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Abstract

We study the problem of inverse reinforcement learning
(IRL), where the learning agent recovers a reward function
using expert demonstrations. Most of the existing IRL tech-
niques make the often unrealistic assumption that the agent
has access to full information about the environment. We re-
move this assumption by developing an algorithm for IRL in
partially observable Markov decision processes (POMDPs).
The algorithm addresses several limitations of existing tech-
niques that do not take the information asymmetry between
the expert and the learner into account. First, it adopts causal
entropy as the measure of the likelihood of the expert demon-
strations as opposed to entropy in most existing IRL tech-
niques, and avoids a common source of algorithmic com-
plexity. Second, it incorporates task specifications expressed
in temporal logic into IRL. Such specifications may be in-
terpreted as side information available to the learner a priori
in addition to the demonstrations and may reduce the infor-
mation asymmetry. Nevertheless, the resulting formulation is
still nonconvex due to the intrinsic nonconvexity of the so-
called forward problem, i.e., computing an optimal policy
given a reward function, in POMDPs. We address this non-
convexity through sequential convex programming and in-
troduce several extensions to solve the forward problem in
a scalable manner. This scalability allows computing poli-
cies that incorporate memory at the expense of added com-
putational cost yet also outperform memoryless policies. We
demonstrate that, even with severely limited data, the algo-
rithm learns reward functions and policies that satisfy the task
and induce a similar behavior to the expert by leveraging the
side information and incorporating memory into the policy.

Introduction

Inverse reinforcement learning (IRL) is a technique that
recovers a reward function using expert demonstrations
and learns a policy inducing a similar behavior to the ex-
pert’s. IRL techniques have found a wide range of appli-
cations (Abbeel, Coates, and Ng 2010; Kitani et al. 2012;
Hadfield-Menell et al. 2016; Dragan and Srinivasa 2013;
Finn, Levine, and Abbeel 2016). The majority of the work
has focused on Markov decision processes (MDPs), assum-
ing that the learning agent can fully observe the state of
the environment and the expert’s demonstrations (Abbeel,
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Coates, and Ng 2010; Ziebart et al. 2008; Zhou, Bloem, and
Bambos 2017; Ziebart, Bagnell, and Dey 2010; Hadfield-
Menell et al. 2016; Finn, Levine, and Abbeel 2016). Often,
in reality, the learning agent will not have such full observa-
tion. For example, a robot will never know everything about
its environment (Ong et al. 2009; Bai, Hsu, and Lee 2014;
Zhang et al. 2017) and may not observe the internal states
of a human with whom it works (Akash et al. 2019; Liu and
Datta 2012). Such information limitations violate the intrin-
sic assumptions made in existing IRL techniques.

We study IRL in partially observable Markov decision
processes (POMDPs), a widely used model for decision-
making under imperfect information. The partial observabil-
ity brings three key challenges in IRL. The first two chal-
lenges are related to the so-called information asymmetry
between the expert and the learner. First, the expert typically
has access to full information about the environment, while
the learner has only a partial view of the expert’s demon-
strations. Second, even in the hypothetical case in which the
actual reward function is known to the learner, the learner’s
optimal policy under limited information may not yield the
same behavior as the expert due to information asymmetry.

The third challenge is due to the computational complex-
ity of policy synthesis in POMDPs. Many standard IRL tech-
niques rely on a subroutine that solves the so-called forward
problem, i.e., computing an optimal policy for a given re-
ward. Solving the forward problem for POMDPs is signifi-
cantly more challenging than MDPs, both theoretically and
practically. Optimal policies for POMDPs may require infi-
nite memory of observations (Madani, Hanks, and Condon
1999), whereas memoryless policies are enough for MDPs.

An additional limitation in existing IRL techniques is
due to the limited expressivity and often impracticability
of state-based reward functions in representing complex
tasks (Littman et al. 2017). For example, it will be tremen-
dously difficult to define a merely state-based reward func-
tion to describe requirements such as “do not steer off the
road while reaching the target location and coming back
to home” or “monitor multiple locations with a certain or-
der.” On the other hand, such requirements can be concisely
and precisely specified in temporal logic (Baier and Katoen
2008; Pnueli 1977). Recent work has demonstrated the util-
ity of incorporating temporal logic specifications into IRL
in MDPs (Memarian et al. 2020; Wen, Papusha, and Topcu



2017). In this work, we address these challenges and limita-
tions in IRL techniques by studying the problem:

Task-guided IRL: Given a POMDP, a fask specifica-
tion o expressed in temporal logic, and a set of expert
demonstrations, learn a policy along with the underly-
ing reward function that maximizes the causal entropy
of the induced stochastic process, induces a behavior
similar to the expert’s, and ensures satisfaction of ¢.

We highlight two parts of the problem statement. Using
causal entropy as an optimization criterion results in a least-
committal policy that induces a behavior obtaining the same
accumulated reward as the expert’s demonstrations while
making no additional assumptions about the demonstrations.
Given the task requirements, the fask specifications guide
the learning process by describing the feasible behaviors and
allowing to learn performant policies with respect to the task
requirements. Such specifications can also be interpreted as
side information available to the learner a priori in addition
to the demonstrations and partially alleviates the information
asymmetry between the expert and the learner.

