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Abstract

Temporal planning is a hard problem that requires good
heuristic and memoization strategies to solve efficiently.
Merge-and-shrink abstractions have been shown to serve as
effective heuristics for classical planning, but they have not
yet been applied to temporal planning. Currently, it is still
unclear how to implement merge-and-shrink in the temporal
domain and how effective the method is in this setting. In this
paper we propose a method to compute merge-and-shrink ab-
stractions for temporal planning, applicable to both partial-
and total-order temporal planners. The method relies on pre-
computing heuristics as formulas of temporal variables that
are evaluated at search time, and it allows to use standard
shrinking strategies and label reduction. Compared to state-
of-the-art Relaxed Planning Graph heuristics, we show that
the method leads to improvements in coverage, computation
time, and number of explored nodes to solve optimal prob-
lems, as well as leading to improvements in unsolvability-
proving of problems with deadlines.

Introduction
Temporal planning is a hard problem with applications in
logistics, manufacturing and other real-world problems. In
contrast with classical planning, temporal planning consid-
ers durative actions with preconditions and effects at mul-
tiple points, and which can be executed concurrently. Due
to this added flexibility, temporal planning problems often
have larger state spaces. Indeed whilst classical planning is
PSPACE hard (Bylander 1994) temporal planning is EX-
PSPACE hard (Rintanen 2007). Thus the use of plan equiva-
lency and memoization strategies, as well as tight heuristics,
is crucial for efficient temporal planning. In this paper we
adapt the work on merge-and-shrink abstraction heuristics
(Helmert et al. 2007; Nissim, Hoffmann, and Helmert 2011;
Fan, Holte, and Müller 2018) into PDDL temporal planning,
and use these to improve the efficiency of two families of
temporal planners: partial-order and total-order planners.

Heuristics are crucial to improve the efficiency of plan-
ners and the quality of plans, both in sorting the open list
to guide search towards promising states but also, as we
focus on here, in pruning states from which a goal cannot
be reached. In optimal temporal problems which optimize
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the makespan of the plan (i.e. total time from start to goal),
heuristics can be used to estimate when the goal will be
reached, and thus prune states from which a lower metric
value cannot be reached. In problems with deadlines, ad-
missible heuristics can be used to obtain a lower bound of
when each fact is achieved, and thus prune states that can-
not meet a deadline. Most current state-of-the-art tempo-
ral planners use heuristics based on the Temporal Relaxed
Planning Graph (TRPG) (Do and Kambhampati 2003; Coles
et al. 2010; Haslum 2009), though the context-enhanced ad-
ditive heuristic (Eyerich, Mattmüller, and Röger 2009) and
landmark-based pruning strategies (Marzal, Sebastia, and
Onaindia 2014) have also been applied to temporal planning.

In this paper we build on the work of temporal mu-
tex analysis (Bernardini and Smith 2011) and (classical)
merge-and-shrink abstractions (Helmert et al. 2007; Nis-
sim, Hoffmann, and Helmert 2011; Fan, Holte, and Müller
2018) to generate merge-and-shrink abstraction heuristics
for temporal planning. These abstractions are built by suc-
cessively taking the product of (single-variable) transition
graphs and then shrinking the state-space by “collapsing”
abstract states based on their lower-bound estimates of goal-
makespan. Due to the temporal nature of the problem, as
we will explain later on, such estimates also depend on tem-
poral variables associated with the current state, and thus
the computed lower bounds cannot be pre-computed in the
form of numeric values—but in the form of algebraic ex-
pressions of temporal variables. Similarly, abstract states
are collapsed not based on their heuristic values as in clas-
sical planning but based on expression equivalency. Even
though this complexity results in higher computation times
for the heuristic, all expensive computation is done during
the pre-computation stage, while during search the heuris-
tic makespan estimates can be quickly obtained by evaluat-
ing the pre-computed expressions. We evaluate the approach
on makespan-optimization temporal problems and temporal
problems with deadlines. Importantly, our approach is gen-
erally applicable to both partial-order and total-order tem-
poral planners—and our experiments show that merge-and-
shrink heuristics are beneficial in both settings.

The contributions of the paper are: 1) the proposal of a
merge-and-shrink method for temporal planners; 2) a new
merging strategy that is effective in temporal planning; and
3) the demonstration of the effectiveness of merge-and-
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shrink in both partial- and total-order temporal planners, in
both optimal problems and problems with deadlines.

Related Work
Many temporal planners rely on a variant of a Temporal
Relaxed Planning Graph (TRPG) (Do and Kambhampati
2003; Long and Fox 2003a) as a heuristic. The TRPG is a
graph that explores the full state space in (timestamped) lay-
ers while ignoring delete effects—thus providing admissible
estimates of makespan. Another approach to obtaining ad-
missible estimates is Haslum’s cost-based heuristic (Haslum
2009), which finds sequential action sets to establish bounds
on the amount of concurrency and thus makespan. Other re-
lated work on (non-admissible) temporal planning heuris-
tics is that of Marzal et al. (Marzal, Sebastia, and Onaindia
2014), which extracts landmarks from temporal problems
and uses them in a non-admissible heuristic during search;
as well as Eyerich’s work on the context-enhanced additive
heuristic (Eyerich, Mattmüller, and Röger 2009).

