
Compiling HTN Plan Verification Problems into HTN Planning Problems

Daniel Höller,1 Julia Wichlacz,1 Pascal Bercher,2 Gregor Behnke3,4

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany,
2The Australian National University, Canberra, Australia,

3University of Freiburg, Freiburg, Germany,
4University of Amsterdam, ILLC, The Netherlands

hoeller@cs.uni-saarland.de, wichlacz@cs.uni-saarland.de, pascal.bercher@anu.edu.au, g.behnke@uva.nl

Abstract

Plan Verification is the task of deciding whether a sequence
of actions is a solution for a given planning problem. In HTN
planning, the task is computationally expensive and may be
up to NP-hard. However, there are situations where it needs to
be solved, e.g. when a solution is post-processed, in systems
using approximation, or just to validate whether a planning
system works correctly (e.g. for debugging or in a competi-
tion). There are verification systems based on translations to
propositional logic and on techniques from parsing. Here we
present a third approach and translate HTN plan verification
problems into HTN planning problems. These can be solved
using any HTN planning system. We collected a new bench-
mark set based on models and results of the 2020 Interna-
tional Planning Competition. Our evaluation shows that our
compilation outperforms the approaches from the literature.

Introduction
Plan Verification is the task of deciding whether a sequence
of actions is a solution for a given planning problem. It is
necessary in several situations, e.g. when a plan is post-
processed, or to verify whether a planning system works cor-
rectly (e.g. for debugging or in a competition).

In classical planning, it can be solved in (lower) polyno-
mial time. In Hierarchical Task Network (HTN) planning
(see Bercher, Alford, and Höller (2019) for an overview), the
complexity depends on several parameters, e.g. on whether
the decomposition steps (i.e. the chosen methods) leading to
a solution are known or on the specific problem class (e.g.
whether the tasks are partially or totally ordered). In the for-
malisms in HTN planning, the decomposition steps are usu-
ally not regarded part of a solution since only the contained
primitive tasks (i.e. actions) need to be executed.

However, there are use cases in the literature where they
are needed, e.g. for communication with a user (Bercher
et al. 2021; Behnke et al. 2020; Köhn et al. 2020; de Silva,
Padgham, and Sardina 2019). When they are present, (HTN)
plan verification can be solved in polynomial time. Another
polytime case is given in Totally Ordered (TO) HTN prob-
lems, where all methods and the initial task network are to-
tally ordered. Here, the decomposition rules resemble rules

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of a context-free grammar, making plan verification equiva-
lent to parsing such a grammar (which can be done in cubic
time). For general partially ordered (PO) HTN problems, it
becomes NP-hard (Behnke, Höller, and Biundo 2015).

Both TO and PO HTN planning were tracks in the 2020
International Planning Competition (IPC). The participants
needed to return the decomposition steps to allow the orga-
nizers a verification in polynomial time. However, though
it is possible to track this information, it causes technical
problems – consider e.g. the various compilation steps often
performed in preprocessing that need to be undone. In other
cases it is even not possible to output the decomposition
steps, e.g. when postoptimizing solutions or when using ap-
proximations like e.g. the TOAD system (see Höller, 2021),
which overapproximates the solution set of a problem and
needs verification as a regular step of its planning procedure
to make sure only to return correct solutions.

In the literature, there are systems to solve the problem via
translation to propositional logic (Behnke, Höller, and Bi-
undo 2017) and based on parsing techniques (Barták, Mail-
lard, and Cardoso 2018; Barták et al. 2020).

In this paper, we present an approach to compile HTN
verification problems to standard HTN planning problems.
Our compilation is based on previous work on plan recogni-
tion as planning (Höller et al. 2018). It is applicable in both
TO and PO HTN planning. We solve the resulting problems
with planning systems that return the decomposition steps,
which provide a witness of correctness for the verified so-
lution. As second contribution, we collected a novel bench-
mark set based models and results of the 2020 IPC and so-
lutions generated by the IPC participants. To also include
instances where the provided plans are not valid, we col-
lected instances from non-final submissions of the IPC plan-
ning systems that lead to incorrect plans. On this benchmark
set, our approach outperforms both the SAT-based and the
parsing-based approach from related work.

