
RePReL : Integrating Relational Planning and Reinforcement Learning for
Effective Abstraction

Harsha Kokel,1 Arjun Manoharan,2 Sriraam Natarajan,1
Balaraman Ravindran,2 Prasad Tadepalli 3

1The University of Texas at Dallas,
2Robert Bosch Centre for Data Science and Artificial Intelligence at Indian Institute of Technology Madras,

3Oregon State University
{hkokel,Sriraam.Natarajan}@utdallas.edu, {arjunman,ravi}@cse.iitm.ac.in, tadepall@eecs.oregonstate.edu

Abstract

State abstraction is necessary for better task transfer in com-
plex reinforcement learning environments. Inspired by the
benefit of state abstraction in MAXQ and building upon hy-
brid planner-RL architectures, we propose RePReL, a hi-
erarchical framework that leverages a relational planner to
provide useful state abstractions. Our experiments demon-
strate that the abstractions enable faster learning and efficient
transfer across tasks. More importantly, our framework en-
ables the application of standard RL approaches for learning
in structured domains. The benefit of using the state abstrac-
tions is critical in relational settings, where the number and/or
types of objects are not fixed apriori. Our experiments clearly
show that RePReL framework not only achieves better per-
formance and efficient learning on the task at hand but also
demonstrates better generalization to unseen tasks.

Introduction
Planning and Reinforcement Learning have been two ma-
jor thrusts of AI aimed at sequential decision making.
While classical relational planning focuses on composing
sequences of high level actions offline before any execu-
tion, reinforcement learning interleaves planning and execu-
tion and is typically associated with reactive domains with
unknown dynamics. We describe an integrated architecture
we call “RePReL,” which combines relational planning (RP)
and reinforcement learning (RL) in a way that exploits their
complementary strengths and not only speeds up the conver-
gence compared to a traditional RL solution but also enables
effective transfer of the solutions over multiple tasks.

Most prior work in combining planning and RL falls un-
der the general paradigm of “model-based reinforcement
learning” (MBRL). Here explicit dynamic models of ac-
tions are learned via exploration and used either offline to
compute approximately optimal policies (Brafman and Ten-
nenholtz 2002; Guestrin, Patrascu, and Schuurmans 2002)
or online in look-ahead search (Silver, Hubert et al. 2018).
Critically, both planning and reinforcement learning com-
ponents employ the same state-space, while the main moti-
vation for the combination comes from the benefits of effi-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ciency and cost-savings due to offline computation or look-
ahead search.

However, in many real world domains, e.g., driving, the
state space of offline planning is rather different from the
state space of online execution. Planning typically occurs at
the level of deciding the route, while online execution needs
to take into account dynamic conditions such as locations
of other cars and traffic lights. Indeed, the agent typically
does not have access to the dynamic part of the state at the
planning time, e.g., future locations of other cars, nor does it
have the computational resources to plan an optimal policy
in advance that works for all possible traffic events.

The key principle that enables agents to deal with these
informational and computational challenges is abstraction.
In the driving example, the high level state space consists
of coarse locations such as “O’hare airport” and high level
actions such as take “Exit 205,” while the lower level state
space consists of a more precise location and velocity of the
car and actions such as turning the steering wheel by some
amount and applying brakes. Importantly, excepting occa-
sional unforeseen failures, the two levels operate indepen-
dently of each other and depend on different kinds of infor-
mation available at different times. This allows the agent to
tractably plan at a high level without needing to know the
exact state at the time of the execution, and behave appro-
priately during plan execution by only paying attention to a
small dynamic part of the state.

