sets X; and Y; of
initial pure strategies. Typically, X; and Y; are singletons.
Next, these sets are iteratively enlarged by best responses
and the resulting subgame is solved by an LP solver. The
crucial observation regarding the convergence of DO is the
fact that a best-response for Player 1 gives a lower bound on
the game value v; whereas a best response for Player 2 gives
an upper bound on the game value v;. Consequently, if these
bounds are e-close in an iteration 7, the NE of the subgame
(X;,Y;,u) is an e-NE of G. Further, note that DO is not a
deterministic algorithm as the best responses are not unique.

Cost-Adversarial Planning Games

Now we are ready to formally define cost-adversarial plan-
ning games. Let II be a planning task inducing an LTS Op
with a cost function c¢. We define a game over II as an almost
zero-sum game where Player 1’s pure strategies are plans in
‘P(IT) and Player 2’s pure strategies are cost functions from
a given finite set of cost functions C. For a plan 7 € P(II)
and a cost function g € C, Player 2’s utility us(m, g) is just
the cost of m w.r.t. g. Player 1’s utility w;(m, g) is the op-
posite of the cost of m w.r.t. the cost function ¢ + g. The
cost function ¢ defines base action costs and g represents the
adversary modification of the action costs.

Definition 8. Let II be a planning task and O =
(S,L,T,sr,S,) its underlying LTS with a cost function c.
Further, let C C (RJ)* be a finite set of cost functions.
A cost adversarial planning game (CAPG) is an almost
zero-sum game G = (P(II),C,uy,usz) where ui(m,g) =
—c(m)—g(m) and us(m, g) = g(w) form € P(II) and g € C.

We call Player 1 in G planning player (shortly P-player)
and Player 2 is called cost player (shortly C-player).

Note that the set of plans P(II) might be in fact infi-
nite, whenever the underlying LTS contains cycles. How-
ever, only finitely many of them are actually relevant. To see
that note that the cost of a plan depends only on the multiset
of its actions. Thus the relevant plans are those with mini-
mal multisets of actions. There can be at most finitely many
minimal multisets as follows from Dickson’s lemma (Dick-
son 1913). Consequently, there can only be finitely many
relevant plans because for each multiset of actions, there is
only a finite number of plans corresponding to this multiset.

On the other hand, the number of relevant plans can be
exponential in the size of the planning task II. To see that,
let us consider an n x n-grid of locations from the visitall
domain. Suppose we look for the shortest paths starting in
the bottom-left corner leading to the top-right corner. In this
case, the number of shortest plans is exponential in n be-
cause in each of the first n moves we can go either up or
right. This explains the necessity of applying DO to solve
CAPGs instead of solving them directly by precomputing a
set of relevant plans and using an LP solver.

CAPGs can be solved by solving its associated zero-sum
game Gy = (P(II),C,u) where u(m,g) = —uy(m, g) =
¢(m) 4 g(m). Thus Gy can be solved by DO. To do so, we
need to be able to compute a best response of any player to
a mixed strategy of her opponent (Line 5 in Algorithm 1).
First, consider a plan 7 = (l1,...,1,) and a mixed strategy
q € Ac. The utility u(, q) is the expected cost of 7 w.r.t. g,
Len u(m,q) = 3 yeunt(o 4(9)(e(m) + g(r). Thus u(r, q)
is the cost of 7 w.r.t. the cost function assigning to [€ L the
cost c(l) + 3= copi(q) 9(9)9(1). Consequently, to find a best
response of the planning player to ¢, we must find a plan
7 such that u(7, ¢) = minyepm u(n’, q). Such plan 7 is
nothing else than an optimal plan w.r.t. the above cost func-
tion ¢ + > gEspt(q) q(g)g that can be found by any optimal
planner.