Formal Framework
In HTN planning there are two types of tasks, primitive and
compound tasks. Primitive tasks are equivalent to actions in
classical planning, i.e., they are directly applicable and cause
state transitions. Compound tasks are not directly applica-
ble and need to be decomposed into other tasks in a process
similar to the derivation of words from a formal grammar. A

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

145



solution needs to be derived via this grammar.
We use the HTN formalization by Höller et al. (2016),

which is based on the one by Geier and Bercher (2011). A
planning problem is a tuple p = (F, C, A, M, s0, tnI , g,
prec, add , del). F is a set of propositional state features. A
state s is defined by the subset of state features that hold in
it, s ∈ 2F , all other state features are assumed to be false.
s0 ∈ 2F is the initial state of the problem, and g ⊆ F is the
state-based goal description, which can be compiled away
in HTN planning and is therefore often omitted. However, it
makes our definitions more natural. A state s is a goal state
if and only if g ⊆ s. A is a set of symbols called primitive
tasks (also actions). These are mapped to a subset of the
state features by the functions prec, add , del , all defined as
f : A → 2F . They define the actions’ preconditions, add-,
and delete-effects. An action a is applicable in a state s if
and only if prec(a) ⊆ s. When an applicable action a is
applied in a state s, the state s′ = γ(s, a) resulting from
the application is defined as s′ = (s \ del(a)) ∪ add(a). A
sequence of actions a1a2 . . . an is applicable in a state s0 if
and only if ai is applicable in the state si−1, where si for
1 ≤ i ≤ n is defined as si = γ(si−1, ai). We call the state
sn the state resulting from the application.

Tasks in HTN planning are maintained in task networks.
A task network is a partially ordered multiset of tasks. For-
mally, it is a triple tn = (T ,≺, α). T is a set of identi-
fiers (ids) that are mapped to the actual tasks by the function
α : T → N , where N = A∪C is the union of the primitive
tasks A and the compound tasks C. ≺ is a partial order on
the task ids. tnI is the initial task network, i.e., the task net-
work the decomposition process starts with. Legal decom-
positions are defined by the set of (decomposition) methods
M . A method is a pair (c, tn), where c ∈ C defines the task
that can be decomposed using the method, and the task net-
work tn defines into which tasks it is decomposed. When a
task t from a task network tn is decomposed using a method
(c, tn ′), it is replaced by the tasks in tn ′. When t has been or-
dered with respect to other tasks in tn , the new tasks inherit
these ordering constraints. Formally, a method m = (c, tn)
decomposes a task network tn1 = (T1,≺1, α1) that con-
tains a task id t ∈ T1 with α1(t) = c into a task network
tn2, which is defined as follows. Let tn ′ = (T ′,≺′, α′) be
a copy of tn that uses ids not contained in T1. Then tn2 is
defined as:

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

When a task network tn can be decomposed into a task
network tn ′ by applying (a finite sequence of) 0 or more
methods, we write tn →∗ tn ′.

A task network tnS = (TS ,≺S , αS) is a solution to an
HTN problem if and only if
1. tnI →∗ tnS , i.e., it can be derived from the initial task

network via decomposition,
2. ∀t ∈ TS : αS(t) ∈ A, i.e., all tasks are primitive, and

3. there is a sequence (i1i2 . . . in) of the task ids in
TS in line with the ordering constraints ≺S such that
(αS(i1)αS(i2) . . . αS(in)) is applicable in s0 and results
in a goal state.

We call an HTN method totally ordered when the tasks
in the contained task network are totally ordered. We call an
HTN planning problem totally ordered when all contained
methods and the initial task network are totally ordered.
Definition 1 (Plan Verification). Given an HTN planning
problem p and a sequence of actions (a1a2 . . . an), plan
verification is the problem to decide whether there is a
task network (TS ,≺S , αS) that is a solution for p and
for an ordering (i1i2 . . . in) of the task identifiers TS ful-
filling solution criterion 3 as given above, it holds that
(αS(i1)αS(i2) . . . αS(in)) = (a1a2 . . . an).

Compilation to Planning
The presented encoding is widely identical with the one in-
troduced by Höller et al. (2018) for plan and goal recognition
(PGR) as planning. It has also been shown that it can be used
for plan repair (Höller et al. 2020b).

Let p = (F, C, A, M, s0, tnI , g, prec, add , del) be an
HTN planning problem, π = (a1a2 . . . an) a sequence of
actions out of A, and v = (p, π) a plan verification problem.
We compile v into a new HTN planning problem p′ = (F ′,
C ′, A′, M ′, s′0, tnI , g

′, prec′, add ′, del ′) that has a solution
if and only if v is solvable.