The method proposed in this paper is based on the merge-
and-shrink literature (Helmert et al. 2007; Nissim, Hoff-
mann, and Helmert 2011; Helmert 2006; Fan, Holte, and
Müller 2018), which has focused on classical planning prob-
lems so far. Our method also builds on recent advances in
temporal planning, particularly the work on partial-order
search-based planners (Coles et al. 2010; Coles and Coles
2016; Benton, Coles, and Coles 2012).

Background
Temporal Planning
Definition 1 A temporal SAS+ planning task is a tuple Π =
〈V ,O, s0, G〉, where:

• V = {v1, ..., vn} is a set of state variables. Each variable
v ∈ V is associated with a domain Dv , which includes
an “undefined” value ⊥. The total variable state space
is therefore SV = Dv1 × ...×Dvn .
• O is a finite set of durative actions, where

a durative action a ∈ O is a tuple
〈pre`, pre↔, prea, eff `, eff a, δ

−, δ+〉, comprising
the sets of pre-conditions and effects at the start (`) and
end (a) of the action and a set of invariant conditions
(↔) which must hold throughout the execution of the
action. The bounds δ−, δ+ ∈ R+

0 constitute a duration
constraint on the action, with δ+ ≥ δ−.
• Each action can be split into two “snap” actions
a` = 〈pre`, eff `〉 and aa = 〈prea, eff a〉, which
need to be sequenced and scheduled such as to respect
pre↔, δ

−, δ+.
• “Compression-safe” actions Oc ⊆ O are durative ac-

tions where, without loss of completeness, soundness or
optimality, the end snap action can be sequenced imme-
diately after the start snap action (Coles et al. 2009).
The set of non-compression-safe actions is denoted by
On = O\Oc.
• Conditions pre`, prea, pre↔ are partial variable as-

signments in the form of pairs 〈v, w〉 of variables v and
the valuesw they must hold in the start, end, or the whole

period between the start and the end of the action, re-
spectively. Therefore, an action has a start, end, or in-
variant condition on vi if ∃〈v, w〉 ∈ pre`/a/↔ such that
v = vi.

• Effects eff `, eff a are partial variable assignments in the
form of pairs 〈v, w〉 of variables v and the values w they
will hold after the execution of the respective snap action.
Therefore, an action has a start or end effect on vi (or
“affects” variable vi at the start/end) if ∃〈v, w〉 ∈ eff`/a
such that v = vi.

• s0 ∈ SV is called the initial state
• G is a set of preconditions called the “goal” of the task.

Even though splitting actions into “snap” actions leads to
an explosion of the search space, care can be taken so as to
alleviate the issue on compression-safe actions—by identi-
fying compression-safe actions and automatically inserting
end actions (rather than considering this a search decision)
if doing so does not compromise completeness (Coles et al.
2009).

Definition 2 A temporal planning state s = 〈U,P, T 〉 is a
tuple of:

• U : a set of assignments for all variables in V
• P : a vector of snap actions which represent the plan to

reach s from s0. Each of these actions is called a “step”
of P

• T : a set of temporal constraints over the actions in P ,
each of the form t− ≤ t(b) − t(a) ≤ t+. Here, t(i) is
called a “timestamp” and is a variable representing the
time at which the snap action with index i in P is sched-
uled to be executed. So, a and b are indices of actions in
P , while t−, t+ ∈ R+

0 and t− ≤ t+.

Definition 3 A (partial) plan associated with a temporal
planning state s is defined by P and an assignment of times-
tamps t(1), ...t(m) to each of the m actions in P , obtained
by solving a Simple Temporal Problem (STP) (Dechter,
Meiri, and Pearl 1989) built from the constraints T .

The STP finds the earliest possible timestamp for each ac-
tion. In practice, it can be solved by finding the shortest-path
within a Simple Temporal Network (STN) representation of
the STP (Dechter, Meiri, and Pearl 1989).

Definition 4 A solution is a plan for which all goal pre-
conditions G are satisfied after the final step, all condi-
tions of actions in P are satisfied, and all actions have
finished executing. A solution is optimal if its “makespan”
maxi∈1,...,mt(i) is minimal.

Definition 5 Variable annotations (Coles et al. 2010) are
stored for each temporal planning state s = 〈U,P, T 〉 dur-
ing planning, and consist of:

• V eff(s, v): the index of the step (action) in P that most
recently had an effect upon variable v;
• VP(s, v), where each 〈i, d〉 ∈ VP(s, v) comprises the

index i of a step in P that referred to the variable v since
the last effect on v; and d ∈ {0, ε}, encoding the tem-
poral separation needed to respect the PDDL mutual ex-
clusion semantics. A step depends on v if it either has a
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precondition on v; an effect needing an input value of v;
or is the start of an action with a duration depending on
v.

We note that while the state annotations introduced in (Coles
et al. 2010) were written in a propositional PDDL formalism,
here they refer to SAS+ variables.

Definition 6 Variable “use” and “chg” timestamps (Coles
and Coles 2016) are timestamps from which a variable can
be used or changed, given the preconditions and effects on
that variable:

• use(s, v) = t(V eff(s, v)),
• chg(s, v) = max{t(i) + d|〈i, d〉 ∈ VP(s, v)}.

On total-order temporal planners1, use and chg timestamps
are equal to the timestamp of the last action in the plan (or
timestamp of the state) in all variables. However, that is not
the case in planners that only partially order solution plans—
in which case use can be derived from the last action to add
a fact, and chg from the last action to add or condition on the
fact (Coles et al. 2010). In this paper we consider the most
general case, of separate use and chg timestamps for each
variable, in order to make the methods applicable to both
kinds of temporal planners.

