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Abstract

Recently, sketches have been introduced as a general lan-
guage for representing the subgoal structure of instances
drawn from the same domain. Sketches are collections of
rules of the form C' — E over a given set of features where
C expresses Boolean conditions and E expresses qualitative
changes. Each sketch rule defines a subproblem: going from
a state that satisfies C' to a state that achieves the change ex-
pressed by E or a goal state. Sketches can encode simple goal
serializations, general policies, or decompositions of bounded
width that can be solved greedily, in polynomial time, by the
SIWR variant of the SIW algorithm. Previous work has shown
the computational value of sketches over benchmark domains
that, while tractable, are challenging for domain-independent
planners. In this work, we address the problem of learning
sketches automatically given a planning domain, some in-
stances of the target class of problems, and the desired bound
on the sketch width. We present a logical formulation of the
problem, an implementation using the ASP solver Clingo,
and experimental results. The sketch learner and the SIWg
planner yield a domain-independent planner that learns and
exploits domain structure in a crisp and explicit form.

Introduction

Classical planners manage to solve problems that span ex-
ponentially large state spaces by exploiting problem struc-
ture. Domain-independent methods make implicit assump-
tions about structure, such as subgoals being indepen-
dent (delete-relaxation) or having low width (width-based
search). Domain-dependent methods, on the other hand,
usually make problem structure explicit in the form of hi-
erarchies that express how tasks decompose into subtasks
(Erol, Hendler, and Nau 1994; Georgievski and Aiello 2015;
Bercher, Alford, and Holler 2019).

An alternative, simpler language for representing problem
structure explicitly has been introduced recently in the form
of sketches (Bonet and Geffner 2021). Sketches are collec-
tions of rules of the form C' +— FE defined over a given
set of Boolean and numerical domain features ® where C
expresses Boolean conditions on the features, and E ex-
presses qualitative changes in their values. Each sketch rule
expresses a subproblem: the problem of going from a state
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s whose feature values satisfy the condition C, to a state s’
where the feature values change in agreement with E.

The language of sketches is powerful, as sketches can
encode everything from simple goal serializations to full
general policies. Indeed, the language of general policies
is the language of sketches but with a slightly different se-
mantics where the subgoal states s’ to be reached from a
state s are restricted to be one step away from s (Bonet
and Geffner 2018; Frances, Bonet, and Geffner 2021). More
interestingly, sketches can split problems into subproblems
of bounded width (Lipovetzky and Geffner 2012; Lipovet-
zky 2021) which can then be solved greedily, in polynomial
time, by a variant of the SIW algorithm, called SIWR (Bonet
and Geffner 2021). The computational value of sketches
crafted by hand has been shown over several planning do-
mains which, while tractable, are challenging for domain-
independent planners (Drexler, Seipp, and Geffner 2021).

In this work, we build on these threads (general poli-
cies, sketches, and width) to address the problem of learning
sketches automatically. For this, the inputs are the planning
domain, some instances, and the desired bound k& on width,
usually £ = 0,1, 2. The width k of the sketch relative to a
class of problems bounds the width of the resulting subprob-
lems that can be solved greedily in time and space that are
exponential in k. In order to address the problem of learning
sketches, we present a logical formulation, an implementa-
tion of the learner on top of the ASP solver Clingo (Gebser
et al. 2019), and experimental results. We start with an ex-
ample and a review of planning, width, and sketches.

Example

For an illustration of the concepts and results, before pre-
senting the formal definitions, let us recall a simple domain
called Delivery (Bonet and Geffner 2021), where an agent
moves in a grid to pick up packages and deliver them to
a target cell, one by one. A general policy 7 for this class
of instances can be expressed in terms of the set of fea-
tures & = {H,p,t,n} that express “holding a package”,
“distance to the nearest package”, “distance to the target
cell”, and “number of undelivered packages”, respectively.
A domain-independent method for generating a large pool
of features from the domain predicates that include these
four is given by Bonet, Frances, and Geftner (2019). Pro-
vided with the features in ®, a general policy for the whole



class Qp of Delivery problems (any grid size, any number
of packages in any location, and any location of the agent or
the target) is given by the rules:

{-H,p>0} — {pl,t?} ; 20 to nearest pkg

{-H,p=0} — {H} ; pick it up
{H,t>0} — {t} ; g to target
{H,n>0,t=0} — {H?,nl,p?} ;deliver pkg

The rules say to perform any action that decreases the dis-
tance to the nearest package (pl), no matter the effect on the
distance to target (¢7), when not holding a package (—H); to
pick a package when possible, making H true; to go to the
target cell when holding a package, decrementing ¢; and to
drop the package at the target, decrementing n, making H
false, and affecting p. Expressions p? and m? mean that p
and m can change in any way, while no mention of a feature
in the effect of a rule means that the value of the feature must
not change.