We first change the state and the actions of the original
problem such that the only applicable sequence of actions
exactly resembles π. Let f0, f1, . . . , fn be new state fea-
tures. We use them to encode which actions out of π have
already been executed. In addition to that, we need a state
feature⊥, which cannot be made true in any state. The set of
state features of p′ is defined as F ′ = F ∪{f0, f1, . . . , fn}∪
{⊥}. In the beginning, no action out of π has been executed,
i.e., s′0 = s0 ∪ {f0}. We want solutions to exactly equal
π, i.e., all actions need to be included. This is enforced by
including fn in the goal definition, i.e., g′ = g ∪ {fn}.

For ai ∈ π with 1 ≤ i ≤ n, we introduce a new action
a′i. The preconditions of the new actions enforce the correct
position in the generated solution

prec′(a′i) = prec(ai) ∪ {fi−1},
each action deletes its own precondition and adds the one of
the next action in the solution

add ′(a′i) = add(ai) ∪ {fi},
del ′(a′i) = del(ai) ∪ {fi−1}.

Please be aware that an action out of A may appear more
than once in the solution. In such cases, there will be mul-
tiple copies of the action in A′. The novel actions mimic
the state transition of the original ones, but additionally en-
sure their respective position in the solution. All other ac-
tions shall never appear in any solution, so we add the state
feature ⊥ that cannot be made true to their preconditions.

∀a ∈ A : prec′(a) = prec(a) ∪ {⊥},
add ′(a) = add(a),

del ′(a) = del(a)

146



The new set of actions is defined as A′ = A∪{a′i | ai ∈ π}.
Due to the new state features, preconditions and effects,

there is only one sequence of actions that is applicable and
leads to a goal state. However, none of the new actions can
ever be reached by decomposing the initial task network. To
make this possible, we need to modify the decomposition
hierarchy. It shall be possible for a newly introduced action
a′ to be placed at exactly those positions where the action
a might have been in the original model. We thereby need
to keep in mind that there might be multiple copies of some
action a, so we cannot just replace them in the methods. We
need to introduce a new choice point to choose which copy
a′, a′′, . . . of a shall be at which position in the action se-
quence. We do this by introducing one novel compound task
ca for each action a. Let CA = {ca | a ∈ A}. We first
replace actions in the original methods by these new tasks.

MO = {m = (T,≺, α′) | m ∈M} where

∀t ∈ T with α(t) = n

{
α′(t) = cn for n ∈ A
α′(t) = c else

Then we introduce new methods to decompose the new
tasks into the copies of a.

MA = {(ca, ({i}, ∅, {i 7→ a′})) | a′ ∈ π}

We define C ′ = C ∪ CA and M ′ = MO ∪MA and have
fully specified our compiled problem p′.

The resulting encoding is nearly identical with the one
used in the fully observable case of PGR as planning (Höller
et al. 2018). The only difference is the additional precondi-
tion of the actions not included in the solution. While the
PGR encoding forces these actions to be placed after a given
plan prefix of observed actions, the encoding here makes
them entirely unreachable.

Next we discuss theoretical properties of the compilation.
Let v = (p, π) be a plan verification problem and p′ the en-
coding as given above. Our encoding serves the purpose of
deciding whether π is a solution for p. This is being achieved
provided that π is a solution for p if and only if p′ is solv-
able, which we capture in the following two theorems. Note
that this result is a special case of Thm. 1 by Höller et al.
(2018), which states that the encoding ensures that the solu-
tions of the encoded problem are exactly those of the original
problem that start with the enforced actions. In the context
of PGR, there might be additional actions after the prefix of
enforced actions, namely the remaining plan that should be
recognized. In our case, this part remains empty due to the
state feature ⊥ added to the preconditions.
Theorem 1. When π is a solution for p, then the compiled
problem p′ is solvable.