Most existing work on IRL relies on entropy as a mea-
sure of the likelihood of the demonstrations, yet, when ap-
plied to stochastic MDPs, has to deal with nonconvex op-
timization problems (Ziebart et al. 2008; Ziebart, Bagnell,
and Dey 2010). On the other hand, IRL techniques that
adopt causal entropy as the measure of likelihood enjoy
formulations based on convex optimization (Zhou, Bloem,
and Bambos 2017; Ziebart, Bagnell, and Dey 2010, 2013).
We show similar algorithmic benefits in maximum-causal-
entropy IRL carry over from MDPs to POMDPs.

A major difference between MDPs and POMDPs in
maximum-causal-entropy IRL is, though, due to the intrinsic
nonconvexity of policy synthesis in POMDPs, which yields
a formulation of the task-guided IRL problem as a noncon-
vex optimization. It is known that this nonconvexity severely
limits the scalability for synthesis in POMDPs. We develop
an algorithm that solves the resulting nonconvex problem
in a scalable manner by adapting sequential convex pro-
gramming (SCP) (Yuan 2015; Mao et al. 2018). The algo-
rithm is iterative. In each iteration, it linearizes the underly-
ing nonconvex problem around the solution from the previ-
ous iteration. The algorithm introduces several extensions,
among which a verification step not present in existing SCP
schemes. We show that it computes a sound and locally op-
timal solution to the task-guided IRL problem.

The algorithm scales to POMDPs with tens of thousands
of states as opposed to tens of states in the existing work,
e.g., belief-based or off-the-shelf nonconvex optimization
solvers. In POMDPs, finite-memory policies that are func-
tions of the history of the observations outperform memory-
less policies (Yu and Bertsekas 2008). Computing a finite-
memory policy for a POMDP is equivalent to computing
a memoryless policy on a larger product POMDP (Junges
et al. 2018). On the other hand, existing IRL techniques on
POMDPs cannot effectively utilize memory, as they do not
scale to large POMDPs. We leverage the scalability of our
algorithm to compute performant policies that incorporate
memory using finite-state controllers (Meuleau et al. 1999;
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Amato, Bernstein, and Zilberstein 2010).

We demonstrate the applicability of the approach through
several examples. We show that, without task specifications,
the developed algorithm can compute more performant poli-
cies than a straight adaptation of the original GAIL (Ho
and Ermon 2016) to POMDPs. Then, we demonstrate that
by incorporating task specifications into the IRL procedure,
the learned reward function and policy accurately describe
the behavior of the expert while outperforming the policy
obtained without the task specifications. Additionally, we
show that incorporating memory into the learning agent’s
policy leads to more performant policies. We also show that
with more limited data, the performance gap becomes more
prominent between the learned policies with and without us-
ing task specifications. Finally, we demonstrate the scalabil-
ity of our approach for solving the forward problem through
extensive comparisons with several state-of-the-art POMDP
solvers and show that on larger POMDPs, the algorithm can
compute more performant policies in significantly less time.

Related work. The closest work to ours is by Choi and
Kim (2011), where they extend classical maximum-margin-
based IRL techniques for MDPs to POMDPs. However, even
on MDPs, maximum-margin-based approaches cannot re-
solve the ambiguity caused by suboptimal demonstrations,
and they work well when there is a single reward function
that is clearly better than alternatives (Osa et al. 2018). In
contrast, we adopt causal entropy that has been shown (Osa
et al. 2018; Ziebart, Bagnell, and Dey 2010) to alleviate
these limitations on MDPs. Besides, Choi and Kim (2011)
rely on efficient off-the-shelf solvers to the forward problem.
Instead, this paper also develops an algorithm that outper-
forms off-the-shelf solvers and can scale to POMDPs that
are orders of magnitude larger compared to the examples in
Choi and Kim (2011). Further, Choi and Kim (2011) do not
incorporate task specifications in their formulations.

Prior work tackled the ill-posed IRL problem using max-
imum margin formulations (Ratliff, Bagnell, and Zinkevich
2006; Abbeel and Ng 2004; Ng, Russell et al. 2000), or prob-
abilistic models to compute the likelihood of expert demon-
strations (Ramachandran and Amir 2007; Ziebart et al. 2008;
Ziebart, Bagnell, and Dey 2010; Zhou, Bloem, and Bambos
2017, Finn, Levine, and Abbeel 2016; Ho and Ermon 2016).
Besides, the idea of using side information to guide and aug-
ment IRL has been explored in recent work (Papusha, Wen,
and Topcu 2018; Wen, Papusha, and Topcu 2017; Memarian
et al. 2020). However, these IRL techniques are only appli-
cable to MDPs as opposed to POMDPs.

IRL under some restricted notion of partial information
has been studied in prior work. Boularias, Kromer, and Pe-
ters (2012) consider the setting where the features of the re-
ward function are partially specified. Kitani et al. (2012);
Bogert and Doshi (2014) consider IRL problems from par-
tially observable demonstrations and use the hidden Markov
decision process framework as a solution. Therefore, all
these approaches consider a particular case of POMDPs. We
also note that none of these methods incorporate side infor-
mation into IRL and do not provide guarantees on the per-
formance of the policy with respect to a task specification.