The power of abstraction and hierarchies have been
studied both in hierarchical planning (Nau et al. 1999;
Georgievski and Aiello 2015) and hierarchical reinforce-
ment learning (Dietterich 2000; Sutton, Precup, and Singh
1998; Kulkarni et al. 2016). However, while the plan-
ning methods typically emphasize relational representations
and deterministic worlds, the RL approaches typically em-
ploy propositional representations and stochastic environ-
ments. Another important difference is that planning re-
quires knowing a goal, while the RL agent assumes a fixed
unknown reward function. The key contribution of the cur-
rent paper is the RePReL architecture, which consists of a
high level relational planner and a low level reinforcement
learner. The high level planner is itself hierarchical that al-
lows it to further take advantage of multi-level abstractions.
The relational level planner plans to achieve its goal using a

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

533



sequence of subgoals, which are passed onto the reinforce-
ment learning agent. The reinforcement learning agent then
tries to reach its assigned sub-goal with minimum path cost.

One of the contributions of our work is the adaptation of
first-order conditional influence (FOCI) statements (Natara-
jan et al. 2008) to specify bisimilarity conditions of MDPs
(Givan, Dean, and Greig 2003), which in turn help justify
safe and effective abstractions for reinforcement learning
(Ravindran and Barto 2003). Secondly, since the RL agent
learns to optimize policies to achieve subgoals that occur in
multiple high-level tasks, it naturally leads to effective trans-
fer of learned skills from one task to another. Finally, the use
of relational representation for planning allows appropriate
generalization including the number and types of objects in
the domain without excessive feature engineering. Our re-
sults in 4 compelling domains show that RePReL signifi-
cantly outperforms the state-of-the-art Planner+RL combi-
nation (Illanes et al. 2020) while achieving better general-
ization and transfer.

The rest of the paper is organized as follows: Next sec-
tion summarizes the relevant related work in planning and
reinforcement learning. Then we describe the RePReL ar-
chitecture in detail. Empirical Evaluation section describes
experiments in 4 different domains that demonstrate gener-
alization and transfer across multiple tasks. The final section
concludes and presents some future directions.

Related Work
Planner and RL combination The RePReL framework
consists of a symbolic planner at the higher level and vari-
ous RL agents at the ground level. Several prior works have
explored the idea of combining a planner and RL agents to
solve complex problems which have some notion of tem-
porally extended actions or task hierarchies (Grounds and
Kudenko 2005; Yang et al. 2018; Lyu et al. 2019; Jiang et al.
2019; Eppe, Nguyen, and Wermter 2019). Among these,
RePReL is closely related to the Taskable RL framework
of Illanes et al. (2020). Similar to Taskable RL , RePReL
employs a planner to generate useful instructions (task defi-
nitions) for the RL agent. RePReL extends the Taskable RL
framework in two key ways: first, we generalize the Task-
able RL to a relational MDP representation and second, we
propose an approach to define task-specific state abstraction
in this framework. As shown in our experiments, both these
aspects are critical for effective transfer and generalization.

Abstraction Safe and efficient state abstraction tech-
niques have been studied extensively in RL (Li, Walsh,
and Littman 2006). They have been particularly useful for
multi-task and transfer learning problems (Walsh, Li, and
Littman 2006; Sorg and Singh 2009; Abel et al. 2018). We
are inspired by the task-specific, model-agnostic state ab-
stractions of MAXQ (Dietterich 2000) and the bisimulation
conditions (Ravindran and Barto 2003; Givan, Dean, and
Greig 2003) to define abstractions in relational settings us-
ing first-order probabilistic models (Raedt et al. 2016). An-
dre and Russell (2002) introduces ALisp language to assert
(ir)relevant variable. Our work is diverges from their work
as we consider relational setting. Another work by Finzi and

Lukasiewicz (2006) leverages situation calculus for expli-
cating the abstraction in relational setting. We, however, ap-
proach this problem using relational probabilistic model.