Proof Sketch. Since π is a solution to p, we know that there
is a sequence of method applications that transforms the ini-
tial task network tnI into a primitive task network tn , which
in turn allows π as executable linearization. Note that we can
assume that the solution was achieved by a progression plan-
ner, which applies methods and actions in a forward-fashion,
since such a progression-based solution exists if and only if
any solution exists at all (Alford et al. 2012, Thm. 3). Thus,

we can assume that there is a sequence of method and action
applications ma that transforms tnI into π. That sequence
can be transformed into a corresponding sequence in p′. For
each action ai at position i in π its corresponding encoding
a′i will be executable in the solution π′ to p′, though the re-
spective sequence of method and action applications will be
preceded by the method decomposing ca, thus introducing
that encoding of a′i. Furthermore, every method m in ma
will be applicable in the corresponding method and action
sequence ma′ leading to π′ in p′ as well.

Theorem 2. When π is no solution for p, then the compiled
problem p′ is unsolvable.

Proof Sketch. This direction is a bit easier to see than the
previous one, since the model of p′ is an extension of the
original one, i.e., it follows the exact same structure, but
each action has additional preconditions and thus makes the
problem more constrained. So if there is no solution in the
original model leading to the particular plan, there cannot be
a solution in the encoded one.

It was also shown that the compilation maintains most
structural properties of the original problem (Höller et al.
2020b, Sec. 6.1), i.e., tail-recursive, acyclic, and totally or-
dered problems remain tail-recursive, acyclic, or totally or-
dered, respectively. Since we deploy the same encoding we
essentially get the same property, though the restriction to a
specific solution might lead to even more restrictive cases.
E.g., the restriction to the model required to obtain the plan
π to verify might turn a problem without any restriction even
into a totally ordered acyclic problem. We still can directly
conclude the following properties:

Corollary 1. If p is tail-recursive, p′ is tail-recursive. If p
is acyclic, p′ is acyclic. If p is totally ordered, p′ is totally
ordered.

We next describe the benchmark set and the systems in-
cluded in the evaluation. We discuss the results afterwards.

A Novel Benchmark Set for Plan Verification
We collected a new benchmark set that is based on the mod-
els from the 2020 IPC. These are 892 planning problems
from 24 domains in TO planning and 224 instances from 9
domains in PO planning. The solutions have been created
by 7 different planning systems for TO and by 4 systems
for PO; namely by the participants of the IPC as well as by
planners from the PANDA framework (Höller et al. 2021).
Since plans and domains stem from a recent competition, we
consider it an interesting benchmark set with respect to the
included plans and the difficulty of the instances.

To include instances of invalid solutions, we collected in-
valid plans from early (non-final) versions of the IPC partic-
ipants (before the debugging process). Naturally, these are
by far less than the valid ones. However, since these are
also examples from real systems, we deem them much more
interesting than artificially generated instances as e.g. used
by Behnke, Höller, and Biundo (2017). The number of in-
stances are given in the upper four rows of Table 1, column
“Inst.”. We come to the other rows in the next paragraphs.

147



Inst. Compilation Parsing SATProgression SAT

TO Valid 10961 10881 (99.27) 9757 (89.02) 9158 (83.55) not supported
Invalid 1406 1364 (97.01) 727 (51.71) 1301 (92.53) not supported

PO Valid 1211 1088 (89.84) 1198 (98.93) not supported not supported
Invalid 138 129 (93.48) 64 (46.38) not supported not supported

TO Valid 11304 9679 (85.62) 8986 (79.49) 7889 (69.79) 1036 (9.16)
No M.P. Invalid 1063 898 (84.48) 406 (38.19) 915 (86.08) 684 (64.35)

PO Valid 1243 1103 (88.74) 1212 (97.51) 973 (78.28) 897 (72.16)
No M.P. Invalid 106 98 (92.45) 57 (53.77) 106 (100.00) 103 (97.17)

Table 1: Coverage table. The first column gives the HTN sub-class (partially ordered or totally ordered), followed by the
verification setting (valid or invalid plans), followed by the results. Highest coverage per setting is given bold. The first four
rows give the results on the original data set. The evaluation of models without method preconditions are given thereafter.

The models from the 2020 IPC are modeled in the de-
scription language HDDL (Höller et al. 2020a). In HDDL,
models may include state-based preconditions for methods.
These are similar to preconditions of actions, but specify
when a method is applicable. The semantics of such precon-
ditions is a bit problematic (see Höller et al. (2020a) for a
discussion). In HDDL it is defined via a compilation: a new
action holding the precondition is inserted in the method and
placed before all other subtasks. In TO HTN planning, this
fully specifies the position where the precondition needs to
hold. However, consider the case of PO HTN planning: here,
the decomposed task might be partially ordered with respect
to other tasks and the subtasks might be interweaved. Thus
we cannot exactly determine the position the precondition
is checked/needs to hold. This definition was chosen for
HDDL due to practical reasons, since it is the most simple
way for the planning systems. However, this does not hold
for verification, as discussed in the next paragraph.