Background

Notation. We denote the set of nonnegative real numbers
by R4, the set of all probability distributions over a finite or
countably infinite set X' by Distr(X), the set of all (infinite
or empty) sequences g, L1, ..., Te With z; € X by (X)*
for some set X', and the expectation of a function g of jointly
distributed random variables X and Y by Ex vy [¢(X,Y)].

POMDPs. A partially observable Markov decision pro-
cess (POMDP) is a tuple M = (S, A, Z,P,O, R, uo, "),
with finite sets S, A and Z denoting the set of states, ac-
tions, and observations, respectively, a transition function
P : S x A — Distr(S), an observation function O : § —
Distr(Z), a reward function R : § x A — R, an initial
state of distribution o € Distr(S), and a discount factor
v € (0,1). We denote P(s’|s, «) as the probability of tran-
sitioning to state s” after an action « is selected in state s,
and O(z|s) is the probability of observing z € Z in state s.

Policies. An observation-based policy o : (ZxA)*x Z
Distr(.A) for a POMDP M maps a sequence of observations
and actions to a distribution over actions. A M-finite-state
controller (M-FSC) consists of a finite set of memory states
of size M and two functions. The action mapping n(n, z)
takes a FSC memory state n and an observation z € Z,
and returns a distribution over the POMDP actions. The
memory update d(n, z, ) returns a distribution over mem-
ory states and is a function of the action « selected by 7.
An FSC induces an observation-based policy by following
a joint execution of these two functions upon a trace of the
POMDP. Memoryless FSCs, denoted by o: Z — Distr(.A),
are observation-based policies, where o, , is the probability
of taking the action « given solely observation z.

Remark 1 (REDUCTION TO MEMORYLESS POLICIES). In
the remainder of the paper, for ease of notation, we synthe-
size optimal M-FSCs for POMDPs (so-called forward prob-
lem) by computing memoryless policies o on theoretically-
Jjustified larger POMDPs obtained from the so-called prod-
uct of the memory update § and the original POMDPs. In-
deed, Junges et al. (2018) provide product POMDPs, whose
sizes grow polynomially with the size of the domain of 0.

Causal Entropy in POMDPs.
o induces the stochastic processes S§.., := (S§,...,5%),
Ag = (Ag,...,A%), and Z5_ = (Z3,...,Z2). At
each time index ¢, the random variables Sy, A7, and Z7
take values s; € S, oy € A, and z; € Z, respectively.

We consider the infinite time horizon setting and define
the discounted causal entropy as (Zhou, Bloem, and Bambos
2017): HY =372 7' Eas g7 [—log P(A7|S7)].

Remark 2. The entropy of POMDPs (or MDPs) involves
the future policy decisions (Ziebart et al. 2008), i.e., S7. .1,
at a time index t, as opposed to the causal entropy in
POMDPs (or MDPs). Thus, Ziebart et al. (2008) show that
the problem of computing a policy that maximizes the en-
tropy is nonconvex, even in MDPs. Inverse reinforcement
learning techniques that maximize the entropy of the policy
rely on approximations or assume that the transition func-
tion of the MDP is deterministic. On the other hand, comput-

For a POMDP M, a policy
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ing a policy that maximizes the causal entropy can be formu-
lated as a convex optimization problem in MDPs (Ziebart,
Bagnell, and Dey 2010; Zhou, Bloem, and Bambos 2017).

LTL Specifications. We use general linear temporal logic
(LTL) to express complex task specifications on the POMDP
M. Given a set AP of atomic propositions, i.e., Boolean
variables with truth values for a given state s or observation
z, LTL formulae are constructed inductively as following:
p:=true|a| —p | p1Aps | Xp | p1Upy, where a € AP,
©, ©1, and @9 are LTL formulae, — and A are the logic nega-
tion and conjunction, and X and U are the next and until
temporal operators. Besides, temporal operators such as al-
ways (G) and eventually (F) are derived as Fy := trueUyp
and Gy := —F-p. A detailed description of the syntax and
semantics of LTL is beyond the scope of this paper and can
be found in Pnueli (1977); Baier and Katoen (2008).

Pr%, () denotes the probability of satisfying the LTL for-
mula o when following the policy o on the POMDP M.

Formal Problem Statement

In this section, we formulate the problem of task-guided in-
verse reinforcement learning (IRL) in POMDPs. Given a
POMDP M with an unknown reward function R, we seek to
learn a reward function R along with an underlying policy o
that induces a behavior similar to the expert demonstrations.

In the remainder of the paper, we assume that the ex-
pert can have either full observability or partial observ-
ability. We define an expert trajectory on the POMDP M
as the perceived observation and executed action sequence
T = {(ZOa aO)v (Zla al)a ceey (ZTa aT)}’ where z; € Z and
a; € Aforalli € {0,...,T}, and T denotes the length of
the trajectory. Similarly to Choi and Kim (2011), we assume
given or we can construct from 7 (Bayesian inference), the
belief trajectory b = {by := pyo, . .., br }, where b;(s) is the
probability of being at state s at time index 7. In the follow-
ing, we assume that we are given a set of belief trajectories
D = {b™,...,b"} from trajectories 71, ..., Ty, where N
denotes the total number of underlying trajectories.