To compute a best response of the cost player to a mixed
strategy p € Ap(g), we must find a cost function g
such that u(p, g) = maxgecc u(p, g’). We have u(p, g’) =
> respi(p) P(m)(e(m) 4 g'(m)). Thus it suffices to compute

g = argmaxXgcc Y coip P(T)g (7). To compute the
above cost function g, we simply iterate through all the costs
functions from C.

Even though the set C is an arbitrary finite set of cost func-
tions, some of its elements could be redundant because they
can be dominated by other mixed strategies. Note that the
elements of Ac can be identified with the convex combina-
tions of elements from C, i.e., A¢ is the convex hull of C.
Thus we can restrict w.l.o.g. the set C to the extremal points
of A¢. Moreover, as the cost player strives to maximize her
utility, it suffices to consider only the extremal points which

163

are maximal w.r.t. the pointwise order.

Case Studies

Cost-adversarial planning games provide quite a flexible
framework to model antagonistic situations. In this section,
we discuss particular applications of our framework. We
modelled all underlying planning tasks in PDDL (McDer-
mott et al. 1998). For our purposes, we extended the PDDL
format a bit to be able to specify the cost player’s pure strate-
gies. In general, to capture CAPGs in PDDL, one has to en-
code several cost functions instead of a single one. To sim-
plify the model, we decided that the C-player modifies only
the costs of action instances of a single action schema. Con-
sequently, our extended PDDL specifies only multiple action
costs for the instances of that action schema.

Patrolling Security Games

The first application is inspired by security games (Tambe
2012). Security games are usually modelled as Stackelberg
games. A 2-player Stackelberg game is specified by the same
data as a 2-player normal-form game. The difference is in
what players know about their opponent’s mixed strategy. In
the normal-form game, the players have no knowledge. On
the other hand, in Stackelberg games, one player is a leader
and the other one a follower. The leader has to announce
her mixed strategy in advance. The follower chooses her
strategy afterwards. A solution for a Stackelberg game is a
leader’s mixed strategy maximizing her utility provided that
the follower always plays her best response; see (Conitzer
and Sandholm 2006).

Thus each CAPG (and in fact each 2-player normal-form
game) defines also a 2-player Stackelberg game. As each
CAPG is an almost zero-sum game, we can relate its solu-
tion to the solution of the corresponding Stackelberg game.
More precisely, the P-player’s mixed strategy from NE is
the solution for the Stackelberg game provided that P-player
is the leader. This follows because the P-player’s equilib-
rial strategy is the minimax strategy. Thus she can announce
her strategy publicly without providing her opponent with
an advantage.

Now we describe our first case study, based on patrolling
security games (Yang et al. 2014; Shieh et al. 2012). Suppose
there is a national park attacked by poachers. For simplicity
we assume that there is a single poacher who regularly lays
down a snare somewhere in the park. Locations with higher
density of animals are more attractive for the poacher. On the
other hand, we have a ranger who patrols in the park every
day looking for the snare. However, the park is too large for
the ranger to inspect each location in the park within the day.
Our task is to find a probability distribution over a collection
of circular paths of limited length starting and finishing at
the ranger’s base so that he minimises the expected costs for
not discovering the snare and the travelled distance.

Formally, we model the park as a graph whose vertices
represent particular locations in the park and edges are the
road connections between them. Each road connection has
its length. One of the vertices is the ranger’s base. An ex-
ample can be seen in Figure 2. The poacher’s pure strategies

Figure 2: The graph representing the park. The double cir-
cled vertex denotes ranger’s base. The equilibrial strategy
for the poacher is depicted with the gray nodes. The respec-
tive probabilities of the locations 8, 5, 2, 6, 9, 4 are 0.287,
0.283, 0.276, 0.131, 0.016, 0.005.

