
Crossword Puzzle Resolution via Monte Carlo Tree Search
Lihan Chen1, Jingping Liu1, Sihang Jiang1, Chao Wang1, Jiaqing Liang1, Yanghua Xiao1,3*, Sheng

Zhang2, Rui Song2*

1 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
2 North Carolina State University, Raleigh, US

3 Fudan-Aishu Cognitive Intelligence Joint Research Center
lhc825@gmail.com, jpliu17@fudan.edu.cn, tedsihangjiang@gmail.com, 17110240038@fudan.edu.cn, l.j.q.light@gmail.com,

shawyh@fudan.edu.cn, szhang37@ncsu.edu, rsong@ncsu.edu

Abstract

Although the development of AI in games is remarkable, in-
telligent machines still lag behind humans in games that re-
quire the ability of language understanding. In this paper, we
focus on the crossword puzzle resolution task. Solving cross-
word puzzles is a challenging task since it requires the abil-
ity to understand natural language and the ability to execute
a search over possible answers to find an optimal set of solu-
tions for the grid. Previous solutions are devoted to exploiting
heuristic strategies in search to find solutions while having
limited ability to explore the search space. We propose a so-
lution for crossword puzzle resolution based on Monte Carlo
tree search (MCTS). As far as we know, we are the first to
model the crossword puzzle resolution problem as a Markov
Decision Process and apply MCTS to solve it. We construct a
dataset for crossword puzzle resolution based on daily puz-
zles from New York Times with detailed specifications on
both the puzzle and clue database selection. Our method can
achieve an accuracy of 97% on the dataset.

Introduction
With the remarkable development of AI, current intelligent
systems surpass humans in many games requiring computa-
tional power, such as GO (Silver et al. 2017). However, in
games that require ability such as language understanding
and knowledge usage, intelligent machines still lag behind
humans. For example, in American Crossword Puzzle Tour-
nament 20211, although the AI participant Dr. Fill (Ginsberg
2011) surpasses human players in terms of speed while still
having inferior performance on accuracy.

In this paper, we focus on solving crossword puzzles
(CPs). A crossword puzzle usually consists of a crossword
grid and a set of clues, where the former consists of white
and black squares and the latter include a clue for each slot.
The slot consists of consecutive white squares in a row or
column. The player is required to fill words in slots based
on clues, where the words share a letter at the square of
the intersection. The black squares are used to separate the
slots. Figure 1 presents an example of a crossword puzzle.
The goal of the game is to find the best solution, where each

*Corresponding authors.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.crosswordtournament.com/2021/index.htm

Figure 1: A toy example of an unfinished crossword puzzle,
constructed by us with real clues from published crossword
puzzles. In the grid, each slot is hinted by a clue and starts
with a square whose top-left corner is indexed by the corre-
sponding clue number. Words reading from left to right are
hinted by the clues in the “across” column (e.g. PUMA at “4-
across” is hinted by the clue Adidas alternative), and those
from top to down are the “down” column (e.g. MMYY at “3-
down” is hinted by the clue Credit-card exp. date format).
Words end when reaching the border or a black square.

white square is filled with a letter and every word in the slot
matches the semantics of the corresponding clue best.

The challenge for solving CPs is twofold. First, it is com-
putationally costly to search for a best solution in an im-
mense space. Any letter sequence is a possible “word” in
a CP. For example, in Figure 1, the answer to “3-down” is
MMYY, which is not a standard word. The number of white
squares in the grid of a typical crossword puzzle is around
200, the total search space thus is 26200 since any letter
could be potentially in a square. It is computationally in-
tractable to explore such a huge search space. Even though
the clues can be used for pruning, the search space is still
large due to the ambiguity and obscurity of the clues. Sec-
ond, it is still challenging to find the right answer from clues.
Clues help human players to resolve the puzzle. However,
clues are often obscure (e.g. “$ dispenser”), ambiguous (e.g.
“Adidas alternative”), and diverse (e.g. blank filling clues,
knowledge-related clues). Hence, CP problem is a good task
to test the ability of machines in playing games that require
the understanding of natural language and the world.

There are some existing solutions for the automatic reso-
lution of crossword puzzles, but they still have many prob-
lems. First, they have limited ability to handle the huge

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

35



search space. Most of these solutions search for the best so-
lution among a huge solution space with a greedy search
heuristic (Ernandes et al. 2005; Ginsberg 2011). In general,
it is tricky to design a heuristic that could balance effective-
ness and efficiency. Second, they fail to provide a good eval-
uation for candidate solutions. The evaluation relies on the
clue-word matching for each clue. Previous methods (Bar-
lacchi et al. 2014; Moschitti et al. 2015; Severyn et al. 2015)
train a ranking model to select appropriate words for clues.
However, the candidate words are generated from different
sources due to the diversity of clues. In general, different
sources need different ranking mechanisms. As a result, any
single ranking mechanism will fail to evaluate the words.

We propose a novel framework for crossword puzzle res-
olution. For the problem of huge search space, we for-
malize it as a Markov Decision Process (MDP) and adopt
the Monte Carlo tree search (MCTS) to solve it. MCTS can
asymptotically improve the strategy by iterative simulations
of the word-filling procedure in the CP game. It has been
proven to be effective in tasks of sequential decisions, such
as games and planning problems (Browne et al. 2012). How-
ever, it is still challenging to apply MCTS to our problem.
First, the action space of word-filling is extremely large be-
cause candidate words could be any possible letter sequence.
Even with the constraints of clues, the action space cannot be
effectively narrowed down due to the obscurity and ambigu-
ity of the clues. We propose an action space reduction strat-
egy to solve this problem. Second, the search procedure in
MCTS (i.e., tree policy) is unstable for the CP problem. The
tree policy usually relies on the estimated action value (Sil-
ver et al. 2017), which is unfortunately of high variance for
different puzzles and different states (Figure 3 in the ex-
periment section). We propose a variance control strategy
to solve this problem. For the problem of solution evalua-
tion, it corresponds to the reward design in the formalization
of MDP, which serves as the key to guide our MCTS-based
solution. To handle the candidates from different sources, we
train an individual ranking model for each candidate gener-
ation source. We design a novel reward function consider-
ing multiple ranking mechanisms of words from different
sources and tune it to reflect the influence of the global grid
constraint. Our contribution is threefold.