We build on the traditional encoding of the reward func-
tion as R(s, o) := 22:1 Ordr(s,) = 0T (s, a), where
¢ : S x A R?is a known vector of basis functions with
components referred to as feature functions, 6 € R? is an un-
known weight vector characterizing the importance of each
feature, and d is the number of features.

Specifically, we seek for a weight 6 defining R and a
policy o such that its discounted feature expectation R?
matches an empirical discounted feature expectation R¢70f
the expert demonstration D. That is, we have that Rf = R?,
where R := 3777 v'Esy g [¢(S7, A7)|o] and the empir-
ical mean R¢ = % ZbT €D Zbieb" ’Yz ZSES bl(8)¢(57 ai)'

However, there may be infinitely many reward functions
and policies that can satisfy the feature matching condition.
Thus, to resolve the policy ambiguity, we seek for a policy
o that also maximizes the discounted causal entropy H_.

Problem 1. Given a reward-free POMDP M, a demonstra-
tion set D, and a feature ¢, compute a policy o and weight 0



such that (a) Y-, o V' Esg az[0(S7, A7)|o] = R?; (b) The
causal entropy H is maximized by o.

Additionally, we seek to incorporate, if available, a priori
high-level side information on the underlying expert task.

Problem 2. Given a temporal logic formula ¢ and \ > 0,
compute a policy o and weight 0 such that the constraints
(a) and (b) in Problem 1 are satisfied, and Pr(¢) > M.

We note that \ specifies the threshold of satisfaction of
 since binary constraint satisfaction does not make sense
under partial observability and stochasticity in the model.

Nonconvex Formulation for IRL in POMDPs

In this section, we formulate the IRL problem as a noncon-
vex optimization problem. Then, we utilize a Lagrangian
relaxation of the nonconvex problem as a part of our solu-
tion approach. We recall the reader (see Remark 1) that we
compute M-FSC for POMDPs by computing memoryless
policies o on larger product POMDPs.

Substituting Visitation Counts. We eliminate the (infi-
nite) time dependency in [ and the feature matching con-
straint by a substitution of variables involving the policy-
induced discounted state visitation count p) : S — Ry
and state-action visitation count v : S x A — R,. For
a policy o, state s, and action «, the discounted visitation
counts are defined by 117 (s) := Eg,[>°,~; 7' 1{s,=s}|0] and
V;Y(Sa a) = EAhSt [Z?il rYtl{St:s,At:a} |U]7 where 1{}
is the indicator function. Further, v)(s,a) = 75 opu2(s),
where 7, o, = P[A; = a|S; = s] is a state-based policy.

We first provide a concave expression for the discounted
causal entropy H as a function of 7 and v/):

Hy =3 " 'Esqagl=10g(m 0,
_ oo _ t o _
- tho Z(s,a)GSXA <10g 778,04)778:0/7 P[S S]

= Z(s W)ESK A —(log ms,0)ms,abig(s)

~
- Z —log MV’Y
(s,0)eSxA /,1,0(3)

2(s, ),
where the first equality is due to the definition of the dis-
counted causal entropy H, the second equality obtained by
expanding the expectation. The third and fourth equalities
follow by the definition of the state visitation count x, and
the state-action visitation count ). Next, we obtain a linear
expression in v for the discounted feature expectation R
as:

ey

Z Z ¢(87 a)VtP[Sf = 57"4? = a]

t=0 (s,a)eSx A

S b(s.a)(s.0),

(s,a)eSxA

Ry

@

where the second equality is obtained by the definition of
the visitation count v). The following nonconvex constraint
in ) (s) and 0 o ensures observation-based policies:

vi(s,a) = HZ(S)Z O(Z‘S)Uz,a- 3)

zEZ
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Algorithm 1: Compute the weight vector ¢ and policy o so-
lution of the Lagrangian relaxation of the IRL problem.

Input: Feature expectation R® from D, initial weight 6°,
step size n : N — R, and (if available) a priori side
information ¢ and A € [0, 1] imposing Prf(¢) > A.