(c) Probability 0.166

(d) Probability 0.166

Figure 3: The equilibrial strategy for the P-player for the
second scenario.

are vertices where he can put the snare. If the ranger vis-
its that location during his patrol, he eliminates the snare so
that the poacher’s utility u2 is 0. On the other hand, if the
ranger misses the location, the poacher’s utility is propor-
tional to the density of animals in that location. The ranger
is able to do at most £ many moves during his patrol. Thus
the ranger’s pure strategies are paths starting and finishing
in the ranger’s base of length at most k. Ranger’s cost (i.e.,
—uq) is the travelled distance if he eliminates the snare. If
he misses the snare, his cost is increased by the poacher’s
utility.

Example 9. Consider the graph in Figure 2. It represents
locations in the park and their road connections with their
distances. The ranger is able to make at most seven moves
between the locations during a patrol. If the poacher traps
an animal, his utility is 10000 and 0 otherwise. The ranger’s
cost is the sum of travelled distance plus the poacher’s utility.
We will discuss solutions to this game in two scenarios.
Firstly, we assume that the poacher always traps an an-
imal obtaining the value of 10000 if his snare is not elim-
inated by the ranger. As the value 10000 is much greater
than the distances in the graph, the optimal mixed strategy
for the poacher is to put the snare into the most distant lo-
cations from the base (i.e., locations 8, 9). The precise prob-
abilities on the locations 9, 8, 2, 5, 4 are respectively 0.5,

164

0.492, 0.003, 0.002, 0.001. On the other hand, the ranger
is uniformly choosing among the paths (a) and (b) in Fig-
ure 3. Note that the paths consist of at most seven moves
and cover altogether all the locations. The value of the as-
sociated zero-sum game (i.e., the ranger’s cost) is 5164. The
poacher’s utility is 5000. Thus the ranger saves every second
animal on average.

Secondly, we consider a more realistic scenario, whose
equilibrial strategies are shown in Figures 2 and 3. Suppose
that the poacher, if his snare is not eliminated, traps an an-
imal at 30% of cases in all locations except the location 6
where he is successful in 70% of cases. So the poacher’s
utility, provided that the snare is not eliminated, in the loca-
tion 6 is 7000 and 3000 in the remaining locations. Now the
solution is not symmetric as before. The location 6 is attrac-
tive for the poacher so it pays off for him to risk putting the
snare into a closer location. At the same time, the poacher
should consider the locations 8 and 5 with higher probabili-
ties 0.287 and 0.283. By this, the poacher forces the ranger
occasionally to visit the left side of the graph while leav-
ing the attractive location 6 unvisited. On the other hand,
the ranger tends to visit the location 6 often to balance its
attractiveness for the poacher. The value of the associated
zero-sum game is 1926. The poacher’s utility is 1633. Thus
the poacher traps an animal roughly in 16% of cases.

We model this security game as a CAPG. The underly-
ing planning task is formalized in PDDL. The graph of lo-
cations is encoded in the same way it is done in the IPC
domain transport together with the drive action allowing
the ranger to move in the graph. The objective is to find a
route that finds as many locations where the poachers may
have put some snare as possible, so we have a soft goal
for each of those locations whose value depends on the
poachers utility. We compile these soft goals away (Key-
der and Geffner 2009), by forcing the plan to have two
phases. The first one is the patrolling phase in which the
ranger is moving through the graph by applying at most
k drive actions. If he visits a location loc, unary predi-
cate visited(loc) is set to true. Once he is back in the
base, the planner can use an action finish-patrol switch-
ing the plan to the second phase. In this phase, the plan-
ner has to iterate through all locations in an encoded lin-
ear order. In each iteration, to get to the next location, the
planner has to apply either check-visited-location or
check-unvisited-location. The first action can be used
only if the location was visited by the ranger and its cost is
zero. The second one can only be applied if the location is
not visited and its cost is determined by the poacher’s mixed
strategy, i.e., it is the product of the probability of catching
an animal at that location and the probability of putting the
snare into that location.