• To the best of our knowledge, we are the first to apply
MCTS to solve the crossword puzzle. Specifically, we
propose an action space reduction strategy to optimize
the search and a variance control strategy to optimize the
tree policy of MCTS. We believe those techniques can be
applied to other tasks with similar problems.

• We propose a novel reward function that aggregates the
clue-word matching from different sources. Our aggre-
gated reward function is effective to guide MCTS to find
the solution that satisfies the grid constraint and clue con-
straints simultaneously.

• We construct a dataset for crossword puzzle resolution
based on daily puzzles from New York Times (NYT) and
our method achieves state-of-the-art performance in the
dataset. Our dataset is the largest (57 puzzles for test, 85
for validation), and most complete (with fixed 4.5 million

seen clues in the dataset) in public.

Overview
Problem Formalization
Each CP, in this paper, is formalized as a quadruple
〈X,C,D, F 〉. X = [x1, ..., xq] is an array of variables,
where each variable xi(i = 1, ..., q) refers to a word slot
to be filled (e.g. “1-across”). Each word slot xi corresponds
to a clue ci which is a constant. C = [c1, ..., cq] is the ar-
ray of clues. D is the domain set of all possible words,
which includes dictionary vocabularies, e.g., puma, and
other strings, e.g., date format MMYY. F represents the grid
constraints, including cross consistency (e.g. in Figure 1, the
second letter of the “3-down” word MMYY equals to the third
letter of the “4-across” word PUMA), and length constraint
(e.g. in Figure 1, the “1-across” word is a 3-letter word).

To represent the solution, we define an assignment of X
asW = [w1, ..., wq], where each wi is an assignment for the
corresponding word slot xi. Each wi is a word in the domain
(i.e. wi ∈ D), or unfinished (i.e. wi ∈ ∆). ∆ is the set
containing all the unfinished words with at least one blank
(i.e. an unfinished grid is also an assignment). For example,
the “6-across” of the assignment in the grid of Figure 1 is
an unfinished word with 3 blanks and belongs to ∆. The
constraint F is formulated as an indicator function of W : if
all the words in W satisfy the grid constraints F , F (W ) =
1; otherwise, F (W ) = 0. CP problem is thus formulated as:

W = [w1, ..., wq] s.t.


wi ∈ D, ∀i
F (W ) = 1

wi satisfies ci, ∀i
. (1)

The first is the completeness constraint. The second is the
grid constraint F . The last clue constraint requires the words
inW should semantically match with the associated clues in
C. Since the clue constraint is not black-or-white, we use a
function r(wi, ci) ∈ R, wi ∈ D ∪∆, ci ∈ C to measure the
goodness of each clue-word pair. A large r(wi, ci) means wi

is highly matched with ci. Since the above constraints are
independent of each other, our goal is to find an assignment
maximizing the sum of rewards for all clues:

arg max
W

∑
1≤i≤q

r(wi, ci) s.t. wi ∈ D, ∀i, F (W ) = 1. (2)

As a sequential decision-making problem, the solving of
a CP can be naturally formalized as a Markov Decision Pro-
cess (MDP). An MDP has mainly four components, includ-
ing the set of states S, the set of actions A, transition func-
tion T (s, a) ∈ S, and reward R(s) ∈ R, where a ∈ A, s ∈
S. In a CP game, each state s = [s1, s2, ..., sq] ∈ S corre-
sponds to an assignment W that satisfies the grid constraint,
i.e. F (W ) = 1. For convenience, we use si to denote wi

when no conflict is introduced. An action a = {(i, v)|1 ≤
i ≤ q, v ∈ D} ∈ A includes two components: selecting a
word slot xi and filling it with a word v. We define the action
spaceAs for state s as the actions that satisfy the current grid
constraint of s. The state s is terminal if As = ∅. The deter-
ministic mapping from a state-action pair to another state is

36



Grid

Monte-Carlo Tree Search

features

…

a Select b Expand and Simulate c Backpropagate

expand

default policy

Reward Function

A T M

P U M A

A B Y E

T O Y S

1 2 3

54

6

7

Answer Grid

1 2 3

54

6

7

Across Down
1. $ dispenser 
4. Adidas 
alternative
6. What the 
club gets 
without playing 
7. 1992 Robin 
Williams movie

1. Pit-__
2. Spanish 
pipe
3. Credit-
card exp. 
date format
5. Two-time 
loser to DDE

Clues

A
P
A
T

A T M A
P
A
T

A T M

A T M
U
B
O

A T M
M
Y
Y

A T M
M
Y
Y

A
P
A
T

A T M

A T M
U
B
O

A T M
M
Y
Y

Clue 
Database

Dictionary

A T M
U
B
O

unvisitied

tree policy

terminal state reward

candidates

Figure 2: The framework of our crossword puzzle resolution system based on MCTS. The algorithm iteratively executes three
steps to build a search tree and update the best solution.

denoted as the transition function T (s, a), and the cumula-
tive reward R(s) for each state s is computed by the average
score of r.