Relational Reinforcement Learning (RRL) RRL meth-
ods aim to learn optimal behavior in relational worlds de-
scribed by objects and relations (Price and Boutilier 2001;
Sanner and Boutilier 2009; Tadepalli, , and Driessens
2004; Das et al. 2020; Guestrin et al. 2003). While specific
methodologies differ, most of these methods derive an ap-
proximate value function or policy over relational represen-
tations of states either through relational induction, symbolic
dynamic programming, or linear programming alternatives.
While expressive, learning these models is a very cumber-
some task and thus their adaptation to any mildly complex
domains is still modest. While these methods employ a rela-
tional learner to learn a single policy, our 2-level architecture
employs the relational planner and provides state abstrac-
tions for RL at the lower level.

Relational Planning and Reinforcement
Learning

We consider the problem of learning to act in relational do-
mains with varying number of tasks and interacting objects.
Before explaining the formulation of the RePReL frame-
work, we motivate it with a simple toy example in Figure
1. Consider a taxi domain where the goal is to transport the
different passengers (p1, p2) to their respective destinations
(d1, d2). In RePReL, the high-level planner first decomposes
the goal into appropriate subgoals. In the example, the goal
of transporting p1 and p2 is decomposed into 4 subgoals:
pickup p1, drop p1, pickup p2, and drop p2. An RL policy
at lower level then achieves these subgoals by navigating in
the grid and picking or dropping the passenger. The sym-
bolic planner receives high-level domain knowledge, and
does not see the complete map of the domain. The RL agent
sees the map but is agnostic to other irrelevant information.
For e.g., the RL policy that is performing pickup p1 sub-
goal, needs to know the location of p1 and whether the taxi
is free, while passenger p2 and destination of p1 are irrele-
vant. Similarly, the RL policy performing drop p2 needs to
ensure the taxi is hired by p2 while the pickup location of
p2 is irrelevant. It has been argued that for human-level gen-
eral intelligence, the ability to detect compositional struc-
ture in the domain (Lake, Salakhutdinov, and Tenenbaum
2015) and form task-specific abstractions (Konidaris 2019)
are necessary. With RePReL’s hierarchical planner and task-
specific abstractions, we propose a step in that direction and
formalize the framework next.

Relational Hierarchical Planning
We extend the relational MDP (RMDP) definition of Fern,
Yoon, and Givan (2006) for goal-oriented domains.

Definition 1. A goal-directed relational MDP (GRMDP)M
is represented by 〈S,A, P,R, γ,G〉, where the states S and
the actions A are represented by a set of objects E, a set of
predicates Q, and action types Y . P is a probability transi-
tion function S × A × S → [0, 1], R is a reward function

534



pick

pickup p1

transport p1 transport p2

transport p1 and
p2

drop p1

drop pick

pickup p2 drop p2

drop

state

sym
bolic

planner
R

L
policies

method
operator

RL policy

p2

p1

d1

d2

free taxi
hired taxi

p1 d2

d1 p2

Figure 1: Example of RePReL framework in Taxi domain. The domain has two passengers p1 and p2 and task it to transport
both of them to their respective destination, d1 and d2 respectively. The initial state is shown on the top left.

S × A× S → <, and γ ∈ [0, 1) is the discount factor. G is
set of goals that the agent may be asked to achieve.

Different tasks can be formulated by choosing different
goals from the potentially infinite set G. The reward func-
tion R provides the reward (or cost) of taking a step in the
environment, regardless of the goal. A problem instance for
a GRMDP is defined by a pair 〈s ∈ S, g ∈ G〉, where s is
a state and g is the set of goal condition, both represented
using sets of permitted literals, i.e. positive and/or negative
atoms. A solution is a policy that starts from s and ends in a
state satisfying g with probability 1.