Finally, we discuss differences between our formulation
of the patrolling game and those coming from the literature
on security games (Yang et al. 2014; Shieh et al. 2012). They
use a compact representation for the ranger’s mixed strate-
gies. Instead of a probability distribution over paths, they
use a probability distribution over the locations expressing
the probability that a given location will be covered by the
ranger. After solving the game, the actual patrol paths are

then generated by sampling from the set of all possible paths
satisfying given constraints. As this set is very large, various
pruning techniques are applied. On the other hand, our ap-
proach works directly with paths (and in general with plans).
Furthermore, as our solution uses domain-independent plan-
ning modelling the underlying planning task in PDDL, we
can easily encode other activities the ranger has to do dur-
ing the patrol. As we use the DO algorithm, we do not have
to use the compact representation and sampling because the
optimal planner in each iteration of DO picks up most “rele-
vant” plans. Further, we assume a perfectly rational poacher
whereas the model of (Yang et al. 2014; Shieh et al. 2012)
limited human rationality using the quantal response model
(McKelvey and Palfrey 1995) and the data collected with
human subjects to set the model parameters.

IPC Domains

Every IPC planning task can be turned into a CAPG if we
specify a set of pure strategies C for the C-player. In some
cases the solution of the resulting CAPG can be trivial. This
happens for instance if the P-player must apply an obligatory
action within her plan and the C-player may increase its cost.
Consider for instance the BlocksWorld domain. Suppose the
P-player has to build a tower having a block b on a block a.
If the C-player can increase the cost of the action stack b on
a, the P-player cannot avoid it. In such situations, the game
has a pure NE, i.e., the players do not randomize at all.

To create more interesting CAPGs, one needs domains
having sufficient variability in plans. In other words, the P-
player must have several possibilities for how to achieve her
goal to avoid the C-player’s traps. Such a domain is, for in-
stance, the transport domain as there are typically several
paths to follow in order to achieve the goal. One way to de-
fine the C-player’s pure strategies for a planning task in the
transport domain is to let the C-player choose a set of the
drive actions whose cost is increased. This approach has a
natural interpretation that the C-player lurks along a limited
number of roads to cause further expenses for the P-player
if she takes one of these roads. The P-player needs to deliver
all the packages to their destinations not knowing where the
C-player is. The extra expenses need not be the same every-
where. They can for example reflect how suitable the road is
for the attack or what load is being carried by the truck.

Example 10. Suppose we have a planning task from the
transport domain whose map of locations is the same as in
Figure 2. We have a single truck located at the location 9.
There are two packages to be delivered. The first in the lo-
cation 7 should be delivered to the location 1 and the second
one from the location 4 to the location 3; see Figure 4(a).
The C-player can choose and attack any drive action pro-
vided the truck is loaded. Thus it makes no sense to lurk
along the edge between the locations 3 and 6. If the P-player
applies the chosen drive action, she must pay 10000 penalty.
The optimal strategy for the C-player attacks two drive ac-
tions 1 — 3 and 7 — 3 each with the probability 0.5; see
Figure 4(a). This is reasonable as the P-player must deliver
a package to the location 3. Moreover, the number of possi-
bilities how to avoid the C-player’s trap is the smallest one

165

(b) Probability 0.5

(c) Probability 0.5

Figure 4: The equilibrial strategies in Example 10 (a) for the
C-player, (b—c) for the P-player.

for the location 3 because the nodes corresponding to other
locations with packages (i.e. 7, 4, 1) have degree 4; see Fig-
ure 4(a). On the other hand, the P-player has to randomize
uniformly between two plans depicted in Figure 4(b—c).

Experiments

We evaluate the DO algorithm in several domains. First, in
the patrol domain we introduced in the previous section. Par-
ticular instances of the patrol domain were generated based
on the underlying maps of locations of the 30 instances
of the 2008 optimal-track version of the IPC transport do-
main. For each map, we considered three variants limiting
the number of moves the ranger can take at most to 6, 12,
and 18, respectively.