One can show that the general policy above solves any
instance of Delivery, or alternatively, that it represents a
width-zero sketch, where the subproblem of going from
a non-goal state s to a state s’ satisfying a rule C — F
can always be done in one step, leading greedily to the goal
(n = 0). A pair of states (s, s’) satisfies a rule C' — E when
the feature values in s satisfy the conditions in C, and the
change in feature values from s to s’ is compatible with the
changes and no-changes expressed in E. A width-2 sketch
can be defined instead by means of a single rule and a single
feature ® = {n}:

{n>0}— {nl} ; deliver pkg

The subproblem of going from a state s where n(s) > 0
holds, to a state s’ for which n(s’) < n(s) holds, has width
bounded by 2, as these subproblems, in the worst case, in-
volve moving to the location of a package, picking it up,
moving to the target, and dropping it. Halfway between
the width-0 sketch represented by general policies, and the
width-2 sketch above, is the width-1 sketch defined with
two rules and two features, ® = {H, n} as:

{-H} — {H}
{H,n>0} — {H?,nl}

; pick pkg
; deliver pkg

The first rule captures the subproblem of getting hold of
a package, which may involve moving to the package and
picking it up, with width 1; the second rule captures the sub-
problem of delivering the package being held, which may
involve moving to the target and dropping it there, also with
width 1. Since every non-goal state is covered by one rule
or the other, the width of the sketch is 1, which means that
any instance of Delivery can be solved greedily by solving
subproblems of width no greater than 1 in linear time.

These are all handcrafted sketches. The methods to be for-
mulated below will learn similar sketches when given the
planning domain, a few instances, and the desired bound on
sketch width.
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Background

We review classical planning, width, and sketches drawing
from Lipovetzky and Geffner (2012), Bonet and Geffner
(2021), and Drexler, Seipp, and Geffner (2021).

Classical Planning

A planning problem or instance is a pair P = (D, I') where
D is a first-order domain with action schemas defined over
predicates, and I contains the objects in the instance and two
sets of ground literals, the initial and goal situations Init and
Goal. The initial situation is consistent and complete, mean-
ing either a ground literal or its complement is in Init. An in-
stance P defines a state model S(P) = (S, so, G, Act, A, )
where the states in S are the truth valuations over the ground
atoms represented by the set of literals that they make true,
the initial state sq is Init, the set of goal states GG are those
that make the goal literals in Goal true, and the actions Act
are the ground actions obtained from the schemas and ob-
jects. The ground actions in A(s) are the ones that are ap-
plicable in a state s; namely, those whose preconditions are
true in s, and the state transition function f maps a state s
and an action a € A(s) into the successor state s’ = f(a, ).
A plan 7 for P is a sequence of actions ay, . . ., a,, that is ex-
ecutable in sg and maps the initial state sg into a goal state;
ie., a; € A(Si), Siv1 = f(ai,si), and Sp+1 € G. A state
s is solvable if there exists a plan starting at s, otherwise it
is unsolvable (also called dead-end). Furthermore, a state s
is alive if it is solvable and it is not a goal state. The length
of a plan is the number of its actions, and a plan is optimal
if there is no shorter plan. Our objective is to find subopti-
mal plans for collections of instances P = (D, I') over fixed
domains D denoted as Qp or simply as O.

Width

The simplest width-based search method for solving a plan-
ning problem P is IW(1). It is a standard breadth-first search
in the rooted directed graph associated with the state model
S(P) with one modification: IW(1) prunes a newly gener-
ated state if it does not make an atom true for the first time
in the search. The procedure IW(k) for & > 1 is like IW(1)
but prunes a state if a newly generated state does not make a
collection of up to k atoms true for the first time. Underlying
the IW algorithms is the notion of problem width (Lipovet-
zky and Geffner 2012):

Definition 1 (Width) The width w(P) of a classical plan-
ning problem P is the minimum k for which there exists a
sequence ty,t1, ..., t,, of atom tuples t; from P, each con-
sisting of at most k atoms, such that:

1. tq is true in the initial state sg of P,

2. any optimal plan for t; can be extended into an optimal
plan for t; 1 by adding a single action, v =1,... , n—1,

3. if wis an optimal plan for t,,, 7w is an optimal plan for P.

If a problem P is unsolvable, w(P) is set to the number of
variables in P, and if P is solvable in at most one step, w(P)
is set to 0 (Bonet and Geffner 2021). Chains of tuples § =
(to,t1,-..,tm) that comply with conditions 1-2 are called
admissible, and the size of § is the size |¢;| of the largest



tuple in the chain. The width w(P) is thus the minimum size
of an admissible chain for P that is also optimal (condition
3). Furthermore, the width of a conjunction of atoms 7" (or
arbitrary set of states S’ in P) is the width of a problem P’
that is like P but with the goal T (resp. S”).!

The IW (k) algorithm expands up to N* nodes, generates
up to bN* nodes, and runs in time and space O(bN2F~1)
and O(bN k), respectively, where IV is the number of atoms
and b is a bound on the branching factor of the problem P.
IW(k) is guaranteed to solve P optimally if w(P) < k. If
the width of P is not known, the IW algorithm can be run
instead which calls IW(k) iteratively for k = 0,1,..., N
until the problem is solved, or found to be unsolvable.

For problems with conjunctive goals, the SIW algorithm
(Lipovetzky and Geffner 2012) starts at the initial state s =
sg of P, and performs an IW search from s to find a shortest
path to a state s’ such that #g(s') < #g(s) where #g(s)
counts the number of unsatisfied top-level goals of P in state
s. If s’ is not a goal state, s is set to s’ and the loop repeats.

Sketches

A feature is a function of the state over a class of problems
Q. The features considered in the language of sketches are
Boolean, taking values in the Boolean domain, or numeri-
cal, taking values in the non-negative integers. For a set of
features ® = {f1,..., fn} and a state s of some instance
P in Q, we denote the feature valuation determined by a
state s as f(s) = (f1(s),..., fn(s)), and arbitrary feature
valuations as f and f.