Since the new actions are not actually part of the solution,
planners will not return them. For verifiers, this means that
they need to check whether there exists a position where the
precondition holds (in a certain range of the plan). Two ver-
ifiers from related work do not support this, which makes a
comparison difficult. To include these systems in our eval-
uation, we created a second benchmark set by removing all
method preconditions1. This relaxes the constraints induced
by the preconditions. As a result, some instances that have
been “invalid” before are now “valid”, which shows that
these preconditions have to be checked in a real verification.

We ran the evaluation on both benchmark sets, including
only systems supporting method preconditions in the first
evaluation, and all systems in the second one. This results in
the last four lines in Tab. 1.

Evaluation

The experiments ran on Xeon Gold 6242 CPUs using one
core, a memory limit of 8 GB, and a time limit of 10 min-
utes1. Next we discuss the systems used in the evaluation,
before we come to the results.

1The source code of the translation and both benchmark sets are
available at panda.hierarchical-task.net

Systems
Compilation-based Verification We combined our com-
pilation with two planners from the PANDA frame-
work (Höller et al. 2021) to solve the resulting prob-
lems: the progression search with the Relaxed Composi-
tion (RC) heuristic (Höller et al. 2018, 2020c) and graph
search (Höller and Behnke 2021) and the SAT-based solvers
for TO (Behnke, Höller, and Biundo 2018; Behnke 2021)
and for PO (Behnke, Höller, and Biundo 2019) planning.

For our compilation, there are two ways to handle method
preconditions:
1. When performing the compilation on the lifted model,

method preconditions can simply be ignored during com-
pilation and written to the output problem. One just has
to ensure the planner used afterwards supports them.

2. When grounding first, the new actions introduced by the
grounder have to be ignored during compilation and writ-
ten (unchanged) to the output problem.

In both cases, the additional actions are integrated in
the plan when solving the compiled problem, enforcing the
method preconditions. An approach similar to (2) is not eas-
ily possible for the following systems from related work,
since the additional actions would then need to be contained
in the plan to be verified that is provided to these systems.

SAT-based Verification The first system from related
work we compare against is based on a compilation to
propositional logic (Behnke, Höller, and Biundo 2017). It
supports both TO and PO models. However, it does not sup-
port method preconditions.

Parsing-based Verification The second approach is based
on techniques from parsing. We included one version tai-
lored to TO planning (Barták et al. 2021), which shows bet-
ter results on these models but is not applicable to PO mod-
els, and a general one used on the PO models (Barták, Mail-
lard, and Cardoso 2018; Barták et al. 2020).

For the PO setting, the system does also not support a
verification of method preconditions as specified by HDDL.

Results
On the valid instances in the TO setting, our compilation
approach reaches a coverage of 99.27% with the progres-
sion search and 89.02% with the SAT-based PANDA, and

148



100

101

102

0% 25% 50% 75% 100%

Systems:
Comp. Pro Comp. SAT Parsing

Figure 1: Solved “valid” instances relative to runtime in sec-
onds (TO setting, with method preconditions).

100

101

102

0% 25% 50% 75% 100%

Systems:
Comp. Pro Comp. SAT Parsing

Figure 2: Solved “invalid” instances relative to runtime in sec-
onds (TO setting, with method preconditions).

97.01% and 51.71% for the invalid instances. The parsing-
based approach reaches 83.55% and 92.53%. For the PO set-
ting, the compilation solves 89.84% and 98.93% of the valid
instances (progression/SAT) and 93.48% and 46.38% of the
invalid instances. No other system supports (the IPC seman-
tic of) method preconditions.

The SAT-based planner is less successful in showing un-
solvability of a planning problem than the progression-based
system. This is because common benchmarks do not con-
tain unsolvable instances, so that it is not optimized towards
showing unsolvability. Currently, it can only show unsolv-
ability easily if the planning problem is acyclic. If it is cyclic,
it needs to exhaust a bound that is exponential in the number
of state features (Behnke, Höller, and Biundo 2018). Inter-
estingly, the progression-based system, which is not tailored
towards totally ordered problems has a higher coverage than
the parsing-based system, which is a specialized TO system.