R(s) =
1

q

∑
1≤i≤q

r(si, ci). (3)

Our Solution
In the CP problem, each puzzle with its specific clues and
grid constraints corresponds to an independent MDP. A typ-
ical solution for an MDP is to obtain an optimal policy that
iteratively takes the action that maximizes the expected cu-
mulative reward. The terminal state produced by the optimal
policy with maximum cumulative reward corresponds to the
answer to our CP problem. To acquire such a policy, a search
must be performed on all the states while the state space is
too huge to perform a complete exploration. Thus, as shown
in Figure 2, we adopt MCTS, incorporating the strategy of
random sampling into the construction of the policy, to solve
the MDP of CP. Based on MCTS, our algorithm asymptot-
ically refines the policy and finds the solution by iteratively
simulating the CP game. However, it is still challenging to
apply MCTS in the CP problem. First, the action space of
word-filling is extremely large. We need to utilize knowl-
edge from multiple data sources to narrow down the action
space based on the clues while avoiding omitting at the same
time. Second, the reward is not given as a clear signal. We
need to carefully design the reward function based on the
features from those data sources. In the following sections,
we first introduce the detailed algorithm for CP, then illus-
trate the specific design of the reward function.

Crossword Puzzle Resolution Based on MCTS
In this section, we first describe the overall algorithm; then,
we elaborate on our designs for specific problems in CP.

Algorithm Overview
Our algorithm iteratively simulates the game and updates the
best solution until a time limit is reached. During the itera-
tion, a search tree with visited nodes from the past simula-
tion is gradually built, and the policy based on the search tree

becomes more and more accurate. Each node of the tree cor-
responds to a state and holds two values, the numberN(·) of
times it has been visited and a value G(·) that corresponds
to the total returns (cumulative rewards from current states
to terminal states) of all playouts that passed through this
state. The details are illustrated in Algorithm 1. Each itera-
tion consists of the following four steps.

Selection (line 5-9). Starting at the root node, a tree policy
is recursively applied to select children until an expandable
node is encountered. A node is expandable if it has unvisited
children. The tree policy is to select an action maximizing
an upper confidence bound (UCB) (Browne et al. 2012; Sil-
ver et al. 2017) to trade off the actions with high estimated
cumulative rewards against those less-visited ones. For the
calculation of UCB in the tree policy, we adopt the widely-
used P-UCT algorithm (Silver et al. 2017; Rosin 2011),
UCB(s, a) = Q(s, a) + λ

√
N(s)P (s, a)/(1 + N(s′)),

where λ is a hyper-parameter used to determine the degree
of exploration and P (s, a) is the prior probability of taking
an action a on s.This search control strategy initially prefers
actions with high prior probability and low visit count, but
asymptotically prefers actions with high action value.

Expansion and simulation (lines 10-15). The expansion
step starts at an expandable node with state s and adds an un-
visited child of the node to the search tree. If there are multi-
ple unvisited children, we choose the child according to the
prior probability P . The simulation step reaches a terminal
state st from the expanded child by iteratively applying the
default policy and obtains a cumulative reward R(st).

Backpropagation (line 16-19). In the backpropagation
step, we update the statistics of nodes (G(s), N(s)) along
the path from the expanded node to the root with R(st).

Update (line 20-22). After the three steps above, the
search tree is updated and a potential solution correspond-
ing to st is obtained. We execute a postprocessing procedure
Post (line 20) to st and update the best solution (line 21-22).
We adopt the postprocessing procedure from Dr. Fill (Gins-
berg 2011), which has been proven to be effective for the
algorithm to fix a small number of letters filled wrong.

In our CP problem, it is common that different sequences

37



Algorithm 1: Monte Carlo tree search for CP
Input: CP 〈X,C,D, F 〉, reward R, prior probability P ,

transition T , and postprocessing function Post
Output: A state of largest rewards bestS

1 maxR← −∞; bestS ← null
2 G← {s0 : 0};N ← {s0 : 0}
3 while within time limit do
4 s← s0
5 E ← {a : a ∈ As & T (s, a) /∈ G}
6 while E = ∅ do
7 a← arg maxa∈As

UCB(s, a)

8 s← T (s, a)
9 E ← {a : a ∈ As & T (s, a) /∈ G}

10 a← arg maxa∈E P (s, a)
11 s← T (s, a); st ← s
12 while st is not terminal do
13 Sample a ∈ Ast with P (st, a)
14 st ← T (st, a)

15 G(s)← 0;N(s)← 0
16 while s is not null do
17 N(s)← N(s) + 1
18 G(s)← G(s) +R(st)−R(s)
19 s← Parent(s)

20 st ← Post(st)
21 if R(st) > maxR then
22 maxR← R(st); bestS ← st

23 return bestS

of actions may lead to the same assignment. There are many
cases where different nodes in the search tree correspond to
the same state. In a deterministic MDP, a standard MCTS
stores statistics to nodes (or edges), which means the statis-
tics of a state may be distributed over multiple nodes cor-
responding to it. The statistics for the corresponding state
are not fully utilized when estimating the expected rewards
of a node. Thus, we aggregate the statistics of nodes cor-
responding to the same state. It enhances the tree policy by
reducing the estimation bias of the expected reward of action
a on the state s. With this strategy, the search tree can be re-
garded as a directed acyclic graph (DAG). Similar strategies
are also introduced as Monte Carlo Graph Search (MCGS)
in some recent works (Leurent and Maillard 2020; Czech
et al. 2021). We still refer to it as a variant of MCTS in this
paper because they share the same procedure.