A sketch rule over features ¢ has the form C' — E where
C consists of Boolean feature conditions, and E consists of
feature effects. A Boolean (feature) condition is of the form
p or —p for a Boolean feature p in ®, orn = 0 or n > 0 for
a numerical feature n in ®. A feature effect is an expression
of the form p, —p, or p? for a Boolean feature p in ®, and nl,
nt, or n? for a numerical feature n in ®. The syntax of sketch
rules is the syntax of the policy rules used to define general-
ized policies (Bonet and Geffner 2018), but their semantics
is different. In policy rules, the effects have to be delivered
in one step by state transitions, while in sketch rules, they
can be delivered by longer state sequences.

A pair of feature valuations of two states (f(s), f(s)),
referred to as (f, f'), satisfies a sketch rule C — E iff 1) C
is true in f, 2) the Boolean effects p (—p) in F are true in f”,
3) the numerical effects are satisfied by the pair (f, f'); i.e.,
if nl in E (resp. nt), then the value of n in f’ is smaller
(resp. larger) than in f, and 4) features that do not occur in
E have the same value in f and f’. Adding the effects p?
and n? allows the values of features p and n to change in
any way. In contrast, the value of features that do not occur
in E must be the same in s and s’.

A sketch is a collection of sketch rules that establishes
a “preference ordering” ‘<’ over feature valuations where
f" =< f if the pair of feature valuations (f, ') satisfies a
rule. If the sketch is terminating, then this preference order

'In the literature, a chain is admissible when it complies with
conditions 1-3. The reason for dropping condition 3 will become
clear when we introduce the notion of “satisficing width”.
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is a strict partial order: irreflexive and transitive. Checking
termination requires time that is exponential in the number
of features (Bonet and Geffner 2021).

Following Bonet and Geftner, we do not use these order-
ings explicitly but the associated problem decompositions.
The set of subgoal states Gr(s) associated with a sketch
R in a state s of a problem P € @, is the set of states s
that comprise the goal states of P along with those with fea-
ture valuation f(s’) such that the pair (f(s), f(s’)) satisfies
arule in R. The set of states s’ in Gg(s) that are closest to
s is denoted as G (s).

Sketch Width

The SIWyg algorithm is a variant of SIW that uses a given
sketch R for solving problems P in Q. SIWy starts at the
initial state s = sg of P and then runs an IW search to
find a state s’ in Gr(s). If s’ is not a goal state, then s is
set to ', and the loop repeats until a goal state is reached.
The SIWg(k) algorithm is like SIWy but calls the procedure
IW(k) internally, not TW.

For bounding the complexity of these algorithms, let us
assume without loss of generality that the class of problems
Q is closed in the sense that if P belongs to Q so do the
problems P’ that are like P but with initial states that are
reachable in P and which are not dead-ends. Then the width
of the sketch R over Q can be defined as follows (Bonet and
Geffner 2021):2

Definition 2 (Sketch width) The width of sketch R over a
closed class of problems Q is wr(Q) = maxpeg w(P’)
where P’ is P but with goal states G, (s) and s is the initial
state of both, provided that G7,(s) does not contain dead-
end states.

If the sketch width is bounded, SIWgR(k) solves the in-
stances in Q in polynomial time:?

Theorem 3 If wr(Q) < k and the sketch R is terminating,
then SIWg (k) solves the instances in Q in O(bNI®I+2k=1)
time and O(bN* + NI®I4¥) space, where |®| is the number
of features, N is the number of ground atoms, and b is the
branching factor.

For these bounds, the features are assumed to be linear in
N; namely, they must have at most a linear number of values
in each instance, all computable in linear time.

Extensions

We finish this review with a slight generalization of Theo-
rem 3 that is worth making explicit. For this, let us intro-
duce a variant of the notion of width, called satisficing width

2Our definition is simpler than those used by Bonet and Geffner
(2021), and Drexler, Seipp, and Geffner (2021), as it avoids a re-
cursive condition of the set of subproblems P’. However, it adds
an extra condition that involves the dead-end states, the states from
which the goal cannot be reached.

3Algorithm SIWR(K) is needed here instead of SIWR because
the latter does not ensure that the subproblems P’ are solved op-
timally. This is because IW(k") may solve problems of width k
non-optimally if k' < k.



or s-width. A problem P has satisficing width < k if there
is an admissible chain of tuples 7 : #g,...,¢,, of size no
greater than k such that the optimal plans for tuple ¢, are
plans for P. In such a case, we say that 7 is an admissible k-
chain for P. The difference to the (standard) notion of width
is that optimal plans for ¢,, are required to be plans for P
but not optimal. The result is that IW(k) will solve prob-
lems of s-width bounded by k, written ws(P) < k, but not
optimally. A convenient property is that a problem P with
s-width bounded by k has the same bound when the set of
goal states of P is extended with more states. The length of
the plans computed by IW(k) when k bounds the s-width of
P is bounded in turn by the length m of the shortest admissi-
ble k-chain ¢, ..., t,, for P. If the subproblem of reaching
a state s’ in Gg(s) has s-width k, and G%,(s) stands for the
states s’ in G (s) that are no more than m steps away from
s, the satisficing width of the a sketch R can be defined as:

Definition 4 (Sketch s-width) The s-width of sketch R
over a closed class of solvable problems Q is bounded by
k, wsr(Q) < k, if maxpeg ws(P') < k where P’ is P
but with goal states G’fz(s), and s is the initial state of P,
provided that G%(s) does not contain dead-end states.