On the data set without method preconditions (Tab. 1,
rows marked No M. P.). Relaxing these constraints makes
the resulting problems harder to solve. Coverage of the
progression-based system drops in all categories. The same
holds for the parsing-based verifier on the TO benchmarks.
Like before, the compilation with the SAT-based HTN plan-
ning system is worse in showing unsolvability. Interest-
ingly, when showing the unsolvability of a PO instance, the
parsing-based and SAT-based systems have a higher cover-
age than our compilations. It seems that the planning sys-
tems are not tailored towards showing unsolvability.

Fig. 1 and 2 show the accumulated coverage in % over
the runtime in seconds of the systems for the TO setting in-
cluding method preconditions. Fig. 1 includes data on valid
instances, Fig. 2 invalid instances. Be aware the log scale
on the time axis. In the “valid” setting, the compilation with
progression search solves its instances very fast. It reaches
the highest coverage, followed by the SAT-based planner,
which is slower than both the progression and the parsing-
based approach. While the parsing-based approach is faster
than the SAT-based planner, it has the lowest coverage. The
behavior in the “invalid” setting is similar regarding the
progression- and the parsing-based systems, but the SAT-
based planner has a much smaller coverage.

Discussion & Conclusion
In this paper we introduced a compilation from HTN plan
verification to HTN planning. Our second contribution is a
novel benchmark set based on the models of the 2020 IPC.

A compilation-based approach has the advantage that no
specialized verification systems are needed, and that perfor-
mance will improve automatically with further progress in
HTN planning (which, in turn, makes the problems harder
that need to be verified). Our system is currently the only
verifier supporting the entire feature set used in the IPC. The
empirical evaluation shows that our approach outperforms
the systems from related work.

A possible criticism of a compilation-based approach
might be that one has to rely on the correctness of the applied
planning system. The question is why we rely more on these
systems than on the system that generated the plan to be ver-
ified. Since HTN planners are complex systems, these might
also be incorrect (though this is also the case for specialized
verification systems, of course). However, the planning sys-
tems used in our evaluation return the decomposition steps
performed to find a plan. Therefore they provide a witness
for the validity of their result (at least for cases where they
find a solution) that can be checked with much simpler veri-
fication systems like the one used in the IPC.

In cases where verification fails, we simply return that
no solution (of the compiled problem) was found. To pro-
vide a meaningful explanation on why verification failed,
one could incorporate explanations for the unsolvability of
the generated planning problem. Providing certificates for
unsolvability of planning problems is an active field of re-
search, at least in classical planning (Eriksson, Röger, and
Helmert 2017; Eriksson and Helmert 2020). I.e., like for the
solvers, we benefit from established research directions in
planning and their future progress. Further, no verification
system from the literature can provide such explanations.

Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 232722074 –
SFB 1102 and Project-ID 452150823.