Further, we created variants of several domains from the
IPC, namely transport, data-network and visitall. For the
transport domain, we considered two variants of the C-
player’s pure strategies. In the first one (we call it transport),
the C-player can increase by a penalty the cost of a single
drive action determined by two locations z, y and a truck
t. So the penalty is applied only if the P-player applies ex-
actly that drive action. If another truck ¢’ drives from z to
1y, the P-player pays no penalty. The second variant (called
transport-road) of the transport domain allows the C-player
to increase simultaneously the cost of all drive actions from
z to y no matter which truck applies it. The first variant
clearly allows larger flexibility for the P-player to avoid the
C-player’s trap. In data network, the C-player can choose
a server s and a script sc and increase simultaneously the
cost of all actions processing the script sc on the server s
no matter which data are processed. In visitall, we allow the
C-player to choose among particular move actions where a
penalty is applied. In all domains, the penalties increasing
the base costs were generated randomly from the interval
[1000, 10000] for each pure strategy.

The core of DO was implemented in Python' and experi-
mentally evaluated on a cluster of computing nodes with In-
tel Xeon Scalable Gold 6146 processors. For each task, we

"https://github.com/geoborek/CAPGs

ipdb Imcut ms
domain NE cov gmt maxt ml tl avgit mit avgP avgC|NE cov gmt maxt ml tl|NE cov gmt maxt ml tl
patrol 8 90 07 33 41 182 60 54 7.1]71 90 1.6 53.6 01981 90 13 158 3 6
transport 13 14 07 7217 0 11.8 21 52 7.2 9 11 139824 0 21|11 11 0.8 20519 0
transport-road| 13 14 1.2 741 17 0 53 10 23 32|10 11 1.7 4522 0 20| 11 11 1.1 786 19 0O
data-network | 3 12 0.8 333 16 1 147 21 7.7 83| 3 12 13 2885 0 17| 3 10 45 147 16 1
visitall'! 11 16 05 137 90 175 34 9.1 133 9 10 05 42 011 9 9 09 53110

Table 1: Overall results for all tested optimal planners. NE: the number of solved tasks; cov: the number of tasks where at least
one plan was produced; gmt: the geometric mean of the best-response computation times for the commonly solved tasks; maxt:
the maximum best-response computation time for the commonly solved tasks; m/: the number of tasks that failed due to the
memory limit; #/: the number of tasks that failed due to the time limit; avgit: the average number of iterations for the tasks
solved by ipdb; mit: the maximum number of iterations for the tasks solved by ipdb; avgP: the average size of the P-player’s
support for the tasks solved by ipdb; avgC: the average size of the C-player’s support for the tasks solved by ipdb.

set a 30-minute time limit on the whole computation pro-
cess and a 4 GB memory limit for the optimal planner. A
vast majority of computational resources are consumed by
the optimal planner. Our implementation of DO can be used
with any optimal planner to compute the P-player’s best re-
sponse. In the experiments, we use Fast Downward (Helmert
2006) using A* with three different admissible heuristics:
pattern databases (ipdb) (Haslum et al. 2007), LM-Cut (Im-
cut) (Helmert and Domshlak 2009) and merge-and-shrink
(ms) with bisimulation based shrinking (Helmert et al. 2014)
and the merge strategy SCC-DFP (Sievers, Wehrle, and
Helmert 2016).

The overall results with all considered optimal planners
are shown in Table 1. One can see that iPDB performed the
best w.r.t. the “usual” coverage as shown in the column cov,
meaning that the optimal planner was able to solve the first
planning task in the initialization of DO, which corresponds
to the original cost function disregarding the C-player. This
translates into finding also the NE in most cases. Interest-
ingly, the difference between NE and cov suggests that in
most cases, if the underlying planner is able to find an opti-
mal plan, the DO algorithm will terminate with a satisfactory
NE too. Further, Table 1 shows the average, maximum num-
bers of iterations and the average size of the P-player’s and
the C-player’s support. As these numbers are similar for all
the considered planners, we present them only for (ipdb).