Merge-and-Shrink
Definition 7 A transition graph (Helmert et al. 2007) is a
tuple Θ = 〈V, S, L,A, s0, SG〉, where V ⊆ V is a subset of
the variables in V , S is a state space of variable assignments
S = SV ⊆ SV , L ⊆ O is a finite set of transition labels,
A ⊆ S × L × S is a set of labeled transitions, s0 ∈ S is
the initial state in Θ, and SG ⊆ S is the set of goal states
in Θ. The graph has a transition labelled l ∈ L ⊆ O from
s ∈ S to d ∈ S if action l is applicable in s and applying
the action results in state d.

We denote the transition graph associated with a plan-
ning task Π by Θ(Π). A transition graph is an abstrac-
tion of an original planning problem, and thus can be used
to obtain a heuristic that helps solve the problem. Merge-
and-shrink is an approach to build a small-yet-informative
transition graph, which works by incrementally combining
(“merging”) and simplifying (“shrinking”) smaller transition
graphs associated with different variables until a single tran-
sition graph remains.

Merging consists of taking the synchronized product of
two transition graphs Θ ⊗ Θ′ = 〈V ∪ V ′, S × S′, L,A ⊗
A′, 〈s0, s

′
0〉, SG×S′G〉, whereA⊗A′ is such that a transition

exists from 〈s, s′〉 to 〈d, d′〉 via label l iff 〈s, l, d〉 ∈ A and
〈s′, l, d′〉 ∈ A′.

Shrinking consists of creating an abstract transition
graph α(Θ) := 〈V, α(S), L, {〈α(s), l, α(d)〉|〈s, l, d〉 ∈
A}, α(s0), α(SG)〉, where α is a function on S that maps
multiple states into a single abstract state.

For merge-and-shrink to be computationally efficient,
other operations are also conducted before or after each

1Planners that enforce a total-ordering on actions, i.e. neighbors
of a search state will always add an action to the end of the plan.

shrink step: label reduction, and pruning. Label reduc-
tion decreases the number of transitions by replacing
groups of transitions by a single abstract transition. It con-
sists of creating an abstract transition graph τ(Θ) :=
〈V, S, τ(L), {〈s, τ(l), d〉|〈s, l, d〉 ∈ A}, s0, SG〉, where τ
is a label mapping function which maps multiple (same-
cost/duration) labels into a single one. Finally, “pruning”
consists of removing states from a transition graph that are
not reachable from the initial state, or that are not connected
to the goal.

A generic merge-and-shrink abstraction-building algo-
rithm is shown in Algorithm 1.

Algorithm 1: Generic merge-and-shrink algorithm
Data: X ← { all single-variable transition graphs }
Result: final transition graph in X

1 while |X| > 1 do
2 Θ1,Θ2 ← PickTwoGraphsToMerge(X);
3 LabelReduction(Θ1,Θ2);
4 Θ1 ← α(Θ1); Θ2 ← α(Θ2); #Shrink
5 Θmerged ← Θ1 ⊗Θ2; #Merge
6 Pruning(Θmerged);
7 X ← X ∪Θmerged\{Θ1,Θ2};

Temporal Merge-and-Shrink
We now introduce merge-and-shrink for temporal planning.
For simplicity, we focus on the case of non-numeric tempo-
ral domains without “required concurrency” (Cushing et al.
2007), i.e. where all actions are compression-safe On = ∅.
In the last section we discuss what an extension to domains
with non-compression-safe actions would entail.

Challenges

Concurrency in temporal planning introduces a challenge
when building and using merge-and-shrink heuristics and
abstractions. While in classical planning a heuristic can be
computed taking shortest-paths (e.g. from (Dijkstra 1959))
on the abstract transition graph, in temporal planning the
makespan of a sequence of transitions is not necessarily
equal to the sum of the transitions’ durations. The makespan
of a sequence of transitions from s to a goal sG depends not
only on transition durations but also on the times at which
each of the transitions from s to sG can start. Additionally,
it depends on the times of previous actions that have already
been added before s was reached (i.e. the times of actions in
P ). This will complicate the pre-computation of a heuristic
function—since we will now need to pre-compute a map-
ping not from states to numeric values, but from states to
functions of use and chg variables.

We will now describe how to compute the starting time
of actions as functions of use and chg variables, and use this
knowledge to describe use/chg propagation and the compu-
tation of makespan and heuristic functions.
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Action Scheduling and use/chg Propagation
At a given stage during search we arrive at a search state s,
and we want to compute a lower bound on the time a goal
state can be achieved from s using abstraction Θ. First we
project s to s ∈ S, then we compute when each action can
be executed, successively through multiple transitions in Θ
until a goal state is reached.

The time at which an action a can execute in an abstract
state s ∈ S depends on the use/chg times of the variables
which the action affects and depends on. If a is applied in s
then it can start no earlier than:

start minΘ(a, s) = max{

max
〈vi,wi〉∈pre`(a) : vi∈V

use(s, vi) + ε,

max
〈vi,wi〉∈(pre↔(a)\eff `(a)) : vi∈V

use(s, vi),

max
〈vi,wi〉∈eff `(a) : vi∈V

chg(s, vi) + ε,

max
〈vi,wi〉∈eff a(a) : vi∈V

chg(s, vi)− δ− + ε}.