1: ¥ + uniform policy > Initialize uniform policy
2: fork=1,2,...,do > Compute  via gradient descent
3: o < scPForward(6*,cF=1 p,\) > Solve the
forward problem (5)—(7) with optional ( and A
4 O 0% — (k) (RS, — R?) b Gradient step
end for
6: return o

el

kek

Finally, the variables for the discounted visitation counts
must satisfy the so-called Bellman flow constraint to ensure
that the policy is well-defined. For each state s € S,

13 (s) = po(s) +7 D D Plsls’.a)a (s, ).

s’eS acA

“4)

Lagrangian Relaxation of Feature Matching Constraint.
Computing a policy o that satisfies the feature matching con-
straint R? = R? might be infeasible due to R® being an
empirical estimate from the finite set of demonstrations D.
Additionally, the feature matching constraint might also be
infeasible due to the information asymmetry between the ex-
pert and the learner, e.g., the expert has full observation.
We build on a Lagrangian relaxation to incorporate the
feature matching constraints into the objective of the for-
ward problem, similar as other IRL algorithms in the liter-
ature. Specifically, we introduce § € R? as the dual vari-
ables of the relaxed problem. The desired weight vector 6
and policy o of Problem 1 and Problem 2 are the solutions
of ming f(0) := max, H) + 0T (R? — R?). Algorithm 1
updates the reward weights by using gradient descent. To
this end, the algorithm computes the gradient V f(6%) =
Rf,c — R?, where 0% = argmax, H) + (6%)T(R? — R?).
In the following, we refer to the problem of computing such
o* given 6F as the forward problem, and we develop the al-
gorithm SCPForward, presented in next section, to solve
it in an efficient and scalable manner while incorporating
high-level task specifications to guide the learning.

Nonconvex Formulation of the Forward Problem.
Given a weight vector 6%, we take advantage of the obtained
substitution by the expected visitation counts to formulate
the forward problem associated to Problem 1 as

—1lo 71/3(8’06)1/Y s,
Z lg M’Y(S) o'(? )

(s,a)eSxA 7

maximize
Ha Vo

Y s ai(s,0), )
(s,a)ESxA
subject to  (3) — (4),
V(s,a) € S x A, pl(s) >0, vl(s,a) >0, (6)
Y(s,0) €S x A i) =)  vi(s,a), (D



where the source of nonconvexity is from (3), and we re-
move the constant —(0*)T R? from the cost function.

Sequential Convex Programming Formulation

We develop SCPForward, adapting a sequential convex
programming (SCP) scheme to efficiently solve the non-
convex forward problem (5)—(7). SCPForward involves a
verification step to compute sound policies and visitation
counts, which is not present in the existing SCP schemes.
Additionally, we describe in the next section how to take ad-
vantage of high-level task specification (Problem 2) through
slight modifications of the obtained optimization problem
solved by SCPForward.

Linearizing Nonconvex Problem

SCPForward iteratively linearizes the nonconvex con-
straints in (3) around a previous solution. However, the lin-
earization may result in an infeasible or unbounded linear
subproblem (Mao et al. 2018). We first add slack variables to
the linearized constraints to ensure feasibility. The linearized
problem may not accurately approximate the nonconvex
problem if the solutions to this problem deviate significantly
from the previous solution. Thus, we utilize trust region con-
straints (Mao et al. 2018) to ensure that the linearization is
accurate to the nonconvex problem. At each iteration, we in-
troduce a verification step to ensure that the computed pol-
icy and visitation counts are not just approximations but ac-
tually satisfy the nonconvex policy constraint (3), improves
the realized cost function over past iterations, and satisfy the
temporal logic specifications, if available.

Linearizing Nonconvex Constraints and Adding Slack
Variables. We linearize the nonconvex constraint (3),
which is quadratic in p)(s) and o, o, around the previ-
ously computed solution denoted by &, p, and ). How-
ever, the linearized constraints may be infeasible. We alle-
viate this drawback by adding slack variables ks , € R for
(s,a) € § x A, which results in the affine constraint:

vl (s, @) + koo = p(s) Zzez O(z|8)02,0 +
(13 (8) = m3()) D

Trust Region Constraints. The linearization may be in-
accurate if the solution deviates significantly from the pre-
vious solution. We add following frust region constraints to
alleviate this drawback:

V(z,a) € Z x A,

®)

z€EZ

&)

where p is the size of the trust region to restrict the set of
allowed policies in the linearized problem. We augment the
cost function in (5) with the term —f Z(s,a)e3xA ks o to
ensure that we minimize the violation of the linearized con-
straints, where £ is a large positive constant.

&z,a/p < 0z,a < &z,ap7

Linearized Problem. Finally, by differentiating = +>
xlogx and y — xlog(z/y), we obtain the coefficients re-
quired to linearize the convex causal entropy cost function
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in (5). Thus, we obtain the following linear program (LP):

. vy (s,a)
maxiize (S’Q)ESXA—<BkS,a - ( 7o) )MZ(S)
v1(5,0)
+ (lOg m + 1) Vg(S, Oé))
+Z(S,Q)ESXA(H’“)TMS,a)u;f(&a) (10)
subject to  (4),(6) — (9).