This definition just replaces the width of subproblems by
the weaker s-width, and the subgoal states G (s) by G%(s).

Let us finally say that a sketch R is state (resp. feature)
acyclic in Q when there is no sequence of states s1, ..., Sy
over a problem in Q (resp. feature valuations f(sg), ...,
f(sn)), sit1 € Gr(s;), such that s,, = s, j < n (resp.
f(sn) = f(s;), 7 < n). Bonet and Geffner (2021) showed
that termination implies feature acyclicity, and it is direct to
show that feature acyclicity implies state acyclicity. Theo-
rem 3 can then be rephrased as:

Theorem 5 If wsr(Q) < k and the sketch R is (state)
acyclic in Q, then SIWg(k) solves the instances in Q in
O(bN!®1+2k=1) time and O(bN* + NI®ITF) space, where
|®| is the number of features, N is the number of ground
atoms, and b is the branching factor.

Learning Sketches: Formulation

We turn to the problem of learning sketches given a set of
instances P of the target class of problems Q and the desired
bound k on sketch width. We roughly follow the approach
for learning general policies (Bonet, Frances, and Geffner
2019; Frances, Bonet, and Geffner 2021) by constructing a
theory T} ., (P, F) from P, k, a bound m on the number of
sketch rules, and a finite pool of features F obtained from
the domain predicates and a fixed grammar.

Theory

Symbols s, s, s”, f, v, t, and i refer to reachable states, fea-
tures, Boolean values, tuples of at most £ atoms, and sketch
rules C; — E;, respectively. States and tuples are unique to
each training instance P; in P and thus are not tagged with
their instance. The variables (atoms) in T}, ,,, (P, F) are

* select(f) for features f in pool F,
e cond(i, f,v): for f,rulei =1,...,m, v Bool or’?,
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* eff (i, f,v): for f,rulei =1,...,m, v Boolor’?’,

* subgoal(s, t): for ¢t of width < k from s,

* subgoals(s, t, s’): if optimal plan from s to ¢ ends in s/,
* sat_rule(s,s’,1): for s’ reachable from 5,7 =1,...m.

When true, these atoms represent that f is a feature used in
the sketch, that the i-th rule C; — FE; has f as a condition
with value v, or no condition if v =7, respectively an effect
on f with value v, possibly ‘?’,* that ¢ is a subgoal selected
from s, possibly leading to state s’, and that the transition
from s to s’ (not necessarily a 1-step transition) satisfies rule
1. Constraints C1-C8 capture these meanings:

C1 cond(i, f,v), eff (i, f,v) use unique v, imply select(f)

C2 V,subgoal(s,t), each alive s has some subgoal ¢

C3 subgoal(s, t) iff Ay subgoals(s, t, s")

C4 subgoals(s,t,s’) implies V=1, sat_rule(s, s, )

C5 sat_rule(s,s”,4) implies Vy.q(s,1)<d(s,s) Subgoal (s, t)
C6 sat_rule(s,s’,i) implies Vy.q(s 1) <d(s,s') subgoal(s, t)

C7
C8

In the constraints above, s is always an alive state, ¢ is
a tuple in the tuple graph rooted at s, s’ is a state that re-
sults from an optimal plan for ¢ from s, and s” is a dead-end
state. Checking the constraints involves constructing a tu-
ple graph (Lipovetzky and Geffner 2012) and labeling dead-
ends in the training instances in a preprocessing phase that
is exponential in k. The interpretation of the constraints is
direct. The first constraint says that a feature is selected if
it is used in some rule. Constraints 2—4 say that every (non-
goal) solvable state s “looks” at some subgoal ¢ of width no
greater than k from s, and that if s’ may result from an opti-
mal plan from s to ¢, then the transition (s, s") must satisfy
one of the m rules. Constraint 5 says that if a transition from
s to a dead-end state s satisfies a rule, then there must be a
selected subgoal ¢ of s that is closer from s than s (d(s,t)
and d(s, s”) encode these distances, known after preprocess-
ing). Constraint 6 says that if a pair of states (s, s’) satisfies a
rule, then s’ is a state that results from an optimal plan from
s to a subgoal ¢ of s, or it is further from s than any such
state. Constraint 7, not fully spelled out, captures the condi-
tions under which a pair of states (s, s’) satisfies sketch rule ¢
given by the atoms cond (i, f,v) and eff (i, f,v). Last, Con-
straint 8, not fully spelled out either, demands that the sketch
defined by these atoms is structurally terminating (Bonet
and Geffner 2021). Encoding structural termination requires
checking acyclicity in the policy graph that has size expo-
nential in | F|. The resulting theory is sound and complete in
the following sense:

sat_rule(s, s',1) iff (s, s’) compatible with rule
collection of rules ¢ = 1, ..., m is terminating

Theorem 6 (Soundness and Completeness) A terminat-
ing sketch R with rules C; — E;, i = 1,...,m, over
features F' € F, has sketch width wr(P*) < k over the
closed class of problems P* iff the theory Ty .,(P,F) is
satisfiable and has a model where the rules that are true are
exactly those in R.