Note that since use and chg are not values, start minΘ(a, s)
is also not a value: it is a formula. Furthermore, only condi-
tions and effects on variables that are part of the abstraction
are considered (due to constraint vi ∈ V ), thus rendering
start minΘ a lower bound on action start time. Applying
action a then leads to a change in the times at which the
variables that are affected/depended by the action can be
changed and used. Therefore, the use and chg variables in
the next state s′ are determined by those in state s, and the
preconditions and effects of a:

use(s′, vi) = propagate useΘ(a, s),

chg(s′, vi) = propagate chgΘ(a, s),

where the “propagate” functions are such that:

• if a does not condition on or affect vi:

use(s′, vi) = use(s, vi)

chg(s′, vi) = chg(s, vi)

• if a changes the value of vi at its end, then regardless of
any other effects/conditions on vi:

use(s′, vi) = start minΘ(a, s) + δ−

chg(s′, vi) = start minΘ(a, s) + δ−

• if a changes the value of vi at its start (but not the end),
and then has an ‘end’ and an ‘invariant’ condition on vi:

use(s′, vi) = start minΘ(a, s)

chg(s′, vi) = start minΘ(a, s) + δ−

• if a changes the value of vi at its start (but not the end),
and then has an ‘invariant’ condition on vi:

use(s′, vi) = start minΘ(a, s)

chg(s′, vi) = start minΘ(a, s) + δ− − ε

• if a changes the value of vi at its start (but not the end),
and has neither an ‘invariant’ or ‘at end’ condition on vi:

use(s′, vi) = start minΘ(a, s)

chg(s′, vi) = start minΘ(a, s)

• if a never changes the value of vi, but has an ‘end‘ and
an ‘invariant’ condition on vi:

use(s′, vi) = use(s, vi)

chg(s′, vi) = max{chg(s, vi), start minΘ(a, s) + δ−}
• if a never changes the value of vi, but has an ‘invariant’

condition on vi:
use(s′, vi) = use(s, vi)

chg(s′, vi) = max{chg(s, vi), start minΘ(a, s)+δ−−ε}
• if a never changes the value of vi, but has an ‘at start’

condition on vi:
use(s′, vi) = use(s, vi)

chg(s′, vi) = max{chg(s, vi), start minΘ(a, s)}
If a sequence of actions a1, ..., ak is executed from state

s ∈ S, leading to the sequence of states s1, ..., sk, then the
makespan of this sequence is given by:

maxi∈1,...,|V |use(sk, vi).

Temporal M&S Heuristic
Definition 8 A temporal transition graph Θ of a problem
satisfying Oc = O is a transition graph where: a transition
is labeled l ∈ L ⊆ O from s ∈ S to d ∈ S if (i) l` is ap-
plicable in s, (ii) applying l` results in state s′ that satisfies
l↔, and (iii) la is applicable in s′ and applying it results in
state d.
Definition 9 A heuristic is a function hΘ, associated with
the transition graph Θ, which assigns to each state s ∈ S
the makespan of the lowest-makespan path in Θ, from s to
any goal state sG ∈ SG.
Please note that the merge-and-shrink literature (e.g.
(Helmert et al. 2007; Nissim, Hoffmann, and Helmert 2011))
define a heuristic in terms of cost values, while here, for the
purposes of temporal planning, we define it as minimizing
(timestamp) makespan.

As we have seen in the previous section, in general the
makespan estimate provided by our heuristic function is pre-
computed as an expression of use and chg variables, and
only evaluated into a numeric value during search. In the rest
of the paper, we will call this expression a “goal-makespan
formula”.

Goal-makespan Formulas
Definition 10 A goal-makespan formula tgΘ(s) for a state
s ∈ S is a formula that expresses the value of hΘ(s) in terms
of use and chg timestamps.
For goal states sG ∈ SG, tgΘ(sG) := max{use(sG, vi)|vi is
a goal variable in Θ}, i.e. the makespan will be at least equal
to the time at which all goal variables in that state can be
used. For non-goal states, tgΘ is a formula of nested min and
max constraints over the use and chg variables, to represent
the temporal constraints of the different paths that can be
taken from s to the goal states. States for which no path to a
goal exist are associated with tgΘ =∞.
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Computing Goal-makespan Formulas We compute the
goal-makespan formulas for all states in an abstract tran-
sition graph as outlined in Algorithm 2. Basically, the al-
gorithm starts by computing the goal-makespan formulas
of goal states and initializing all other formulas to infin-
ity. When it updates the formula of a state, it will then up-
date its neighbors’ formulas accordingly by placing the state
in an update queue. “MakespanThroughNeighbor()” com-
putes the new goal-makespan formula for a neighbor s as
the minimum between its previous makespan estimate, and
the formula given by s′ plus the required time to complete
the transition. Note that the time to complete a transition
is a function of the timestamps of precondition variables.
The first formulas to be updated are the goal state formulas,
and the next ones will be those associated to states that lead
to goal states in a single transition. The formula of a sin-
gle state may be updated multiple times as new paths from
its neighbors’ to the goal are discovered. The “Simplify()”
function makes sure a formula is not redundant and there-
fore eliminates loops and definitely-longer paths from the
goal-makespan formula. Eventually, the goal-makespan for-
mulas for all states will be computed (i.e. no more states will
be added to the queue Q) and the algorithm terminates.