One novelty of our framework is that the proposed GR-
MDPs are solved using a combination of hierarchical plan-
ning and reinforcement learning. The hierarchical planner
decomposes goals into a sequence of subgoals using de-
composition rules or methods. The subgoals are recursively
decomposed further until the level of planning operators,
yielding a hierarchical plan. The planning operators (called
“operators” from now on) are in turn implemented by the
reinforcement learner as a policy that maps concrete states
to actions. Importantly, the hierarchical planner assumes a
relational deterministic model of operators, whereas the re-
inforcement learner allows stochastic actions. This is similar
to the real world example of driving, where the route plan-
ning assumes deterministic dynamics, whereas actual driv-
ing needs to react to stochastic events. Due to the potentially
infinite set of goals and the nature of hierarchical planning,
we cannot guarantee optimality of overall policies that result
from the combination. However, under suitable safe abstrac-
tion conditions, we can guarantee that the RL policies that
implement the operators are optimal.

An operator o ∈ O is a tuple 〈p(o),pre(o),eff(o),
β(o)〉, where p is a primitive task and pre, eff, and β
are first-order formulae for preconditions, effects, and ter-
mination condition of the operator o, respectively. The pos-
itive and negative conditions in these formulae are repre-
sented using superscript + and −, respectively. For instance,

pre+(o) is set of predicates in precondition of operator o
that must be True, and pre−(o) must be False. A stan-
dard assumption in planning is that all the literals in the for-
mula eff(o) and β(o) appear either as existential quantifier
in the pre(o) or as parameters of p(o).

An operator o can be applied in a state s if a substitu-
tion θ satisfies the first-order formula pre(o) at s. On ap-
plying a grounded operator og , s transitions to state s′ =
s\eff−(o)θ ∪ eff+(o)θ. A plan for a problem 〈s ∈
S, g ∈ G〉 is a sequence of grounded operators, which when
executed in state s result in a state satisfying g. We formally
define the hierarchical planner that produces such plans.

Definition 2. A hierarchical planner assumes a set of do-
main predicates Q, a set of methods M , and a set of op-
erators O. A method (m) is a triple 〈c(m),pre(m), τ(m)〉
where c is a compound task, pre is a method pre-condition,
and τ is a task sequence. Each task in τ can be a compound
task or an operator in O. A hierarchical planner for a prob-
lem 〈s, g〉 constructs a hierarchical plan by recursively de-
composing the goal task using the methods in M to find a
sequence of grounded operators in O that achieves g.

To decompose some task using method m, planner needs
a substitution θ satisfying preconditions pre(m) in s. Once
found, planner recursively decomposes τ(m)θ. To sum-
marise, the planner takes a planning problem P = 〈D, s, g〉,
where domain D = 〈Q,O,M〉, and returns a sequence of
grounded operators that achieves g starting from s. Figure 2
shows an example with the planner methods and operators,
along with a sample initial state s, goal condition g and plan
Π.1 A key difference to typical hierarchical planners is that
in our case, lowest level operators do not execute an atomic
action. Instead, these operators are tasks that requires an
RL agent to solve them by executing a policy.

1We use uppercase to denote variables (for ex., ∃X,
in-taxi(X)) and lower case to denote constants (for ex.,
in-taxi(p1))

535



Methods:
〈c: transport(G) # PASSENGER IN TAXI
pre: ∃X, (at-dest(X) ∈ G)
τ: {drop(X), transport(G)} 〉
〈c: transport(G) # NOT AT DESTINATION
pre: ∃X, at-dest(X) ∈ G ∧¬at-dest(X)
τ: {pickup(X), transport(G)} 〉

Operators:
〈 p: pickup(X)
pre: ∃L, at(X, L) ∧ ¬in-taxi(X)
eff: taxi-at(L) ∧ in-taxi(X)
β: in-taxi(X) 〉

〈 p: drop(X)
pre: ∃L, in-taxi(X) ∧ dest(X, L),
eff: taxi-at(L) ∧ at-dest(X)

∧¬in-taxi(X)
β: at-dest(X) 〉

Initial State (s): {at(p1,r),
taxi-at(l3), dest(p1,d1),
¬at-dest(p1), ¬in-taxi(p1)}

Goal Set (g): {at-dest(p1)}
Plan (Π):

[
〈pickup(X), {X/p1,L/r}〉,

〈drop(X), {X/p1, L/d1}〉
]

Figure 2: Example of a taxi domain. Planner declarations,
Initial state, Goal set, and Plan.