Variance Control for UCB
In the P-UCT algorithm, the action value Q can be easily
estimated by statistics in the tree, Q(s, a) = G(s′)/N(s′),
where s′ = T (s, a) is the next state. However, the esti-
mated Q is of high variance due to various puzzles (obscure
clues may get lower rewards) and different states (succes-
sive states have lower Q-value). Thus, we propose to use the
state value of s, i.e. V (s) = G(s)/N(s), as normalization
for this term. The UCB in this paper is defined as

UCB(s, a) =
G(s′)N(s)

G(s)N(s′)
+ λ

√
N(s)P (s, a)

1 +N(s′)
. (4)

The first term can be viewed as the advantage of the action.
Although the range of Q in UCT algorithms should be in
[0, 1] (Meyer and Gurevych 2012), our strategy works well
in practice by tuning a proper value for hyper-parameter λ.
This strategy shares similar ideas of setting λ to state or ac-
tion values (Balla and Fern 2009; Bonet and Geffner 2012;
Keller and Helmert 2013). The key distinction here is that we
present the variance control as a normalization mechanism,
thus we can further improve the performance by tuning λ.

Action Space Reduction
In the expansion and simulation step, the algorithm will ex-
plore all the possible actions for each state to fully expand
a node. However, the action space is huge since an action
needs to consider every word v in the immense domain D
for each word slot. To solve this problem, we propose an
action space reduction strategy, where we consider probable
candidates first and leave the others for later. First, we re-
spectively rank candidate words v for each clue ci with the
reward function r(v, ci). Then, we only include the filling of
the rank-1 word for each clue in the action space. Last, for a
non-terminal state s, we design an additional action to take
other words into consideration.
As = {(i, arg max

v
r(v, ci)) : i ∈ [1, q] ∧ si ∈ ∆} ∪ {α}. (5)

The additional action α makes a special transition from the
current state to another state with the same assignment. The
new state eliminates the rank-1 candidate for each clue and
will consider filling the rest of the candidates as actions.
Note that the additional action is performed recursively, so it
theoretically takes all the candidate words for each clue into
consideration. When the rank-1 candidates are eliminated,
the rank-2 candidates become rank-1 in the new state. The
new state is also associated with an additional action elim-
inating the current rank-1 candidates. With this design, the
definition of the state is technically changed to the assign-
ment with the number of top-ranked candidates eliminated.

Candidate Generation
The MCTS algorithm needs to explore every possible ac-
tion for a state to expand. Even though the subtle strategy is
adopted to reduce the action space, it is still time-consuming
to compute the reward function r(v, ci) for each word v ∈ D
of each slot xi.Hence, it is necessary to generate candidate
words with high quality, which in turn will be explored first
in the MCTS algorithm. We divide the candidate genera-
tion modules into two categories, clue-dependent generation
(CDG), and clue-independent generation (CIG). The CDG
module generates candidates before the search, and the CIG
module generates candidates during the search when no can-
didate from CDG satisfies the grid constraints.

In the CDG, we query the puzzle clue to retrieve top-
ranked clues from the database via BM25 score (Robert-
son and Zaragoza 2009) and return the corresponding γ1 an-
swers with the proper length. After that, we re-rank these
candidates with score Sseen(v, ci) produced by a neural net-
work based on BERT (Devlin et al. 2018). To improve the
recall, CIG is further used to retrieve less reliable but com-
prehensive candidates when none of the candidates could be

38



used from CDG. CIG first looks up a valid candidate word in
the vocabulary. We use a binary score Svocab(v) to indicate
whether the word (string) v ∈ D is in the vocabulary (1) or
not (0). Since this source is less reliable, this module returns
candidates only when the grid constraints are so strong that
no more than γ2 candidates in the vocabulary can be filled.
If no word is found in the vocabulary, the CIG tries to gen-
erate a multi-word compound phrase as the candidate with
grid constraint via a segmentor (Littman et al. 2002) which
segments the grid constraint on this slot with the maximum
logarithm probability Sphrase(v), produced by the unigram
language model.

Default Policy
The default policy is to use prior probability distribution to
take an action from the action space for each state in the
simulation step. As mentioned before, the action space As

of the state s includes the actions that fill the rank-1 candi-
date word to each word slot and the additional action. In-
spired by (Ginsberg 2011), a good strategy to fill the word
is to maximize the difference between the first largest and
the second-largest score. Thus, we first define the score for
a prior heuristic strategy for an action a ∈ As as

H(s, a) =

{
r(v, ci)−max2v′ r(v′, ci) if a = (i, v)

0 otherwise
, (6)

where max2(·) means the second-largest score.
A normalized function is then used to convert the function

H into a probability distribution P (s, a), which is defined as

P (s, a) =
exp(H(s, a)/τ)∑

a′∈As
exp(H(s, a′)/τ)

, (7)

where τ is temperature hyper-parameter. When τ gets
smaller, the default policy tends to exploit the actions with a
high value of H , and when τ gets larger, the default policy
tends to explore the actions with a low value of H .

Reward Function
Unlike games with clear reward signals (e.g. win or lose in
GO), the outcome of CP needs careful evaluation. The good-
ness of the final solution depends on the candidate word
matching scores r for individual clues. It is intuitive to train a
clue-word matching model for individual clues with seman-
tic features and learning-to-rank techniques (Barlacchi et al.
2014; Severyn et al. 2015). However, this solution cannot
guarantee optimal evaluation for the solution because one
ranking model cannot handle the candidates from different
sources. In this section, we first introduce the features we
used; after that, we describe a ranking model baseline; last,
we illustrate our design.