Algorithm 2: Pre-computing tgΘ formulas
Data: Abstraction Θ, state space S, transitions A
Result: Each abstract state s ∈ S has its formula

tgΘ(s) updated to reflect paths to goals
1 Q← [] ;
2 foreach state s ∈ S do
3 if s is a goal state then
4 tgΘ(s)← Formula( max{use(s, vi) |

vi is a goal variable}) ;
5 append s to Q;
6 else
7 tgΘ(s)←∞;

8 while Q 6= ∅ do
9 pop s′ off the front of Q;

10 foreach edge 〈s, a, s′〉 ∈ A′ do
11 new tg ←

MakespanThroughNeighbor(s, a, s′);
12 new tg ′ ← Formula( min{tgΘ(s),new tg});
13 new tg ′ ← Simplify(new tg ′);
14 if new tg ′ 6= tgΘ(s) then
15 tgΘ(s)← new tg ′;
16 append s to Q;

The two key functions in this algorithm are
“MakespanThroughNeighbor(s, a, s′)” and “Simplify(tg)”.

“MakespanThroughNeighbor(s, a, s′)” computes the
goal-makespan formula for a state s, given the formula of
state s′ and the action a. It does so by replacing use(v)
and chg(v) variables in tgΘ(s′) according to the actions’
preconditions and effects. In particular, the functions
propagate useΘ(a, s) and propagate chgΘ(a, s) can be

used to derive a substitution rule as follows:

sub(s, a, s′) =
⋃
vi

{use(s′, vi) 7→ propagate useΘ(a, s),

chg(s′, vi) 7→ propagate chgΘ(a, s)}.
meaning that tgΘ(s) will be obtained by taking formula
tgΘ(s′) and replacing variable use(s′, vi) with the expres-
sion given by propagate useΘ(a, s)—and similarly for chg .
Function “MakespanThroughNeighbor” thus reflects the op-
tion of reaching a goal from s by applying a (thus reaching
s′) and taking a path from there.

Finally, the “Simplify(tg)” function in Algorithm 2 ma-
nipulates formulas to remove redundancy. First, it ap-
plies a canonical form to the formula where all con-
stant additions are moved to the leaves of the formula
(e.g. 1 + max{use(v1), use(v2)} becomes max{use(v1) +
1, use(v2) + 1}). Then, it removes terms whose values are
dominated by other terms (e.g. max{use(v1), use(v1) + 3}
becomes use(v1) + 3). Formula domination is established
by an inequality definition over formulas, as defined below.

Ordering Goal-makespan Formulas In order to
facilitate the ordering of formulas, we represent
goal-makespan formulas as expressions of the type
tg := max{u1.use(s, vi) + tu1 , ..., u|V |.use(s, v|V |) +
tu|V |, c1.chg(s, vi) + tc1, ..., c|V |.chg(s, v|V |) + tc|V |}, where
ui ∈ {0, 1} and ci ∈ {0, 1} are indicator variables, and tui ,
tci are constants2. A formula can therefore be conveniently
implemented as a tuple of vectors 〈u, tu, c, tc〉.
Definition 11 One goal-makespan formula tg is dominated
by (definitely lower or equal than) another tg ′, i.e. tg ≤ tg ′,
if one of the following conditions holds:

• maxi(max(tui , t
c
i )) ≤ ∞∧ maxi(max(tu

′

i , t
c′

i )) =∞
• ∀i{ui = 0 ∧ ci = 0 ∧ u′i = 0 ∧ c′i = 0} ∧

maxi(max(tui , t
c
i )) ≤ maxi(max(tu

′

i , t
c′

i ))

• ∀i {ui ≤ u′i ∧ ci ≤ c′i∧ tui ≤ tu
′

i ∧ tui ≤ tc
′

i ∧ tci ≤ tc
′

i }

Evaluating Goal-makespan Formulas During planning,
for each temporal planning state s = 〈U,P, T 〉 that is
evaluated we obtain the corresponding use/chg timestamps
use(s, vi), chg(s, vi), and the abstract state s ∈ S. From the
abstract state we obtain the pre-computed goal-makespan
formula tgΘ(s) and evaluate it using the values of use(s, vi)
and chg(s, vi):

hΘ(s) = tgΘ(s)
∣∣∣use(s,vi)=use(s,vi)∀i
chg(s,vi)=chg(s,vi)∀i

.

Admissibility The temporal merge-and-shrink heuristic,
computed by evaluating goal-makespan formulas, is admis-
sible. To see this, note that (as in classical planning) ev-
ery path in the full transition graph Θ(Π) is also a path in
an abstract transition graph Θ, since merging and shrink-
ing operations keep all transitions. In addition to this, we

2These constants arise from action durations along paths to a
goal state, which have been discovered through use/chg propaga-
tion as described previously.
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need to prove that goal-makespan formulas provide admis-
sible estimates of makespan in time. We do this in steps.
First, we note that use/chg propagation is admissible be-
cause start minΘ is a lower bound (a max() over a subset
of all variables is a lower bound of the max over all vari-
ables). Propagation assumes that all actions take their mini-
mum duration δ− to execute, which is again a lower bound.
Second, Algorithm 2 propagates use/chg variables from goal
nodes to all other nodes in the transition graph, and stores
the makespan of all non-cyclical paths to goal states as a
function of use/chg variables. Line 12 makes sure that all
non-cyclical (“simplified”) paths to goal states are consid-
ered since it uses a min() of previous and propagated formu-
las; and path simplification (line 13) is also admissibility-
preserving since it only removes paths that are provably
worse. Since goal-makespan formulas are a lower bound of
makespan over all non-cyclical paths to the goal, they are
also a lower bound of makespan over all possible paths to
the goal.