For the best performing optimal planner (ipdb), we
present data on a typical DO execution for a single planning
task in the patrol domain. In this task, the ranger was allowed
to make up to 18 moves during his patrols. The map of loca-
tions having 21 locations is the same as in the task p07.pddl
in the IPC-2008 version of the transport domain. The con-
vergence of DO is shown in Figure 5. In the end, the NE is
found after 54 iterations and the resulting mixed strategies
have 14 plans and 15 cost functions, respectively. However,
after each iteration the DO algorithm produces a candidate
solution. The lower bounds computed by the planner in DO
(i.e., the cost of the optimal plan found at each iteration) are
small as long as there are good P-player’s plans covering
the C-player’s mixed strategies considered so far. Once the
C-player finds sufficiently many best responses w.r.t. previ-

166

ously found plans, the upper and lower bounds start to con-
verge; see Figure 5(a—b).

Even though the optimal planner solves the exact same
planning task only w.r.t. a different cost function, the times
needed to compute an optimal plan increase as DO gets
closer to the optimal strategies; see Figure 5(c). Similar be-
haviour can be observed in other tasks as well. The reason is
that mixed strategies for the C-player induce more complex
and diverse cost functions?, which is known that they can
negatively impact search performance (Wilt and Ruml 2011;
Fan, Miiller, and Holte 2017). Figure 6(a) shows a compar-
ison between the considered planners in the best-response
computation time for a single task (problem06-half.pddl)
from the TPC-2011 visitall. The DO convergence for this
task is depicted in Figure 6(b) showing how the difference
between the upper and lower bounds decreases during the
DO execution for all considered planners. Note that the ac-
tual curves are different due to non-uniqueness of best re-
sponses, namely finding different optimal plans may impact
subsequent iterations of the algorithm.

The final graph in Figure 6(c) displays a correlation be-
tween the number of DO iterations and the size of the P-
Player’s equilibrial support for all successfully computed
tasks. It demonstrates that DO is a relatively efficient algo-
rithm regarding its iterations. In each iteration at least one
new pure strategy (best response) is computed and added
to the subgame. It follows that many of the generated pure
strategies are actually needed in the support of NE. Note that
there are several degenerated cases with tens of iterations
and support of size 1. These are the tasks from the patrol
domain with a smaller map and a larger number of allowed
moves. It takes several iterations to discover that there is a
single plan covering the whole map giving the C-player no
chance to trap an animal. The sizes of supports for the C-
player behave similarly.

Note that, even when the simple strategies only increase some
action’s cost by a constant, mixed strategies are linear combinations
of those, potentially resulting on very diverse cost functions.

10000 Value

Upper bound
—— Lower bound

14 -
8000 121

6000 101

4000

2000

124 —— Planner time

10

—— Support size P
Support size C

30 40 50 10

iteration

10 20

(a) DO convergence

20
iteration

(b) Size of supports

30 40 50
iteration

30 40 50 10 20

(c) Best-response computation time in sec.

Figure 5: The iterations of DO for a single planning task in the patrol domain. (a) The lower bound of the game value computed
by the optimal planner; the upper bound of the game value computed by searching the best C-player’s cost function; the value
of the DO subgame (b) The size of supports of NEs for the DO subgame. (c) The time the optimal planner needed to compute

the P-player’s best response.

—— ipdb 10000
o~ Imcut

ms

1.8
1.6

—y—

8000
1.4

1.2 6000

1.0
4000
0.8
0.6 2000

0.4

17.5 A data-network g °
o patrol [}
15.0 Vv transport
¢ transport-road ° 00 °
1251 @ visitall 0o o °
m m eoo °
10.0 ve °
@ o
vV moo o
7.5 @ o
weve o
5.0 @ o
oy v
foov ©
251 o
om0 © @ 0 cuw ° ° ©

0.2

10 15 20

iteration

25 30 35

(a) Best response computation time in sec.