Features
The essence of the reward function r(si, ci) is evaluated by
the matching degree between a word and a clue. We in-
troduce features that are able to reflect how well a word
matches a clue, in Table 1. The features are divided into two
categories, clue-aware features, which measure the match-
ing degree of the clue and the word, and clue-free features,

Type Feature Description

Clue-
aware

Sseen Score of seen clue retrieval
W2V Word2vec similarity of word and clue
POS POS tag matching of clue and word

Clue-
free

Count Log # of occurrences in clue database
Unigram Log unigram counts
Svocab Whether the word is in the vocabulary
Sphrase Score of phrase-based generation

Table 1: Specifications of features in the reward function.

which measure whether the word itself is good without the
clue. The clue-aware features are effective when the clue is
explicit or easy to understand, while the clue-free features
work when the clue is obscure. Aside from those coming
from the retrieval scores, we adopt several additional fea-
tures. For clue-free features, we consider the number of oc-
currences in the clue database and the unigram count of the
word. Those features are helpful for selecting the answer
when the signal from the clue is vague. For clue-aware fea-
tures, we additionally consider POS tag matching degree and
word2vec (Mikolov et al. 2013) similarity.

A Ranking Model Baseline
A typical solution is to use the scores provided by a ranking
model trained on the ground-truth clue-answer pairs as the
reward function r(w, c), w ∈ D, c ∈ C for answers to a sin-
gle clue (Moschitti et al. 2015). We utilize the features above
to train a ranking model f(w, c; θ) for how well a candidate
wordw matches the clue c. We adopt the ListMLE (Xia et al.
2008) algorithm for the optimization of our ranking model.
Specifically, we use the following loss function to optimize
the model.

L(f ; θ) = −
∑
c

∑
w∈Wc

yc(w) log
exp(f(w, c; θ))∑

w′∈Wc
exp(f(w′, c; θ))

.

(8)
Wc is the candidate answer set for clue c and yc represents
the ground truth. Specifically, yc(w) = 1 if w is the answer
of c; yc(w) = 0, otherwise. Then we define the reward func-
tion as the trained ranking model, i.e. r(w, c) = f(w, c; θ).

Reward Function Based on Multi-source Ranking
However, the above solution of using the ranking model as
the reward function is not optimal for the solution eval-
uation because it is unable to handle data from different
sources. First, different features work in different sources.
When ranking the candidates from CDG, the retrieval scores
are dominant, while other features may be noisy. However,
to rank candidates from vocabulary, the retrieval scores are
useless. Second, one model cannot fit the data from differ-
ent sources in a unified way since the information in these
two sources is different. The data-driven approach is good at
fine-tuning the ranking for a large number of samples, while
it is hard for it to learn a global strategy for candidates from
which source is more important. Thus, we design a novel
reward function for matching the word si and the clue ci as:

r(si, ci) = φ(si, ci) + ω1ρ(si, ci) + ω2I(si), (9)

39



where φ and ρ are two ranking models for answers from
the CDG and the vocabulary, respectively. The third item
is a reward for the words in the vocabulary, I(si) =
max(Svocab(si), Sphrase(si)). Hyper-parameters ω1 > 0
and ω2 > 0 are used to control the reward scale of differ-
ent sources. φ and ρ are both neural networks trained by data
from different sources. φ is the neural network we trained for
seen clue matching (i.e. Sseen). ρ uses other features except
for Svocab and Sphrase. I can be also regarded as a ranking
model for out-of-vocabulary candidates. The training of φ
has been mentioned before in the CDG. For the training of
ρ, we construct a dataset by running a basic MCTS without
the reward of ρ on the validation set and obtain the data sam-
ples from the candidate generation of the vocabulary source.
After training φ and ρ, we tune the hyper-parameters ω1 and
ω2 on the validation set based on the performance of MCTS.

Experiments
We conduct experiments to prove that our method is a state-
of-the-art and that the designs in our method are effective2.

Data Sources
We collect clues and puzzles from the web3. Apart from the
puzzles and clues, we use a wide range of external sources
such as Wikidata (Vrandečić and Krötzsch 2014) and sev-
eral dictionaries (Miller 1998; Meyer and Gurevych 2012)4.
The large vocabulary is a combination of the answers from
past puzzles, dictionary words, as well as entity names and
aliases from Wikidata.

Dataset for Crossword Puzzle Resolution
There are no existing publicly available standard datasets for
CP problems. Previous methods (Littman et al. 2002; Ernan-
des et al. 2005) tested their method in their own selected
puzzles, and the criteria for selection are not specified. So
the difficulty of test puzzles is hard to compare. In addition,
the source of the clue database also influences the difficulty
of the test puzzle, because the more seen clues are in a CP,
the easier it gets. Hence, it is an urge to construct a dataset
with puzzles and clue database fairly selected.

We construct a dataset based on NYT daily cross-
word puzzles. To eliminate the influence of different clue
databases, we select a split date, use the collection of clues
before that date as the clue database, and use the puzzles af-
ter that date as the test set. According to this criterion, we
construct a standard test set with 57 puzzles for test and
4,568,786 seen clues in the database. However, many puz-
zles are too simple and can be easily resolved because most
of the clues can be found in the clue database, even though
we set the split date. To show the capability of our algo-
rithm, we select 24 puzzles with the lowest clue database re-
call rates as the hard test set. In addition, based on the same
criterion, we construct a validation set with 85 puzzles for

2Codes and datasets are publicly available at https://www.
github.com/lhlclhl/CP.

3https://www.xwordinfo.com/;https://www.crosswordgiant.
com/;http://www.otsys.com/clue

4We extract Wiktionary and Wikidata from 20210320 dumps.

Category Puzzles Seen Clues

Validation 85 4,510,058

Test (Standard) 57 4,568,786

Test (Hard) 24 4,568,786

Table 2: Our crossword puzzle resolution dataset statistics.

tuning hyper-parameters. The statistics of our datasets are
presented in Table 2.

Experimental Setup
To measure the performance of methods of crossword puz-
zle resolution, we evaluate the results using the ratio of cor-
rect words and correct letters based on the ground truth grid.
Since the crossword puzzles are required to be finished in a
limited time, we set two time limits (100 seconds and 1000
seconds) as different experiment settings for testing. To re-
duce the bias due to the randomness of MCTS, we run our
algorithm 5 times and report the average performance.