Classical/Temporal M&S Differences To summarize,
the main difference between M&S abstractions in classi-
cal and compression-safe temporal planning is that pre-
computing the shortest path to a goal involves pre-
computing all possible non-cyclical paths to the goal as a
function of temporal variables which are evaluated at search
time. Transition graphs and abstractions are defined in the
same way in classical and temporal planing—only the ap-
plicability of actions is different—while all temporal aspects
of a problem relevant to makespan are captured by goal-
makespan formulas. The only temporal aspect not captured
by goal-makespan formulas is the possibility for actions to
execute for longer than δ−. Formulas assume all actions ex-
ecute for their minimum duration, which guarantees admis-
sibility but means that goal-makespan formulas of the full
transition graph Θ(Π) are a relaxation of Π (where actions
can execute for a duration in the interval [δ−, δ+]).

Shrinking Algorithms
h-preserving Shrink An h-preserving shrink algorithm
groups states that have the same heuristic value into a single
abstract state. In temporal planning, states that have the same
goal-makespan formula are grouped into abstract states.

Bisimulation A bisimulation-based shrinking algorithm
uses bisimulation (Nissim, Hoffmann, and Helmert 2011) to
identify states to aggregate. Two states s, s′ are bisimilar if
“every transition label leads into equivalent abstract states”
from s and s′ (Nissim, Hoffmann, and Helmert 2011). The
computation of the coarsest bisimulation can be made effi-
ciently (Nissim, Hoffmann, and Helmert 2011) but involves
grouping states by heuristic value. In the temporal domain
(since values are only accessible at search time) we instead
group states by goal-makespan formula equality.

Label Reduction
Label reduction decreases the number of transitions by re-
placing groups of (same-source, same-destination) transi-
tions by a single abstract transition. In temporal planning,
care needs to be taken when comparing the durations of

transitions. We implement label reduction as follows. If two
transitions associated with actions a1, a2, both connecting s
to s′, are such that:

start minΘ(a1, s) + δ−1 ≤ start minΘ(a2, s) + δ−2 ,

and all the variables that the actions affect and depend on be-
long to V , then we replace the two transitions by a single a1-
labeled transition (and similarly for a2). The variable condi-
tion makes sure the synchronized product works properly,
i.e. it avoids transitions being lost when merging new vari-
ables that the respective actions depend on or affect, since
start minΘ works with projected conditions (i.e. only con-
ditions on variables vi ∈ V ). In the expression above, the
inequality is as in Definition 11.

Results
Planner Setup
We implemented the methods proposed in the previous sec-
tions in the temporal planner OPTIC (Benton, Coles, and
Coles 2012). OPTIC performs search starting from the ini-
tial state, applying start/end snap actions whose precondi-
tions are satisfied at each state (and which do not delete the
invariants of actions that have started executing but have not
yet finished in the state)3. When each new state is gener-
ated, the planner builds an STN to check the temporal con-
sistency of the plan. If an inconsistency is found then the
state is pruned. Otherwise, the search heuristic value of the
state is evaluated and it is added to the open list. OPTIC uses
as its search heuristic the number of actions in the temporal
relaxed plan to reach the goal from the state. In addition to
that it uses admissible makespan estimates to prune states
where deadlines can no longer be reached, and in the optimal
planning case it prunes states whose admissible makespan
estimates are higher than the best makespan found so far. In
the benchmarks that follow, we compare the results of the
planner when the admissible makespan estimates are taken
from the merge-and-shrink abstractions, versus when they
are taken from the TRPG.

We express deadlines as Timed Initial Literals (TILs)
(Hoffmann and Edelkamp 2005). While there is no explicit
way to represent deadlines in PDDL, they can be modelled
using PDDL2.2 TILs which allow deletion or addition of a
fact at a fixed time (e.g. (at 10 (not (can-deliver package1)))).
If such a fact is a precondition of any action that adds a given
goal fact, then this effectively places a deadline on reaching
that goal. This can easily be detected in preprocessing, al-
lowing the planner to identify deadlines on goal facts.

Merge-and-Shrink Strategy
In our experiments we implement merge-and-shrink as in
Algorithm 1, using FastDownward’s (Helmert 2006) merge-

3In this work, as in prior work, OPTIC’s search uses the PDDL
fact representations of state and actions and the SAS+ representa-
tion is used only for our new heuristic, with the annotations “trans-
lated” to SAS+ for that purpose. Since the focus of this work is
on a SAS+ based heuristic, we focused on that formalism here and
wrote in those terms—so as to not duplicate the search written in
terms of the traditional PDDL semantics (which can be found in
(Coles et al. 2010)).
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Domain L-hshrink L-bisim R500-hshrink R500-bisim R5k-hshrink R5k-bisim