Verification Step. After each iteration, the linearization
might be inaccurate, i.e, the resulting policy ¢ and poten-
tially inaccurate visitation counts ), i might not be fea-
sible to the nonconvex policy constraint (3). As a conse-
quence of the potential infeasibility, the currently attained
(linearized) optimal cost might significantly differ from the
realized cost by the feasible visiation counts for the . Ad-
ditionally, existing SCP schemes linearizes the nonconvex
problem around the previously inaccurate solutions for 7],
and [}, further propagating the inaccuracy. The proposed
verification step solves these issues. Given the computed
policy ¢, SCPForward computes the unique and sound so-
lution for the visitation count ) by solving the correspond-
ing Bellman flow constraints:

12 (s) =po(s)+ (11)

73 S Plsls (s Y O(ls) o

s’eS acA z€Z

forall s € S, and where p} > 0 is the only variable of the
linear program. Then, SCPForward computes v/ (s, ) =
p2(s") 3, c2 O(2|5)52,o and the realized cost cost at the
current iteration is defined by

~ kY _
C(U’a ) o Z(S,Q)ESXA log

* Z(S,Q)ESXA(ek)T¢<S’ a)yg(s’ Oé), (12)

where we assume 0log0 = 0. Finally, if the realized cost
C(a,6%) does not improve over the previous cost C(&, %),
the verification step rejects the obtained policy &, contracts
the trust region and SCPForward iterates with the previ-
ous solutions &, p1, and v} . Otherwise, the linearization
is sufficiently accurate, the trust region is expanded, and
SCPForward iterates with &, p2 and v]). By incorporat-
ing this verification step, we ensure that SCPForward al-
ways linearizes the nonconvex optimization problem around
a solution that satisfies the nonconvex constraint (3).

)

vi(s,a
%Vﬁ(s,a)
(e

Incorporating High-Level Task Specifications

Given high-level side information on the agent tasks as the
LTL formula ¢, we first compute the product of the POMDP
and the w-automaton representing  to find the set 7 C S of
states, called target or reach states, satisfying ¢ with proba-
bility 1 by using standard graph-based algorithms as a part of
preprocessing step. We refer the reader to Baier and Katoen
(2008) for a detailed introduction on how LTL specifications
can be reduced to reachability specifications given by 7.



Algorithm 2: SCPForward: Linear programming-based algorithm to solve the forward problem (5)—(7), i.e., compute a policy
o” that maximizes the causal entropy, enforces the feature matching constraint, and satisfies the specifications, if available.

Input: Current weight estimate %, current best policy &, side information ¢ and )\, trust region p > 1, penalization coefficients
B, B°P > 0, constant pg to expand or contract trust region, and a threshold py;,, for trust region contraction.

Find 1) via linear constraint (11) and v = p2(s') >

while p > pjiy, do

A T

(6), (7), (8), (13), and (spec) induced by P, vSP

o) o’

6:

7. {6+ Gip < ppotif C(6,0F) > C(6,0%) else {p + p/po}
8: end while

9: return o* ;=5

z2€EZ
Find 43" via linear constraint (13) with v3° = 2P (s") >

Compute the realized cost C(&, %) + (12) + C, given &

Find optimal & to the augmented LP (10) via &, ), v

z€EZ

2 sp
60 Mg 2 Vs

and by adding —f3 Z(S’Q)GS“‘ K3k, — B°PTP to the cost (10).

O(z|5)62,q, given &
O(#]$)02,q, given &

> Realized visitation counts

> If ¢ is available

> Add specifications’ violation
> Trust region threshold

P > We augment the LP with constraints

o

Compute the realized 2, v 15, V2P, and C(5, 0%) via & as in lines 1-3

> Verification step

As a consequence, the probability of satisfying ¢ is the
sum of the probability of reaching the target states s € T,
which are given by the undiscounted state visitation count
pP. That is, Pri(¢) = > ,c7pP(s). Unless v = 1,
wP # . Thus, we introduce new variables 1P, 5P, and

the adequate constraints in the linearized problem (10).

Incorporating Undiscounted Visitation Variables to Lin-
earized Problem. We append new constraints, similar
to (6), (7), and (8), into the linearized problem (10), where
the variables p7,v), ks o, 1), v are replaced by psP, v5P

o) o) o Yo

kP, 13, v3°, respectively. Further, we add the constraint
P (s) = mo(s) + Y D Plsls, )P (s',a), (13)

s'eS\T acA

which is a modification of the Bellman flow constraints such
that pSP(s) for all s € T only counts transitions from non-
target states. Finally, we penalize the introduced slack vari-
ables for feasibility of the linearization by augmenting the
cost function with the term =33~ \)csx .4 ki

Relaxing Specification Constraints. We add the con-
straint (spec) := >+ psP(s) + P > X to the linearized
problem, where I'" > 0 is a slack variable ensuring the
linearized problem is always feasible. We augment the cost
function with —3°PT*P to penalize violating ¢, where 5°P is
a hyperparameter positive constant .

Updating Verification Step. We modify the previously-
introduced realized cost C(&, 0%) to penalize if the obtained
policy does not satisfy the specification . This cost also
accounts for the linearization inaccuracy of the new pol-
icy constraint due to o, pP, and vP. At each iteration,
SCPForward computes the accurate p° of current pol-
icy ¢ through solving a feasibility LP with constraints given
by the modified Bellman flow constraints (13). Then, it aug-
ments C3¥ = min{0, (3, . 1 (s)—A)5°P} to the realized
cost to take the specification constraints into account.