Safe State Abstraction for RL
We now address the topic of safely abstracting the state to
allow the RL agent to implement operators. First, we define
subgoal RMDPs which speciailize GRMDPs to operators.
Definition 3. The subgoal RMDP Mo for each operator o
is defined by the tuple 〈S,A, Po, Ro, γ〉 consisting of states
S, actions A, transition function Po, reward function Ro,
and discount factor γ. State and Actions remain same as
the original RMDP. The reward function Ro and transition
probability distribution function Po are defined as follows:

Ro(s, a, s
′) =

{
tR +R(s, a, s′) if s′ ∈ β(o) and s /∈ β(o)
0 if s′ ∈ β(o) and s ∈ β(o)
R(s, a, s′) otherwise

Po(s, a, s
′) =

{
0 if s ∈ β(o) and s′ /∈ β(o)
1 if s ∈ β(o) and s′ ∈ β(o)
P (s, a, s′) otherwise

withR(s, a, s′) indicating the reward function from the orig-
inal GRMDP definition. tR is a fixed terminal reward.

In short, the reward function in the original GRMDP
would correspond to the step cost function which applies to
all operators, and rewardRo is the only goal-specific reward.

Several versions of safe state abstraction have been stud-
ied in the MDP literature (Givan, Dean, and Greig 2003; Di-
etterich 2000; Ravindran and Barto 2003; Li, Walsh, and
Littman 2006). We adopt the bisimulation framework of
Givan, Dean, and Greig (2003) and Ravindran and Barto
(2003), which has been called “model agnostic abstraction”
in Li, Walsh, and Littman (2006).

Definition 4 (Li, Walsh, and Littman (2006)). A model-
agnostic abstraction φ(s) is such that for any action a and
abstract state s, φ(s1) = φ(s2) if and only if∑
{s′1|φ(s′1)=s}

Ro(s1, a, s
′
1) =

∑
{s′2|φ(s′2)=s}

Ro(s2, a, s
′
2)

∑
{s′1|φ(s′1)=s}

Po(s1, a, s
′
1) =

∑
{s′2|φ(s′2)=s}

Po(s2, a, s
′
2)

The first condition above states that the two states s1 and s2
have the same immediate reward distribution with respect
to the abstraction whereas the second condition states that
they have the same transition dynamics. It is proven that Q-
learning with such abstraction results in an optimal policy
for ground MDP (Li, Walsh, and Littman 2006).

Since states are conjunctions of literals in RMDPs, we
need to reason about how the actions influence the state
predicates and how rewards are influenced by goal pred-
icates and actions to decide which literals should be in-
cluded and excluded in the abstraction. We capture this
knowledge using First-Order Conditional Influence (FOCI)
statements (Natarajan et al. 2008), one of the many vari-
ants of statistical relational learning languages (Getoor and
Taskar 2007; Raedt et al. 2016). Each FOCI statement is of
the form: “if condition then X1 influence X2”, where,
condition and X1 are a set of first-order literals and
X2 is a single literal. It encodes the information that lit-
eral X2 is influenced only by the literals in X1 when the
stated condition is satisfied. For RePReL, we simplify
the syntax and extend FOCI to dynamic FOCI (D-FOCI)
statements. In addition to direct influences in the same time
step, D-FOCI statements also describe the direct influences
of the literals in the current time step on the literals in the
next time step. To distinguish the two kinds of influences,
we show a +1 on the arrow between the sets of literals to
capture a temporal interaction, as shown below.

operator : {p(X1), q(X1)} +1−→ q(X1)

It says that, for the given operator, the literal q(X1) in
the next time step is directly influenced only by the literals
{p(X1), q(X1)}. Following the standard DBN representation
of MDP, we allow action variables and the reward variables
in the two sets of literals. To represent unconditional influ-
ences between state predicates, we skip the operator.