(o
pt

im
al

)

depots 404.52 368.0 1.01 0.85 57.14 70.36
driverlog 316.19 224.24 0.79 0.8 117.68 289.44
pipesworld - - 0.75 0.94 228.03 7.72
rovers 158.9 244.14 0.19 0.27 3.19 6.04
satellite 11.06 18.47 0.16 0.28 0.95 1.36
zenotravel 237.03 202.38 0.26 0.37 1.87 1.68

(d
ea

dl
in

es
)

depots 884.99 893.92 3.66 4.46 210.62 261.52
driverlog 27.82 30.34 2.24 2.18 55.52 45.29
floortile - - 7.12 5.3 353.91 371.04
logistics 0.08 0.16 0.83 1.48 1.57 4.36
trucks 17.26 18.33 1.46 1.88 53.15 59.23
zeno 170.05 170.18 169.39 169.72 167.89 168.09

Table 1: Merge-and-shrink pre-computation time (s)

Domain RPG L-hshrink L-bisim R-hshrink500 R-bisim500 R-hshrink5k R-bisim5k

depots 2 (11) 0 (6) 0 (7) 2 (11) 2 (11) 2 (11) 2 (11)
driverlog 5 (15) 1 (2) 1 (3) 5 (15) 5 (15) 5 (13) 5 (13)
pipesworld 3 (9) 0 (0) 0 (0) 4 (9) 4 (9) 3 (8) 1 (7)
rovers 1 (19) 1 (19) 1 (19) 1 (19) 1 (19) 1 (19) 1 (19)
satellite 3 (9) 3 (9) 3 (9) 3 (9) 3 (9) 3 (9) 3 (9)
zenotravel 6 (13) 6 (14) 6 (14) 6 (14) 6 (14) 7 (14) 7 (13)

Sum 20 (76) 11 (50) 11 (52) 21 (77) 21 (77) 21 (74) 19 (72)

Table 2: Optimality coverage (solve coverage), partial-order planner on optimal problems

Domain RPG L-hshrink L-bisim R-hshrink500 R-bisim500 R-hshrink5k R-bisim5k

depots 2 (15) 2 (15) 2 (15) 2 (15) 2 (15) 2 (15) 2 (15)
driverlog 6 (16) 8 (16) 8 (16) 8 (16) 8 (16) 9 (16) 9 (16)
pipesworld 6 (10) 7 (10) 7 (10) 6 (10) 6 (10) 6 (10) 6 (10)
rovers 3 (18) 4 (18) 4 (18) 4 (18) 4 (18) 4 (18) 4 (18)
satellite 3 (19) 4 (19) 4 (19) 4 (19) 4 (19) 4 (19) 4 (19)
zenotravel 7 (19) 8 (19) 8 (19) 7 (19) 7 (19) 8 (19) 7 (19)

Sum 27 (97) 33 (97) 33 (97) 31 (97) 31 (97) 33 (97) 32 (97)

Table 3: Optimality coverage (solve coverage), total-order planner on optimal problems

(a) Partial-order #nodes (b) Partial-order comp. time (c) Total-order #nodes (d) Total-order comp. time

Figure 1: Makespan-optimal temporal planning problems, using minimal h-preserving shrink and CGGR-500.
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Figure 2: Comparison of the makespan estimates obtained
by TRPG vs M&S (total-order planner with CGGR500 and
hshrink) on a rovers (left) and driverlog problem (right).

and-shrink code as a basis. All experiments use both label
reduction and pruning. As shrinking strategies we evalu-
ate bimisulation (“bisim”) and minimal h-preserving shrink-
ing (“hshrink”). hshrink is an h-preserving shrink where all
same-formula states are aggregated in a single state (Fan,
Holte, and Müller 2018). The implementation of bisimula-
tion was ported from FastDownward into OPTIC. Regarding
the merging strategies, we use CGGL (Causal Graph, Goal,
Level (Helmert et al. 2007)), as well as a new strategy that
we found to be effective in practice. This second strategy is
a randomized version of CGGL—to which we call CGGR.
It replaces the canonical variable order of CGGL with a ran-
dom order, and it stops merging new variables once a maxi-
mum number of transition-graph edges is reached (we show
results for 500 and 5000). Since the abstractions obtained
by CGGR are random, we compute 10 different merge-and-
shrink abstractions, each starting from a different random
seed, and then for heuristic purposes use the maximum of
the makespan estimates given by the abstractions. We use
bisimulation parameter N = 100, which led to the best re-
sults.

Benchmarks
The benchmarks we used for evaluation were the tempo-
ral optimal-makespan problems of IPC2002 (Long and Fox
2003b) “time-simple-automatic” domains (depots, driver-
log, rovers, satellite, zenotravel) and IPC2006 (Dimopou-
los et al. 2006) “metric-time” pipesworld. For problems with
deadlines we used driverlog, trucks, and zeno domains with
deadlines, as in (Marzal, Sebastia, and Onaindia 2014); as
well as a selection of automatically generated problems with
tight deadlines on depots, driverlog, floortile, logistics, and
zeno domains. All experiments use 30min computation time
and 4GB memory budget—after which we considered the
planner to have failed to solve the problem.