*For a numerical feature f, a condition with value v = 0 stands
for f = 0 while an effect with the same value stands for fl. Simi-
larly forv = 1.



We provide a proof for Theorem 6 in an extended version
of the paper (Drexler, Seipp, and Geffner 2022). The nota-
tion P* is used to denote the closure of the problems in P;
i.e. for any problem P in P, P* also includes the problems
P’ that are like P but with initial state s being a solvable
state reachable from the initial state of P.

Learning Sketches: ASP Implementation

We implemented the theory T}, ,, (P, F) expressed by con-
straints C1-C8 for learning sketches as an answer set pro-
gram (Brewka, Eiter, and Truszczyniski 2011; Lifschitz
2019) in Clingo (Gebser et al. 2012). Listing 1 shows the
code. We include two approximations for scalability. First,
we replace constraint C8 about termination by a suitable
acyclicity condition (Gebser, Janhunen, and Rintanen 2014),
that prevents a sequence of states 5,1 € G%(sl) from form-
ing a cycle, where R is the learned sketch. Second, we omit
constraint C6 that ensures that the width is bounded by k.
The choice of the subgoals ¢ still ensures that such subprob-
lems will have an s-width bounded by k. The two approxi-
mations are not critical as even the exact theory T}, ,,, (P, F)
does not guarantee acyclicity and sketch width bounded by
k on the test problems. However, we will show in our exper-
iments that the learned sketches are acyclic and have width
bounded by k over all instances. The optimization criterion
minimizes the sum of the number of sketch rules plus the
sum of complexities of the selected features.

Experiments

We use the ASP implementation above to learn sketches for
several tractable classical planning domains from the Inter-
national Planning Competition (IPC). To learn a sketch, we
use two Intel Xeon Gold 6130 CPUs, holding a total of 32
cores and 384 GiB of memory and set a time limit of seven
days (wall-clock time). For evaluating the learned sketches,
we limit time and memory by 30 minutes and 8 GiB. Our
source code, benchmarks, and experimental data are avail-
able online (Drexler, Seipp, and Geffner 2022).

Data and Feature Generation. For each domain, we use
a PDDL generator (Seipp, Torralba, and Hoffmann 2022) to
generate a set of training instances small enough to be fully
explored using breadth-first search. For domains with a ran-
domized instance generator, we generate up to 200 instances
for the same parameter configuration to capture sufficient
variation. Afterwards, we remove unsolvable instances or
instances with more than 10000 states. We construct the
feature pool F by automatically composing description log-
ics constructors up to a feature complexity of 8, using the
DLplan library (Drexler, Frances, and Seipp 2022) and the
same bound as the one used by Frances, Bonet, and Geffner
(2021). Compared to theirs, our grammar is slightly richer.
However, since the “distance” features (Bonet, Frances, and
Geffner 2019) significantly increase the size of the feature
pool, we only include them for the domains where the ASP
is unsolvable without them (indicated by an asterisk in the
| 7| column in Table 1). We provide details about the fea-
ture grammar in an extended version of the paper (Drexler,
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Seipp, and Geffner 2022). We set the maximum number of
sketch rules m to 6.

Incremental Learning. Instead of feeding all instances to
the ASP at the same time, we incrementally add only the
smallest instance that the last learned sketch fails to solve.
In detail, we order the training instances by the number of
states in increasing order, breaking ties arbitrarily. The first
sketch is the empty sketch R® = (). Then, in each iteration
i = 1,2,..., we find the smallest instance [ in the order-
ing which the sketch R?~! obtained in the previous iteration
results in a subproblem of width not bounded by % or in a
cycle s1,...,S, = s1 of subgoal states s;11 € Gg(s;) with
1 =1,...,n — 1. These tests can be performed because the
training instances are small. If such an [ exists, we use it as
the only training instance if it is the largest among all previ-
ous training instances, otherwise we add it and proceed with
the next iteration. If no such I exists, the sketch solves all
training instances, and we return the sketch.

Learning Results. Table 1 shows results for the learning
process. We learn sketches of width 0 in 6 out of the 9 do-
mains, of width 1 in all 9 domains, and of width 2 in 8 out
of 9 domains. In all cases, very few and very small train-
ing instances are sufficient for learning the sketches as indi-
cated by the number of instances and the number of states
that are actually used (columns |P;| and |.S| in Table 1). The
choice of bound £ has a strong influence because both the
solution space and the number of subgoals (tuples) grows
with k. Also, the number of rules decreases as the bound k&
increases. The most complex features overall have a com-
plexity 7 (requiring the application of 7 grammar rules), the
highest number of features in a sketch is 4, and the high-
est number of sketch rules is 5, showing that the learned
sketches are very compact. We describe and analyze some
of the learned sketches in the next section.

Search Results. Table 2 shows the results of SIWg
searches (Drexler, Seipp, and Geffner 2021) on large, unseen
test instances using the learned sketches.’ As a reference
point, we include the results for the domain-independent
planners LAMA (Richter and Westphal 2010) and Dual-
BFWS (Lipovetzky and Geffner 2017). For Childsnack,
Gripper, Miconic and Visitall, we use the Autoscale 21.11
instances for testing (Torralba, Seipp, and Sievers 2021). For
the other domains, where no Autoscale instances are avail-
able, we generate 30 instances ourselves, with the number
of objects varying between 10 and 100. Table 2 shows that
the learned sketches of width £ = 1 yield solutions to the 30
instances of each of the domains. Some of these domains,
such as Childsnack, Spanner and Visitall, are not trivial for
LAMA and Dual-BFWS, which only manage to solve 9, 0,
and 29 instances, and 5, 0, and 25 instances, respectively. In
all cases, the maximum effective width of the SIWR search
is bounded by the width parameter k, showing that the prop-
erties of the learned sketches generalize beyond the training
set.