We use grid search to tune hyper-parameters on the vali-
dation set. The values of hyper-parameters we use are λ =
0.08, τ = 0.2, γ1 = 50, γ2 = 200, ω1 = 0.7 and ω2 = 15.
For the model ρ, deeper models have better performance on
the ranking but are inefficient to calculate. In practice, we
adopt the linear models resulting in better performance of
MCTS due to the efficient calculation during the search.

Search Algorithm Comparison
In this section, we compare our MCTS to other search al-
gorithms for solving CPs. Since source codes of previous
works on crossword puzzle resolution are not available, we
re-implement the search algorithms but retain the candidate
generation and scoring function of our method as baselines.
The re-implemented baselines are only for the comparison
of search method and might not be the best-performance sys-
tem reported in their paper. The baselines are as follows.
• Webcrow (WA*) (Ernandes et al. 2005). Webcrow adopts

a weighted A* search algorithm to do the grid filling. Our
re-implemented version removes the web search module
because it is time-consuming and might be a leakage for
the test set because we only consider the seen clues be-
fore a certain date.

• WA*+Heuristic. We improve the WA* algorithm in We-
bcrow by using the heuristic from Dr. Fill as search order.

• Dr. Fill (Ginsberg 2011). It adopts LDS to solve the
search problem in CP. Our re-implemented version does
not have the feature of the crossword “merit” because it
is manually constructed and not publicly available.

The experiment results are shown in Table 3. We can
see that our method outperforms all the competitors on the
dataset. In addition, a good heuristic can significantly im-
prove the performance of A* search. In this experiment, we
do not consider baselines such as (Moschitti et al. 2015) be-
cause they focus on ranking the candidates for individual
clues. We will discuss their scoring strategy with the rank-
ing model in the following experiments.

40



Time Limits 100s 1000s

Metrics words letters words letters

Webcrow (WA*) 36.21 47.16 36.21 47.16
WA*+Heurisitc 63.34 77.06 63.43 77.12
Dr. Fill (LDS) 88.04 93.99 89.69 95.17

Ours (MCTS) 94.05 97.30 97.04 98.81

Table 3: System comparison on the standard test set.

Study of MCTS
In this section, we conduct experiments to study the de-
signs in our MCTS algorithm and how they influence per-
formance. We use the hard test set to evaluate.

Effect of Variance Control for Tree Policy We propose a
variance control technique for the UCT algorithm to relieve
the problem of variant estimated Q-value in the CP problem.
We conduct experiments to show the effectiveness of this
special design. For comparison, we use the standard P-UCT
algorithm for the tree policy (w/o VC) with re-tuned λ in
the validation set, and other strategies, including setting the
exploration factor to the action value (Balla and Fern 2009)
(λ = Q/V ) and the state value (Keller and Helmert 2013)
(λ = 1). Also, we try other settings of λ to see how it affects
the results (λ = 0.01, 0.2, 0.5). The results are presented
in Table 4. We can see the performance drops without our
variance control technique, which proves the effectiveness
of our design. For the influence of the exploration factor, less
exploration (λ = 0.01) encourages the algorithm to find bet-
ter solutions in the short term, but limits its performance in
the long run. Our setting (λ = 0.08 tuned on the validation
set) can be regarded as a trade-off between the short-term
exploitation and the long-term exploration. We further illus-
trate the effectiveness of the strategy by analyzing its run-
time behavior during the search. We select a puzzle where
the two versions of our method achieve the same results
(word accuracy of 97.2%). We plot their reward-iteration
curves in Figure 3. MCTS with our variance control strat-
egy shows faster convergence and more steady improvement
during the iteration.

Effect of Action Space Reduction In our MCTS algo-
rithm, we design an action space reduction strategy where
we limit the action space in those filling in the rank-1 can-
didate word for each clue, and an additional one of elimi-
nating the rank-1 to consider the rest. This strategy is actu-
ally an exploitation and exploration trade-off. The strategy
maximizing exploitation is to only consider the rank-1 can-
didates, and the one maximizing exploration is to consider
all the candidate words at the same time. In this section, we
conduct experiments to prove the effectiveness of this trade-
off strategy by comparing it with those two alternatives.

• All Actions Included (AA). We consider filling all the
candidate words as actions in MCTS. This is a strategy
that emphasizes exploration.

• No Additional Action (NA). We only consider the rank-
1 candidate for each clue without the additional action,

0 10000 20000 30000
Iterations

0.6

0.7

0.8

0.9

1.0

Re
w
ar
d

(a) w/o VC

0 10000 20000 30000
Iterations

0.6

0.7

0.8

0.9

1.0

Re
w
ar
d

(b) w/ VC

Figure 3: Reward-iteration curve comparison between the
algorithm with and without variance control strategy.

which is inclined to the exploitation of the heuristic.

Results in Table 4 show the effectiveness of the trade-off in
our action space design. It is obviously a bad idea to consider
all the candidates as actions. Although the NA strategy has
slightly better performance in the short time limit, its lack of
exploration limits the performance in the long run.

Study of Reward Function
In this section, we conduct experiments to explore how
the reward function influences the performance of MCTS.
We compare our design with different strategies for scor-
ing CP solutions. Due to the different problem formaliza-
tion, previous works on crossword resolution usually adopt
a maximum log-likelihood objective to scoring the solu-
tion (Nicosia et al. 2015). Our reward function with similar
features is empirically equal to the previous scoring strategy.
The main difference here is how to obtain such a function to
achieve the best performance of the search algorithm. We
conduct experiments to show the superiority of our design
by comparing it with previous methods to obtain the reward
function. The baselines are as follows.