15

iteration

(b) e-convergence

20 25

30
iteration

40 50 60

(c) Sizes of P-player’s equilibrial supports

Figure 6: (a) The best response computation time for the planners ipdb, Imcut and ms on the problem problem06-half.pddl
in the 2011 version of the IPC domain visitall. (b) The difference between the upper and lower bound for the planners ipdb,
Imcut and ms on the same problem problem06-half.pddl. (c) The correlation between the number of iterations and the size
of the P-player’s equilibrial support for all tasks where a NE was found.

Related Work

Most of the literature on adversarial planning focus on
multi-agent planning where several agents are planning in
the same environment. To formalize agents interactions and
conflicts of their plans is a non-trivial task. Bowling, Jensen,
and Veloso (2003) proposed quite a complex definition of
an equilibrium for multi-agent planning. A Nash equilib-
rium for multi-agent planning was considered in (Larbi,
Konieczny, and Marquis 2007). Brafman et al. (2009 in-
troduce coalition games into multiagent setting. Stackelberg
game where a leader executes a plan followed by a plan of
the follower were considered in (Speicher et al. 2018; Tor-
ralba et al. 2021). In this paper, we focus on a conceptually
much easier setting where the adversary agent directly mod-
ifies the action costs. Despite its simplicity, it still formalizes
areasonable class of problems relevant for practical applica-
tions, e.g. in security games.

The DO algorithm was proposed in (McMahan, Gordon,
and Blum 2003) to solve a certain class of zero-sum plan-
ning games over MDPs. Although these games substantially

167

overlap with CAPGs, McMahan, Gordon, and Blum (2003)
do not use any domain-independent formalism to model
the planning component of their games. The DO algorithm
in combination with domain-independent planners was also
applied in (Rytif, Chrpa, and BoSansky 2019; Chrpa, Rytif,
and Hor¢ik 2020) focusing on resource collection games.

Conclusion

We introduced cost-adversarial planning games and showed
which problems can be modelled by these games. In partic-
ular, we illustrated how to model patrolling security games
within this formalism. Further, we showed how to solve
them using DO together with the tools from optimal classical
planning and experimentally evaluated our solution method.

As a byproduct, it turns out that the runtime of optimal
planners could be substantially influenced by the chosen cost
function. This suggests that CAPGs might serve as a reason-
able benchmark to test optimal planners w.r.t. several cost
functions, in particular given that many IPC domains used
in optimal planning have unit costs.

Acknowledgements

This research was funded by AFOSR award FA9550-
18-1-0097 and by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16.019/0000765 “Research Center
for Informatics”.

References

Bowling, M. H.; Jensen, R. M.; and Veloso, M. M. 2003.
A Formalization of Equilibria for Multiagent Planning. In
Proc. IJCAI’03, 1460-1462.

Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning Games. In Proc. IJCAI’09, 73-78.

Chrpa, L.; Rytit, P.; and Hor¢ik, R. 2020. Planning Against
Adversary in Zero-Sum Games: Heuristics for Selecting and
Ordering Critical Actions. In Proc. SOCS 20, 20-28.

Conitzer, V.; and Sandholm, T. 2006. Computing the optimal
strategy to commit to. In Feigenbaum, J.; Chuang, J. C.;
and Pennock, D. M., eds., Proceedings 7th ACM Conference
on Electronic Commerce (EC-2006), Ann Arbor, Michigan,
USA, June 11-15, 2006, 82-90. ACM.

Dickson, L. E. 1913. Finiteness of the Odd Perfect and
Primitive Abundant Numbers with n Distinct Prime Factors.
American Journal of Mathematics, 35: 413.

Dritsoula, L.; Loiseau, P.; and Musacchio, J. 2017. A Game-
Theoretic Analysis of Adversarial Classification. [EEE
Trans. Inf. Forensics Secur., 12(12): 3094-3109.