STheorem 3 requires a SIWr(k) search rather than a SIWg
search but this a minor difference for theoretical reasons.



Listing 1: Full ASP code for learning sketches: constraints C1-C8 satisfied. Optimization in lines 24-25 for finding a simplest
solutions measured by number of sketch rules plus sum of feature complexities.

1 ¢ Cl: construct rules and select features.

2 { select(F) } :—- feature(F). { rule(l..max_sketch_rules) }.

3 { c_eq(R, F); c_gt(R, F); c_unk(R, F) } =1 :- rule(R), numerical (F).

4 { c_pos(R, F); c_neg(R, F); c_unk(R, F) } =1 :- rule(R), boolean (F).

5 { e_dec(R, F); e_inc(R, F); e_unk(R, F); e_bot(R, F) } =1 :- rule(R), numerical (F).

6 { e_pos(R, F); e_neg(R, F); e_unk(R, F); e_bot(R, F) } =1 :- rule(R), boolean(F).

7 % C4 and C7: good and bad state pairs must comply with rules and selected features.

8 { good(R, I, S, S’) } :- rule(R), s_distance(I, S, S’, _).

9 c_satisfied(R, F, I, S) :— { c_eq(R, F) V =0; c_gt(R, F) : V> 0; c_pos(R, F) vV = 1;
c_neg(R, F) : V= 0; c_unk(R, F) } =1, rule(R), feature_valuation(F, I, S, V),
s_distance (I, S, S', _).

10 e_satisfied(R, F, I, S, S’) :— { e_dec(R, F) V > V’; e_inc(R, F) : V < V’;
e_pos(R, F) : V! = 1; e_neg(R, F) : V! = 0; e_bot(R, F) : V=V"; e_unk(R, F) } =1,
rule(R), feature_valuation(F, I, S, V), feature_valuation(F, I, S’, V'),
s_distance (I, S, S', _).

11 :- { not c_satisfied(R, F, I, S); not e_satisfied(R, F, I, S, S’) } != 0, select(F), good(
R, I, S, S’).

12 :- { not c_satisfied(R, F, I, 9S) select (F); not e_satisfied(R, F, I, S, S’) select (F)
} = 0, rule(R), s_distance(I, S, S’, _), not good(R, I, S, S’).

13 & C2: there must be one subgoal tuple for each state with unbounded width.

14 { subgoal (I, S, T) tuple(I, S, T) } =1 :- solvable(I, S), exceed(I, S).

15 & C3: states underlying subgoal tuples must be good.

16 :- { good(R, I, S, S') rule(R) } = 0, subgoal(I, S, T), contain(I, S, T, S’).

17 % C5: good pairs to dead-end states must be at larger distance than subgoal tuple.

18 :- D <= D’, s_distance(I, S, S’, D), t_distance(I, S, T, D’), subgoal(I, S, T),
good(_, I, S, S’), solvable(I, S), unsolvable(I, S’).

19 % C8: ensure acyclicity.

20 order(I, S, S’) :—- solvable(I, S), solvable(I, S’), good(_, I, S, S’), order(I, S’).
21 order (I, S) :- solvable(I, S), order(I, S, S’) good(_, I, S, S’), solvable(I, S),

solvable (I, S’).
22 :- solvable(I, S), not order (I, S).
23 % Optimization objective:
24  4$minimize { C,complexity(F, C)
25 4#minimize { 1,rule(R) rule(R) }.

smallest number of rules plus the sum of feature complexities.
complexity (F,

C), select(F) 1}.

Plans. Comparing the plans found by SIWy to the ones
obtained with LAMA and Dual-BFWS, we see that the
SIWR plans have 1) half the length for Childsnack, Span-
ner, and Visitall, 2) roughly the same length for Delivery,
Blocks-on, Miconic, and Reward, and 3) about three times
the length for Blocks-clear and Gripper. In Blocks-clear, the
width-0 sketch defines that unstacking from any tower (not
just the one with the target block) is good until the target
block is clear. In Gripper, transporting a single ball instead
of two balls at a time adds two extra move actions per ball.

Sketch Analysis

In this section, we describe and analyze some of the learned
sketches and prove that they all have width bounded by k and
are acyclic. We provide proofs of these claims in an extended
version of the paper (Drexler, Seipp, and Geffner 2022).