149



References
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2012.
HTN Problem Spaces: Structure, Algorithms, Termination.
In Proc. of the 5th Annual Symposium on Combinatorial
Search (SoCS), 2–9. AAAI Press.
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Vali-
dation of Hierarchical Plans via Parsing of Attribute Gram-
mars. In Proc. of the 28th Int. Conf. on Automated Planning
and Scheduling (ICAPS), 11–19. AAAI Press.
Barták, R.; Ondrcková, S.; Behnke, G.; and Bercher, P.
2021. On the Verification of Totally-Ordered HTN Plans.
In Proc. of the 3rd ICAPS Workshop on Hierarchical Plan-
ning (HPLAN), 44–48.
Barták, R.; Ondrcková, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A Novel Parsing-based Approach for Ver-
ification of Hierarchical Plans. In Proc. of the 32nd IEEE
Int. Conf. on Tools with Artificial Intelligence (ICTAI), 118–
125. IEEE Computer Society.
Behnke, G. 2021. Block Compression and Invariant Pruning
for SAT-based Totally-Ordered HTN Planning. In Proc. of
the 31st Int. Conf. on Automated Planning and Scheduling
(ICAPS), 25–35. AAAI Press.
Behnke, G.; Bercher, P.; Kraus, M.; Schiller, M.; Mickeleit,
K.; Häge, T.; Dorna, M.; Dambier, M.; Minker, W.; Glimm,
B.; and Biundo, S. 2020. New Developments for Robert
– Assisting Novice Users Even Better in DIY Projects. In
Proc. of the 30th Int. Conf. on Automated Planning and
Scheduling (ICAPS), 343–347. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the Com-
plexity of HTN Plan Verification and Its Implications for
Plan Recognition. In Proc. of the 25th Int. Conf. on Au-
tomated Planning and Scheduling (ICAPS), 25–33. AAAI
Press.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This is a so-
lution! (. . . but is it though?) – Verifying solutions of hierar-
chical planning problems. In Proc. of the 27th Int. Conf. on
Automated Planning and Scheduling (ICAPS), 20–28. AAAI
Press.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
Totally-Ordered Hierarchical Planning through SAT. In
Proc. of the 32nd AAAI Conf. on Artificial Intelligence
(AAAI), 6110–6118. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019. Bringing Order
to Chaos – A Compact Representation of Partial Order in
SAT-based HTN Planning. In Proc. of the 33rd AAAI Conf.
on Artificial Intelligence (AAAI), 7520–7529. AAAI Press.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In Proc. of the 28th Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI), 6267–6275. IJCAI organization.
Bercher, P.; Behnke, G.; Kraus, M.; Schiller, M.; Manstet-
ten, D.; Dambier, M.; Dorna, M.; Minker, W.; Glimm, B.;
and Biundo, S. 2021. Do It Yourself, but Not Alone:
Companion-Technology for Home Improvement – Bring-
ing a Planning-Based Interactive DIY Assistant to Life.
Künstliche Intelligenz, 35(3): 367–375.

de Silva, L.; Padgham, L.; and Sardina, S. 2019. HTN-Like
Solutions for Classical Planning Problems: An Application
to BDI Agent Systems. Theor. Comput. Sci., 763: 12–37.
Eriksson, S.; and Helmert, M. 2020. Certified Unsolvabil-
ity for SAT Planning with Property Directed Reachability.
In Proc. of the 30th Int. Conf. on Automated Planning and
Scheduling (ICAPS), 90–100. AAAI Press.
Eriksson, S.; Röger, G.; and Helmert, M. 2017. Unsolvabil-
ity Certificates for Classical Planning. In Proc. of the 27th
Int. Conf. on Automated Planning and Scheduling (ICAPS),
88–97. AAAI Press.
Geier, T.; and Bercher, P. 2011. On the Decidability of
HTN Planning with Task Insertion. In Proc. of the 22nd Int.
Joint Conf. on Artificial Intelligence (IJCAI), 1955–1961. IJ-
CAI/AAAI.
Höller, D. 2021. Translating Totally Ordered HTN Planning
Problems to Classical Planning Problems Using Regular Ap-
proximation of Context-Free Languages. In Proc. of the 31st
Int. Conf. on Automated Planning and Scheduling (ICAPS),
159–167. AAAI Press.
Höller, D.; and Behnke, G. 2021. Loop Detection in the
PANDA Planning System. In Proc. of the 31st Int. Conf.
on Automated Planning and Scheduling (ICAPS), 168–173.
AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the Expressivity of Planning Formalisms through
the Comparison to Formal Languages. In Proc. of the 26th
Int. Conf. on Automated Planning and Scheduling (ICAPS),
158–165. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and Goal Recognition as HTN Planning. In Proc. of
the 30th IEEE Int. Conf. on Tools with Artificial Intelligence
(ICTAI), 466–473. IEEE Computer Society.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S.
2021. The PANDA Framework for Hierarchical Planning.
Künstliche Intelligenz, 35(3): 391–396.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020a. HDDL: An Extension
to PDDL for Expressing Hierarchical Planning Problems.
In Proc. of the 34th AAAI Conf. on Artificial Intelligence
(AAAI), 9883–9891. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proc. of the 28th Int. Conf. on Auto-
mated Planning and Scheduling (ICAPS), 114–122. AAAI
Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020b.
HTN Plan Repair via Model Transformation. In Proc. of the
43rd German Conference on AI (KI), 88–101. Springer.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020c.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research, 67: 835–880.
Köhn, A.; Wichlacz, J.; Torralba, Á.; Höller, D.; Hoffmann,
J.; and Koller, A. 2020. Generating Instructions at Differ-
ent Levels of Abstraction. In Proc. of the 28th Int. Conf. on
Computational Linguistics (COLING), 2802–2813. Interna-
tional Committee on Computational Linguistics.

150