Fan, G.; Miiller, M.; and Holte, R. 2017. The Two-Edged
Nature of Diverse Action Costs. In Proc. ICAPS’17, 98—
106.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI'07,1007-1012.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191-246.

Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS’09, 162-1609.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & Shrink Abstraction: A Method for Generat-
ing Lower Bounds in Factored State Spaces. Journal of the
Association for Computing Machinery, 61(3): 16.1-16.63.

Keyder, E.; and Geffner, H. 2009. Soft Goals Can Be Com-
piled Away. Journal of Artificial Intelligence Research, 36:
547-556.

Larbi, R. B.; Konieczny, S.; and Marquis, P. 2007. Extend-
ing Classical Planning to the Multi-agent Case: A Game-
Theoretic Approach. In Proceedings of the 9th European
Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU’07), 731-742.

Lipton, R. J.; Markakis, E.; and Mehta, A. 2003. Playing
large games using simple strategies. In Menascé, D. A.; and
Nisan, N., eds., Proceedings 4th ACM Conference on Elec-
tronic Commerce (EC-2003), San Diego, California, USA,
June 9-12, 2003, 36-41. ACM.

168

McDermott, D.; et al. 1998. The PDDL Planning Domain
Definition Language. The AIPS-98 Planning Competition
Comitee.

McKelvey, R. D.; and Palfrey, T. R. 1995. Quantal Response
Equilibria for Normal Form Games. Games and Economic
Behavior, 10(1): 6-38.

McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the Presence of Cost Functions Controlled by an Ad-
versary. In Fawcett, T.; and Mishra, N., eds., Machine Learn-
ing, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA,
536-543. AAAI Press.

Nash, J. 1951. Non-cooperative games. Annals of Mathe-
matics, 54(2): 286-295.

Rytit, P.; Chrpa, L.; and BoSansky, B. 2019. Using Classical
Planning in Adversarial Problems. In 31st IEEE Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI 2019, Portland, OR, USA, November 4—-6, 2019, 1335—
1340. IEEE.

Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. PROTECT: a
deployed game theoretic system to protect the ports of the
United States. In van der Hoek, W.; Padgham, L.; Conitzer,
V.; and Winikoff, M., eds., International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2012,
Valencia, Spain, June 4-8, 2012 (3 Volumes), 13-20.

Shoham, Y.; and Leyton-Brown, K. 2009. Multiagent Sys-
tems - Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press. ISBN 978-0-521-89943-
7.

Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An Analy-
sis of Merge Strategies for Merge-and-Shrink Heuristics. In
Proc. ICAPS’16, 294-298.

Speicher, P.; Steinmetz, M.; Backes, M.; Hoffmann, J.; and
Kiinnemann, R. 2018. Stackelberg Planning: Towards Effec-
tive Leader-Follower State Space Search. In Proc. AAAI' 1S,
6286-6293.

Tambe, M. 2012. Security and Game Theory - Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press. ISBN 978-1-10-709642-4.

Torralba, A.: Speicher, P.; Kiinnemann, R.; Steinmetz, M.;
and Hoffmann, J. 2021. Faster Stackelberg Planning
via Symbolic Search and Information Sharing. In Proc.
AAAI'21, 11998-12006.

von Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele.
Mathematische Annalen, 100: 295-320.

Wilt, C. M.; and Ruml, W. 2011. Cost-Based Heuristic
Search Is Sensitive to the Ratio of Operator Costs. In Proc.
SOCS’11.

Yang, R.; Ford, B. J.; Tambe, M.; and Lemieux, A. 2014.
Adaptive resource allocation for wildlife protection against
illegal poachers. In Bazzan, A. L. C.; Huhns, M. N.; Lo-
muscio, A.; and Scerri, P., eds., International conference on
Autonomous Agents and Multi-Agent Systems, AAMAS 14,
Paris, France, May 5-9, 2014, 453—460. IFAAMAS/ACM.