Gripper

In Gripper there are two rooms a and b. A robot can move
between a and b, and pick up and drop balls. The goal is to
move all balls from room a to b. We analyze the three learned
sketches for the bounds & = 0, 1, 2. The learned sketch R<21>
for k = 2 has features & = {g}, where g is the number of
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well-placed balls, and a single rule 71 = {} — {g7} say-
ing that increasing the number of well-placed balls is good.
These subproblems have indeed width bounded by 2. The
learned sketch R} for k = 1 has features ® = {g,,g}.
where g, is the number of balls in room a and g is the num-
ber of balls that are either in room a or b. The rules are

re={} = {97, gat}

ra = {} = {41}
where 7; says that picking up a ball in room « is good, and
ro says that dropping a ball in room b is good. The learned
sketch R for k = 0 has features ® = {B, c}, where B is
true iff the robot is in room b and c is the number of carried
balls, and rules

r1 = {c=0} — {c?,-B}

ro = {B} — {B7,cl}

rg ={-B,c>0} — {B?}
where r; says that moving to room a or picking up a ball
in room a is good when not carrying a ball, r, says that

dropping a ball in room b is good, and r3 says that moving
to room b while carrying a ball is good.

Theorem 7 The sketches R’}) for Gripper are acyclic and
have width k for k = 0,1, 2.



w=0 w=1 w =2
Domain M T (R |S| |FIC e [R M TR |5 [Fl C e |k M T |B| [S| |F] C |® [R|
Blocks-clear 1 3 1 22 233 2 2 2 1 4 1 22 233 4 1 1 1 3 1 22 233 4 1 1
Blocks-on 26 14k 1 22 1011 7 3 3 9 105 1 22 1011 4 2 2 13 146 1 22 1011 4 1 1
Childsnack - - - - - - - = 122 228k 3792 629 6 4 5 - - = = - - - -
Delivery - - - - - - - - 17 521 1 9% 474 4 2 2 3 18 1 20 287 4 1 1
Gripper 2 19 1 28 301 4 2 3 3 60 1 28 301 4 2 2 7 48 1 28 301 4 1 1
Miconic - - - - - - - - 1 5 1 32 119 2 2 2 2 6 1 32 119 2 1 1
Reward 3 46 2 26 916 6 2 2 1 4 1 12 210 2 1 1 10 95 1 48 427 2 1 1
Spanner 12 2k 3227 658 7 2 2 3 22 1 74 424 5 1 1 6 38 1 74 424 5 1 1
Visitall 3 54 2 36 722% 5 2 2 1 1 1 3 10 2 1 1 1 1 1 3 10 2 1 1

Table 1: Learning step. We show the peak memory in GiB after learning (M), the time in seconds for solving the ASP in parallel
on 32 CPU cores (T), the number of training instances used in the encoding (| P;|), the total number of states considered in the
encoding (|S]), the number of Boolean and numerical features (|.F|) where * denotes that the distance feature was included, the
largest complexity of a feature f € ® (C), the number of features (|®|), and the number of sketch rules (| R|). We use “~” to
indicate that the learning procedure failed because of insufficient resources.

w=0 w=1 w=2 LAMA BFWS
Domain S T AW MW S T AW MW S T AW MW S T S T
Blocks-clear (30) 30 3 0.00 0 30 5 0.80 1 30 4 080 1 30 4 30 6
Blocks-on (30) 30 3 0.00 0 30 6 1.00 1 30 3 098 1 30 4 30 25
Childsnack (30) - - - - 30 1 0.10 1 - - - - 9 2 5 658
Delivery (30) - - - - 30 1 1.00 1 30 4 1.66 2 30 1 30 1
Gripper (30) 30 4 0.00 0 30 3 050 1 30 656 2.00 2 30 1 30 6
Miconic (30) - - - - 30 5 053 1 30 132 2.00 2 30 7 30 25
Reward (30) 30 4 0.00 0 30 2 1.00 1 30 1 1.00 1 30 2 30 1
Spanner (30) 30 3 0.00 0 30 4 024 1 30 3 024 1 0 - 0 -
Visitall (30) 26 1360 0.00 0 30 20 0.00 I 30 21 0.00 129 213 25 833

Table 2: Testing step. We show the number of solved instances (S), the maximum time for solving an instance for which all
algorithms find a solution, excluding algorithms that solve no instance at all (T), the average effective width (AW), and the

maximum effective width (MW).

Blocks-on

The Blocks-on domain works like the standard Blocksworld
domain, where a set of blocks can be stacked on top of each
other or placed on the table. In contrast to the standard do-
main, Blocks-on tasks just require to place a single specific
block on top of another block, a width-2 task. The learned
sketch Rg for k = 1 has features ® = {H, g}, where H is
true iff a block is being held and g is the number of blocks
that are at their goal location. The sketch rules are

ri={} = {~H, g1}
ro={H}— {-H, g7}

where 71 says that well-placing the block mentioned in the
goal or unstacking towers on the table is good, and 75 says
that not holding a block is good. Starting in states s, where
H is false, rule r; looks for subgoal states s; where H is
false and g increased. Starting in states s, where H is true,
rule ro is also active which looks for subgoal states s} where
H is false and g has any value. From such states s/, however,
rule 7 takes over with so = s}, and no subgoal state where
H is true is reached again. If such states need to be traversed
in the solution of the subproblems, they will not be encoun-
tered as subgoal states ;11 € GRr(s;).
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Theorem 8 The sketch Rg for Blocks-on is acyclic and has
width 1.