M&S Computation Times Table 1 shows the average
time needed to generate merge-and-shrink (M&S) abstrac-
tions in both the optimal and deadline problems. This time
is spent in a pre-computation phase before the planner starts,
and includes both the generation of abstractions (one ab-
straction in CGGL, 10 in CGGR) and the computation of
the goal-makespan formulas. Entries marked “-” indicate
that it was not possible to compute the merge-and-shrink ab-
straction and goal-makespan formulas within the time bud-
get (30min) in all problems of that domain. The table shows

that CGGR reduces the computation time overall compared
to CGGL. The only exception is the logistics domain, be-
cause here abstractions are small and thus CGGR builds 10
full abstractions (and spends approximately 10 times longer
on pre-compute). However, total compute time is still be-
tween 1 and 4 seconds and thus considerably low.

Optimal Problems To show the generality of our ap-
proach, we obtained results for optimal problems with both
a partial-order and a total-order planner (i.e. two versions of
OPTIC). Tables 2 and 3 show the optimality coverage (i.e.
number of problems solved to optimality) and total coverage
(i.e. number of problems solved) obtained when using:

• traditional makespan estimates based on TRPG
• M&S with minimal h-preserving shrink (hshrink)
• M&S with bisimulation shrinking (bisim)

The tables show that merge-and-shrink improves coverage
on both the partial-order and total-order planner. Particu-
larly, the use of many small abstractions in CGGR500 leads
to the partial-order planner solving 1 more problem to fea-
sibility and 1 more problem to optimality, and the total-
order planner optimally solving 4 more problems. CGGL
improved performance only in the total-order planner, while
in partial-order planner it was counterproductive because of
the large overhead of computing full abstractions.

Figure 1 shows a comparison of the number of nodes
generated and total computation time (including pre-
computation) required to solve each problem to optimality—
comparing TRPG and M&S with hshrink and CGGR500.
The figure shows significant reduction in both the number
of states explored and total computation time in partial- and
total-order planning.

The reduction in the number of generated nodes is ob-
tained due to better makespan estimates. Figure 2 shows a
comparison between TRPG- and M&S-based makespan es-
timates on all the explored states in two example problems
(using CGGR500 and hshrink on a total-order planner). The
figure shows that M&S indeed provides better estimates, and
is strictly higher than TRPG in some problems.

Problems With Deadlines Table 4 shows results on tem-
poral problems with deadlines, using partial-order search.
The benchmark includes both solvable and unsolvable prob-
lems, and hence we show both solve coverage (i.e. num-
ber of solvable problems solved) and unsolvability-proof
coverage (i.e. number of unsolvable problems proved to be
unsolvable). The table shows once more that merge-and-
shrink with CGGR leads to higher coverage in both kinds
of problems—from 6 to 8 more unsolvability proofs, and 4
to 8 more solvable problems solved.

Regarding CGGL, it is interesting to note that while it
underperformed in solvable problems, it was able to ob-
tain more proofs in unsolvable problems. Particularly, it was
able to prove unsolvability of logistics problems, which were
the only ones for which merge-and-shrink computation was
small (under one second, see Table 1). CGGR was able to
prove unsolvability of depots problems, which matches pre-
computation times being considerably smaller than CGGL
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Domain RPG L-hshrink L-bisim R-hshrink500 R-bisim500 R-hshrink5k R-bisim5k

depots 3 (25) 0 (7) 0 (7) 3 (25) 3 (25) 3 (25) 3 (25)
driverlog 13 (30) 13 (31) 13 (31) 13 (31) 13 (31) 13 (31) 13 (30)
floortile 0 (4) 0 (0) 0 (0) 0 (4) 0 (4) 0 (4) 0 (4)
logistics 35 (12) 42 (18) 42 (18) 41 (16) 41 (15) 42 (18) 43 (18)
trucks 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10)
zeno 3 (32) 3 (32) 3 (32) 3 (32) 3 (32) 3 (33) 3 (33)

Sum 54 (113) 58 (98) 58 (98) 60 (118) 60 (117) 61 (121) 62 (120)

Table 4: Unsolvability proof coverage (solve coverage), partial-order planner on problems with deadlines

in this domain—thus allowing enough time to exhaust the
search space.

Conclusions
In this paper we proposed a methodology for generating
merge-and-shrink abstractions for temporal planning prob-
lems, and to use them as heuristics to speed up temporal
planners. The method involves (re)defining action start times
and timestamp variables to account for concurrency, and a
search method to pre-compute a heuristic as goal-makespan
formulas instead of numeric values. Our method is applica-
ble both to partial- and total-order temporal planners, and
we showed that it leads to increases in coverage and com-
putation speed in both settings. Another contribution of this
paper is CGGR, which uses a collection of abstractions built
with a random linear merging order and which might include
only a subset of the variables. As far as we know this method
is new, and was competitive in comparison to CGGL.

Our results indicated the merge-and-shrink approach to
computing makespan estimates is helpful in both optimal
planning problems, problems with deadlines, and in obtain-
ing unfeasibility proofs. The fact that the approach is partic-
ularly helpful in settings where the state-space needs to be
exhausted suggests that this work could be useful for com-
puting “minimal unsolvable goal subsets” and planning ex-
planations (Eifler et al. 2020, 2021). In the future we plan to
extend the formulation and implementation to domains with
non-compression-safe actions (Cushing et al. 2007). Such
an extension will have to consider the number of times each
non-compression-safe action is executing as part of the ab-
stract state. Other important future work includes the explo-
ration of different merging and shrinking strategies specif-
ically designed for temporal planning, and the integration
with landmarks-based approaches (Marzal, Sebastia, and
Onaindia 2014).
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