• Ranking model as reward (RMR). This is a commonly
used strategy in some works (Barlacchi et al. 2014; Mos-
chitti et al. 2015). For solution evaluation, it directly uses
the output of the ranking model, which is trained by the
mixed training samples of φ and ρ.

• Inverse Reinforcement Learning (IRL). Considering each
solution as a trajectory in the MDP, this is an IRL prob-
lem. The objective of IRL is to obtain a reward function
that gives high rewards for demonstration trajectories
(good solutions in our case) and low rewards for others.
We compare with the maximum margin planning (Ratliff
et al. 2006) (MMP) algorithm. We run the IRL algorithm
on the validation set with the initialized parameters of the
ranking model.

The results are shown in the bottom part of Table 4. Our
design of the reward function achieves the best performance
over all the baselines. For the RMR baseline, we can see that
the learned candidate ranking model serves as a bad reward
function although it provides a more sophisticated ranking
for each clue. In addition, the IRL baseline also shows in-
ferior performance. The reason is that the negative solutions
are usually undersampled and biased.

41



Time Limits 100s 1000s

Metrics words letters words letters

Ours 91.20 96.15 94.88 98.04

w/o VC 90.20 95.53 92.89 96.99
λ = Q/V 88.61 94.75 94.21 97.75
λ = 1 87.04 93.52 93.38 97.25
λ = 0.5 89.06 94.50 94.15 97.45
λ = 0.2 90.31 95.73 94.89 97.99
λ = 0.01 92.26 96.84 93.76 97.35

AA 46.40 64.42 47.76 65.03
NA 91.31 96.22 94.15 97.36

RMR 85.70 92.88 89.20 95.00
IRL 85.15 92.02 87.98 93.54

w/o φ 6.18 16.50 8.54 18.90
w/o I 83.66 92.23 84.35 92.48
w/o ρ 87.92 94.80 89.65 95.67

Table 4: Ablation study of different designs in our MCTS
algorithm on the hard test set.

For the ablation study, we eliminate factors in our reward
function respectively and see how they influence the perfor-
mance of MCTS. In Table 4, we can see that the most im-
portant part of our reward function is the score given by the
clue-dependent retrieval φ. The performance of our method
drops drastically without φ, but we don’t think more anal-
ysis of φ is necessary because the information of φ is also
included in comparative methods. If we remove features in
φ for those methods, their performances drop drastically as
well. The ranking model ρ is the least important, while it still
brings performance gain of 3%− 5% on the word accuracy.

Error Analysis
There are two main types of errors. The first is the low re-
call rate of the candidate generation. The performance of
our method is affected heavily by the confidence answers
retrieved from the clue database. Due to the characteristics
of crossword design, most of the clues (around 80% on aver-
age5) are textually similar to some seen clues in the database
which means their answers can be retrieved from the clue
database. When there are few seen clues or many clues are
ambiguous, the performance of our method drops. Another
factor leading to poor performance is caused by the imper-
fect reward function. In many cases, the reward function is
not discriminative enough for good and bad solutions, which
leads to poor performance of the algorithm.

Related Work
Search The traditional methods (Littman et al. 2002; Er-
nandes et al. 2005) for crossword puzzle resolution adopt
the A* search (Pohl 1970) to find the best solution. The

5It does not mean 80% clues can be solved by the clue database
because the retrieved answers are always mixed with noisy candi-
dates. Thus the search still serves as a crucial role in the system.

depth-first search suffers from the problem of “early mis-
takes” (Harvey and Ginsberg 1995). The algorithm is diffi-
cult to backtrack if the mistake happens in the shallow level
of the search. To alleviate this problem, an LDS (Ginsberg
2011) is adopted based on a heuristic strategy. The LDS
change the search order to first check the solutions that vio-
late the heuristic strategy less. It is obvious that LDS heav-
ily relies on the exploitation of the heuristic strategy and
lacks the ability to explore other options. MCTS provides a
trade-off between exploitation and exploration of this prob-
lem while has not been applied to this task. It has a pro-
found impact on AI approaches for domains that can be rep-
resented as trees of sequential decisions, such as games (Sil-
ver et al. 2017; Raiko and Peltonen 2008), and some NLP
problems (Liu et al. 2020).

Clue understanding Clues understanding includes gener-
ating candidates based on clues and evaluating the solution
according to the clue-word matching. For the generation of
candidates, traditional efforts tend to use complicated expert
systems with many submodules (Littman et al. 2002; Ernan-
des et al. 2005). These heavy candidate generation modules
are impractical, as CP problems usually have a time limit
that the search and candidate generation share. Hence, the
following work considers a few but effective sources and
concentrates on the search to achieve better overall per-
formance (Ginsberg 2011). With the development of nat-
ural language processing (Devlin et al. 2018) and knowl-
edge base (Auer et al. 2007; Vrandečić and Krötzsch 2014),
there are emerging solutions for similar tasks such as re-
verse dictionary (Zheng et al. 2020), entity retrieval (Gillick
et al. 2019), question answering (Karpukhin et al. 2020),
and cryptic clue decryption (Efrat et al. 2021; Rozner et al.
2021). However, it is still difficult for current methods to ef-
fectively and efficiently handle the ambiguity, obscurity, and
diversity of the clues. For the evaluation of the matching be-
tween clues and words, traditional solutions use manually-
tuned scoring functions to evaluate the clue-word match-
ing (Ernandes et al. 2005; Ginsberg 2011), which has limited
utility on big data. Some recent methods use the data-driven
methods such as learning-to-rank models (Barlacchi et al.
2014; Moschitti et al. 2015; Severyn et al. 2015) to train
the scoring function. However, they optimize the candidate
ranking only for individual clues, and it is not optimal to be
directly used to evaluate the whole solution because they do
not consider grid constraints.