Childsnack

In Childsnack (Vallati, Chrpa, and McCluskey 2018), there
is a kitchen, a set of tables, a set of plates, a set of children,
all sitting at some table waiting to be served a sandwich.
Some children are gluten allergic and hence they must be
served a gluten-free sandwich that can be made with gluten-
free bread and gluten-free content. The sandwiches are pro-
duced in the kitchen but can be moved to the tables using
one of several plates. The learned sketch Rg for £ = 1
has features ® = {sk, ua, gfs, s}, where sk is the number
of sandwiches at the kitchen, ua is the number of unserved
and allergic children, gfs is the number of gluten-free sand-
wiches, and s is the number of served children. The sketch
rules are

r1 ={} — {sk?, ua?, gfst, s?}
ro = {} — {skl, ua?, gfs?,s?}
rg ={} — {sk?, ual, gfs?,s?}
ry = {ua=0} — {skt, ua?, gfs?, s?}
rs = {ua=0} — {sk?, ua?, gfs?, st}



which say that making a gluten free sandwich is good, mov-
ing a sandwich from the kitchen on a tray is good, serving a
gluten-allergic child is good, making any sandwich is good
if all gluten-allergic children have been served, serving any
child is good if all gluten-allergic children have been served.

Theorem 9 The sketch Rg for Childsnack is acyclic and
has width 1.

Miconic

In Miconic (Koehler and Schuster 2000), there are passen-
gers, each waiting at some floor, who want to take an el-
evator to a target floor. The learned sketch Rg for kK = 1
has features & = {b, g}, where b is the number of boarded
passengers and g is the number of served passengers. The
sketch rules are

ry={} = {07, 41}

ro = {} — {b1, g7}
where 71 says that moving a passenger to their target floor is
good, and 7 says that letting some passenger board is good.

Theorem 10 Sketch Rg for Miconic is acyclic and has
width 1.

Related Work

Sketches provide a language for expressing control knowl-
edge by hand or for learning it. Other languages have been
developed for the first purpose, including Golog, LTL, and
HTNs; we focus on the learning problem.

Features, General Policies, Heuristics. Sketches were in-
troduced by Bonet and Geffner (2021) and used by hand by
Drexler, Seipp, and Geffner (2021). The sketch language is
the language of general policies (Bonet and Geffner 2018)
that has been used for learning as well (Martin and Geffner
2004; Bonet, Frances, and Geffner 2019; Frances, Bonet,
and Geffner 2021). The description logic features have also
been used to learn linear value functions that can be used
to solve problems greedily (Frances et al. 2019; de Graaff,
Corréa, and Pommerening 2021) and dead-end classifiers
(Stahlberg, Frances, and Seipp 2021). The use of numeri-
cal features that can be incremented and decremented qual-
itatively is inspired by QNPs (Srivastava et al. 2011; Bonet
and Geffner 2020). Other works aimed at learning general-
ized policies or plans include planning programs (Segovia,
Jiménez, and Jonsson 2016), logical programs (Silver et al.
2020), and deep learning approaches (Groshev et al. 2018;
Bajpai, Garg, and Mausam 2018; Toyer et al. 2020), some
of which have been used to learn heuristics (Shen, Trevizan,
and Thiébaux 2020; Karia and Srivastava 2021).

HTNs. Hierarchical task networks explicitly decompose
tasks into simpler tasks, and a number of methods for learn-
ing them have been studied (Zhuo, Mufioz-Avila, and Yang
2014; Hogg, Muifioz-Avila, and Kuter 2016). These meth-
ods, however, learn decompositions using slightly different
inputs like annotated traces and decompositions. Jonsson
(2009) developed a powerful approach for learning policies
in terms of a hierarchy of macros, but the approach is re-
stricted to domains with certain causal graphs.
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Intrinsic Rewards and (Hierarchical) RL. Intrinsic re-
wards have been introduced for improving exploration in
reinforcement learning (Singh et al. 2010), and several au-
thors have addressed the problem of learning intrinsic re-
wards over families of problems. Interestingly, the title of
one of the papers is a question “What can learned intrinsic
rewards capture?”’ (Zheng et al. 2020). The answer to this
question in our setting is clean and simple: intrinsic rewards
are supposed to capture common subgoal structure. Lacking
a language to talk about families of problems and a language
to talk about subgoal structure, however, the answer that the
authors provide is less crisp: learned intrinsic rewards are
supposed to speed up (deep) RL. The problem of subgoal
structure also surfaces in hierarchical RL that aims at learn-
ing and exploiting hierarchical structure in RL (Barto and
Mahadevan 2003; Kulkarni et al. 2016).

Conclusions

We have developed a formulation for learning sketches au-
tomatically given instances of the target class of problems Q
and a bound k on the sketch width. The work builds on prior
works that introduced the ideas of general policies, sketches,
problem width, and description logic features. The learning
formulation guarantees a bounded width on the training in-
stances but the experiments show that this and other prop-
erties generalize to entire families of problems Q, some of
which are challenging for current domain-independent plan-
ners. The properties ensure that all problems in Q can be
solved in polynomial time by a variant of the SIW algo-
rithm. This is possibly the first general method for learning
how to decompose planning problems into subproblems with
a polynomial complexity that is controlled with a parame-
ter. Three limitations of the proposed learning approach are
1) it cannot be applied to intractable domains, 2) it yields
large (grounded) ASP programs that are often difficult to
solve, and 3) it deals with collections of problems encoded in
PDDL-like languages, even if the problem of learning sub-
goal structure arises in other settings such as RL. Three goals
for the future are to improve scalability, to deal with non-
PDDL domains, taking advantage of recent approaches that
learn such domains from data, and to use sketches for learn-
ing hierarchical policies.
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