Numerical Experiments

We evaluate the proposed IRL algorithm on several POMDP
instances, from Junges, Jansen, and Seshia (2021). We first

58

compare our IRL algorithm with a straightforward variant
of GAIL (Ho and Ermon 2016) adapted for POMDPs. Then,
we provide some results on the data-efficiency of the ap-
proach when taking advantage of side information. Finally,
we demonstrate the scalability of the routine SCPForward
for solving the forward problem through comparisons with
state-of-the-art solvers such as SolvePOMDP (Walraven
and Spaan 2017), SARSOP (Kurniawati, Hsu, and Lee
2008), PRISM-POMDP (Norman, Parker, and Zou 2017).
We consider throughout this section the hyperparameters
B =1e3, p? =10, p = 1.01, py = 1.5, p1im = le ™%, and
v = 0.999. Besides, we provide in Djeumou et al. (2021)
additional details on the key results of this paper and the
experiments, e.g., preprocessing steps such as the product
POMDP with M-FSC or computing reachability specifica-
tions from LTL specifications.

l 2 3 4 5 ” ’gt‘ state-spac ;;wmd ‘;.sm“c: "
6 7 8 i : ' > north
il I L A

Y| |3 |4

Figure 1: Some examples from the benchmark set. From left
to right, we have the Maze and Avoid, respectively.

Benchmark Set. The POMDP instances are as follows.
Evade is a turn-based game where the agent must reach
a destination without being intercepted by a faster player.
In Avoid, the agent must avoid being detected by two
other moving players following certain preset, yet unknown
routes. In Intercept, the agent must intercept another player
who is trying to exit a gridworld. In Rocks, the agents must
sample at least one good rock over the several rocks without
any failures. Finally, in Maze, the agent must exit a maze as
fast as possible while avoiding trap states.

Variants of Learned Policies and Experts. We refer
to four types of policies. The type of policy depends on
whether it uses side information from a temporal specifica-



=== No information asymmetry = = = Under information asymmetry

Finite-memory policy

R§
60
- . 40 | - O TR
Without side | f
information 0 -t
—20 -
\ \ \ \ \
25 50 75 100
R§
60
N 40 2
With side 20 |4
information 0 -
—20 -
\ \ \ \ \
0 25 50 75 100
Time Steps

GAIL

Memoryless policy
R%

60
RE
/:—:"""""""

40 —
T T T T T

20 H
25 50 75 100

—20 -

60 —
40 —
20 H

—20 -

T T T T T
0 25 50 75 100

Time Steps

Figure 2: Representative results on the Maze example showing the reward of the policies under the true reward function (R2)
versus the time steps. Compare the two rows: The policies in the top row that do not utilize side information suffer a performance
drop under information asymmetry. On the other hand, in the bottom row, the performance of policies incorporating side
information into learning does not decrease under information asymmetry. Compare the two columns: The performance of the
finite-memory policies in the left column is significantly better than memoryless policies. Except for the memoryless policies
without side information, our algorithm outperforms GAIL. The expert reward on the MDP is 48.22, while 47.83 on POMDP.

tion ¢ or not, and whether it uses a memory size M = 1 or
M = 10. We also consider two types of experts. The first
expert has full information about the environment and com-
putes an optimal policy in the underlying MDP. The second
expert has partial observation and computes a locally opti-
mal policy in the POMDP with a memory size of M = 15.
Recall that the agent always has partial information. There-
fore, the first type of expert corresponds to having informa-
tion asymmetry between the learning agent and expert. Be-
sides, we consider as a baseline a variant of GAIL where we
learn the policy on the MDP without side information, and
extend it to POMDPs via an offline computation of the be-
lief in the states. Doing so provides a significant advantage
to GAIL since we learn on the MDP. We do not compare
with Choi and Kim (2011) as explained in the related work.
We discuss the effect of side information and memory in
the policies. While we detail only on the Maze example,
where the agent must exit a maze as fast as possible, we ob-
serve similar patterns for other examples. We give detailed
results for the other examples in Djeumou et al. (2021).

Maze Example

The POMDP M is specified by S = {s1,..., 814} corre-
sponding to the cell labels in Figure 1. An agent in the maze
only observes whether or not there is a wall (in blue) in a
neighboring cell. That is, the set of observations is O =
{o1,...,06,07}. For example, 01 corresponds to observing
west and north walls (s1), oo to north and south walls (ss,
s4), and o5 to east and west walls (sg, S7, Ss, S9, S10, S11)-
The observations og and o7 denote the target state (s13) and
bad states(sq2, S14). The transition model is stochastic with
a probability of slipping p = 0.1. Further, the states s13 and
s14 lead to the end of the simulation (trapping states).
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In the IRL experiments, we consider three feature func-
tions. We penalize taking more steps with ¢*™¢(s, o) = —1
for all s,a. We provide a positive reward when reaching
s13 with @' (s ) = 1if s = s13 and ¢**8 (s, ) =
0 otherwise. We penalize bad states si» and sij4 with
#P2d(s,a) = —1if s = 519 or s = 514, and ¢"*4 (s, ) = 0
otherwise. Finally, we have the LTL formula ¢ = G — bad
as the task specification, where bad is an atomic proposition
that is true if the current state s = s13 or § = 514. We con-
strain the learned policy to satisfy Pr%,(G - bad) > 0.9.