Conclusion
In this paper, we propose a novel framework for solving
crossword puzzles based on MCTS. As far as we know, we
are the first to apply MCTS to solve the crossword puz-
zle problem. We design a novel reward function combining
the delicate candidate ranking for individual clues and ro-
bust global rewarding for the whole solutions. Our method
achieves state-of-the-art performance in the dataset. There
are three aspects of future works. The first is to design a
more effective candidate generation module.The second is
to design a more robust and discriminative reward function.
The third is to introduce policy and value learning in MCTS.

42



Acknowledgements
We thank anonymous reviewers for their comments and sug-
gestions. This work was supported by National Key Re-
search and Development Project (No. 2020AAA0109302),
Shanghai Science and Technology Innovation Action Plan
(No. 19511120400), Shanghai Municipal Science and Tech-
nology Major Project (No. 2021SHZDZX0103), National
Natural Science Foundation of China (No. 62102095),
China Postdoctoral Science Foundation (No. 2020M681173
and No. 2021T140124), and National Science Foundation
(No. NSF-DMS-2113637).

References
Auer, S.; et al. 2007. Dbpedia: A nucleus for a web of open
data. In The semantic web, 722–735. Springer.
Balla, R.-K.; and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In Twenty-First Inter-
national Joint Conference on Artificial Intelligence.
Barlacchi, G.; et al. 2014. Learning to Rank Answer Can-
didates for Automatic Resolution of Crossword Puzzles. In
CoNLL.
Bonet, B.; and Geffner, H. 2012. Action selection for MDPs:
Anytime AO* versus UCT. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 26, 1749–1755.
Browne, C. B.; et al. 2012. A survey of monte carlo tree
search methods. IEEE Transactions on Computational In-
telligence and AI in games, 4(1): 1–43.
Czech, J.; et al. 2021. Improving AlphaZero Using Monte-
Carlo Graph Search. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 31, 103–111.
Devlin, J.; et al. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv
preprint arXiv:1810.04805.
Efrat, A.; et al. 2021. Cryptonite: A Cryptic Crossword
Benchmark for Extreme Ambiguity in Language. In Pro-
ceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, 4186–4192.
Ernandes, M.; et al. 2005. Webcrow: A web-based system
for crossword solving. In AAAI, 1412–1417.
Gillick, D.; et al. 2019. Learning Dense Representations for
Entity Retrieval. In Proceedings of the 23rd Conference on
Computational Natural Language Learning, 528–537.
Ginsberg, M. L. 2011. Dr. fill: Crosswords and an imple-
mented solver for singly weighted csps. Journal of Artificial
Intelligence Research, 42: 851–886.
Harvey, W. D.; and Ginsberg, M. L. 1995. Limited discrep-
ancy search. In IJCAI (1), 607–615.
Karpukhin, V.; et al. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing, 6769–6781. Online: Association for
Computational Linguistics.
Keller, T.; and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon MDPs. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, volume 23, 135–143.

Leurent, E.; and Maillard, O.-A. 2020. Monte-Carlo Graph
Search: the Value of Merging Similar States. In Asian Con-
ference on Machine Learning, 577–592. PMLR.
Littman, M. L.; et al. 2002. A probabilistic approach to solv-
ing crossword puzzles. Artificial Intelligence, 134(1-2): 23–
55.
Liu, G.; et al. 2020. Extracting Knowledge from Web Text
with Monte Carlo Tree Search. In Proceedings of The Web
Conference 2020, 2585–2591.
Meyer, C. M.; and Gurevych, I. 2012. Wiktionary: A new
rival for expert-built lexicons? Exploring the possibilities of
collaborative lexicography. na.
Mikolov, T.; et al. 2013. Distributed representations of
words and phrases and their compositionality. Advances in
neural information processing systems, 26: 3111–3119.
Miller, G. A. 1998. WordNet: An electronic lexical database.
MIT press.
Moschitti, A.; et al. 2015. SACRY: Syntax-based Automatic
Crossword puzzle Resolution sYstem. In ACL.
Nicosia, M.; et al. 2015. Learning to rank aggregated an-
swers for crossword puzzles. In European Conference on
Information Retrieval, 556–561. Springer.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4): 193–204.
Raiko, T.; and Peltonen, J. 2008. Application of UCT search
to the connection games of Hex, Y,* Star, and Renkula! AI
and Machine Consciousness.
Ratliff, N. D.; et al. 2006. Maximum margin planning. In
Proceedings of the 23rd international conference on Ma-
chine learning, 729–736.
Robertson, S.; and Zaragoza, H. 2009. The probabilistic rel-
evance framework: BM25 and beyond. Now Publishers Inc.
Rosin, C. D. 2011. Multi-armed bandits with episode con-
text. Annals of Mathematics and Artificial Intelligence,
61(3): 203–230.
Rozner, J.; et al. 2021. Decrypting Cryptic Crosswords: Se-
mantically Complex Wordplay Puzzles as a Target for NLP.
Advances in Neural Information Processing Systems, 34.
Severyn, A.; et al. 2015. Distributional neural networks for
automatic resolution of crossword puzzles. In Proceedings
of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers),
199–204.
Silver, D.; et al. 2017. Mastering the game of go without
human knowledge. nature, 550(7676): 354–359.
Vrandečić, D.; and Krötzsch, M. 2014. Wikidata: a free
collaborative knowledgebase. Communications of the ACM,
57(10): 78–85.
Xia, F.; et al. 2008. Listwise approach to learning to rank:
theory and algorithm. In Proceedings of the 25th interna-
tional conference on Machine learning, 1192–1199.
Zheng, L.; et al. 2020. Multi-channel reverse dictionary
model. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 312–319.

43