Side Information Alleviates the Information Asymmetry.
Figure 2 shows that if there is an information asymmetry be-
tween the learning agent and the expert, the policies that do
not utilize side information suffer a significant performance
drop. The policies that do not incorporate side information
into learning obtain a lower performance by 57% under in-
formation asymmetry, as shown in the top row of Figure 2.
On the other hand, as seen in the bottom row of Figure 2,
the performance of the policies that use side information is
almost unaffected by the information asymmetry.

Memory Leads to More Performant Policies. The re-
sults in Figure 2 demonstrate that incorporating memory into
the policies improves the performance, i.e., the attained re-
ward, in all examples, both in solving the forward problem
and learning policies from expert demonstrations. Incorpo-
rating memory partially alleviates the effects of information
asymmetry, as the performance of the finite-memory policy
decreases by 18% under information asymmetry as opposed
to 57% for the memoryless policy.

We see that in Table 1, incorporating memory into policy
on the Maze and Rocks benchmarks, allows SCPForward
to compute policies that are almost optimal, evidenced by



SCPForward SARSOP SolvePOMDP
Problem S| |Sx0O| 0] R? Time(s)| R? Time(s)| R? Time (s)
Maze 17 162 11 39.24 0.1 47.83 0.24 47.83 0.33
Maze(10-FSC) 161 2891 101 46.32 2.04 NA NA NA NA
Rock 550 4643 67 19.68 12.2 19.83 0.05 — -
Rock(5-FSC) 2746 41759 331 19.82 97.84 NA NA NA NA
Intercept 1321 5021 1025 | 19.83 10.28 [19.83 13.71 — —
Intercept 1321 7041 1025 | 19.81 13.18 |[19.81 81.19 — —
Evade 2081 16761 1089 | 96.79 26.25 | 95.28 3600 — —
Evade 36361 341121 18383 |94.97 3600 — — — —
Avoid 2241 8833 1956 | 9.86 14.63 9.86 210.47 — —
Avoid 19797 62133 3164 | 9.72 3503 — — —

Table 1: Results for the benchmarks. On larger benchmarks (e.g., Evade and Avoid), the method we developed can compute
a locally optimal policy. We set the time-out to 3600 seconds. An empty cell (denoted by —) represents the solver failed to
compute any policy before the time-out, while NA refers to not applicable due to the approach being based on belief updates.

obtaining almost the same reward as the solver SARSOP.

Side Information Improves Data Efficiency and Perfor-
mance. Figure 3 shows that even on a low data regime,
learning with task specifications achieves significantly bet-
ter performance than without the task specifications.

—— Without LTL - - - With LTL — Opt. Rew. POMDP

g 404 L. oesmmanas ii:
230 - B |
= 42 47
S 20 40 %
1‘0 1‘5 L;) 1‘0 1‘5
Number of trajectories Number of trajectories

Figure 3: We show the data efficiency of the proposed ap-
proach through the total reward obtained by the learned poli-
cies as a function of the number of expert demonstrations
(No information asymmetry). The figure on the left shows
the performance of learning memoryless policies, while the
figure on the right shows the performance of a 5-FSC.

Besides, in a more complicated environment such as
Avoid, Figure 4 shows that task specifications are crucial to
hope even to learn the task. We refer the reader to Djeumou
et al. (2021) for the details of the experiment.

SCPForward Yields Better Scalability

We highlight three observations regarding the scalability
of SCPForward. First, the results in Table 1 show that
only SARSOP is competitive with SCPForward on larger
POMDPs. SolvePOMDP runs out of time in all but the
smallest benchmarks, and PrismPOMDP runs out of mem-
ory in all benchmarks. Most of these approaches are based
on updating a belief over the states, which for a large state
space can become extremely computationally expensive.
Second, in the benchmarks with smaller state spaces, e.g.,
Maze and Rock, SARSOP can compute policies that yield
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Figure 4: Results on the Avoid example show that side in-
formation can help to crucially improve the performance.

better performance in less time. This is due to the efficiency
of belief-based approaches on small-size problems. On the
other hand, SARSOP does not scale to larger POMDPs with
a larger number of states and observations. For example, by
increasing the number of transitions in Infercept benchmark
from 5021 to 7041, the computation time for SARSOP in-
creases by 516%. On the other hand, the increase of the com-
putation time of SCPForward is only 28%.

Third, on the largest benchmarks, including tens of thou-
sands of states and observations, SARSOP fails to compute
any policy before time-out, while SCPForward found a
solution. Finally, we also note that SCPForward can also
compute a policy that maximizes the causal entropy and sat-
isfies an LTL specification, unlike SARSOP.

Conclusion

We develop an algorithm for inverse reinforcement learn-
ing under partial observation. The algorithm assumes known
transition and observation functions of the POMDP. We em-
pirically demonstrate that by incorporating task specifica-
tions into the learning process, we can alleviate the informa-
tion asymmetry between the expert and the agent and learn
policies that yield similar performance to the expert. Further,
we show that our routine SCPForward to solve the forward
problem outperforms state-of-the-art POMDP solvers on in-
stances with a large number of states and observations.
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