The D-FOCI statements can be viewed as relational ver-
sions of dynamic Bayesian networks (DBNs) and have a
similar function of capturing the conditional independence
relationships between domain predicates at different time
steps. For example, the D-FOCI statement in the taxi domain
for pickup operator can be expressed as,

pickup(P) : {taxi-at(L1), at(P, L)} +1−→ in-taxi(P)

This denotes that while the task pickup(P) is be-
ing performed, only the taxi location and the passen-
ger location (taxi-at(L1) and at(P,L2)) influence
in-taxi(P). This means that the in-taxi(P) is in-
dependent of dest(P,D) and at-dest(P). Note that

536



contrary to this, when the passenger is being dropped, the
dest(P,D) will influence in-taxi(P).

Using the substitution θ of the grounded operator deter-
mined by the planner, the D-FOCI statements would be par-
tially grounded. For example, using the θ = {X/p1, L/r}
for pickup(X) in Figure 2, above D-FOCI would become

pickup(p1) : {taxi-at(L1),at(p1, r)} +1−→ in-taxi(p1)

Hence, only the pickup location of passenger p1 (i.e.,
at(p1, r)) and current taxi location taxi-at(L1) (i.e.,
the current location L1) are relevant for grounded operator
pickup(p1). If there is another passenger, say p2, then the
state variable at(p2, · ) would not be relevant.

Learning Optimal Q-Functions
While the planner works in relational representations, the
reinforcement learning operates at a propositional level. The
gap is bridged by computing an appropriate propositional
abstraction of the state for each operator with the parame-
ters, e.g., p1, bound to generic objects (Skolem constants in
logic). To keep the size of the propositional representation
bounded, we bound the depth of inference chain through D-
FOCI statements to k.

The propositionalization proceeds by instantiating each
D-FOCI statement with generic objects yielding a structure
equivalent to a propositional DBN. A model-agnostic ab-
straction is derived for each operator by iteratively adding
the literals that influence the relevant literals through all ac-
tions starting with the reward variables R and Ro. Refer ap-
pendix for an example.2 We limit this unrolling process to at
most k = 2 levels and at most 1 time step to keep the size of
the propositionalization bounded. The set of all such literals
form the final abstraction. The unrolling depth will impact
the time complexity of computing the abstractions.

Theorem 1. If the MDP satisfies the D-FOCI statements
with a fixed depth unrolling, then the corresponding model-
agnostic abstraction has the same optimal value function as
the fully instantiated MDP.

Proof (sketch): The fixed depth unrolling assumption en-
sures that the propositional DBN obtained by unrolling the
D-FOCI statements for a fixed depth forms a model-agnostic
abstraction of the MDP. The result then follows from the
fact that model-agnostic abstractions of the MDP preserve
its value function (Li, Walsh, and Littman 2006). �

The complete list of D-FOCI statements and relevant state
abstractions derived from it are provided in Table 1.

Given the GRMDP environment env, planner P and
FOCI statements F , we now discuss the RePReL learning
procedure from Algorithm 1. First for each operator, an RL
policy is initialized in line 1. Next for each episode, in line
4, we get the high level plan Π from the planner P, we em-
ploy the SHOP planner (Nau et al. 1999). For every ground
operator in the plan, we train the RL policy πo (lines 6–20).
To train the RL policy, we get an abstract propositional state
representation ŝ from state s as described in previous para-
graphs. In lines 10–19, we obtain action a from the current

2link to appendix: https://starling.utdallas.edu/papers/RePReL.

Algorithm 1 RePReL Learning Algorithm

INPUT: P(O,M), goal set g, env, tR, F
OUTPUT: RL policies πo, ∀o ∈ O
1: πo ← 0, ∀o ∈ O . initialize RL policy for each operator
2: for each episode do
3: s← get state from env
4: Π← P(s, g) . get high-level plan
5: for og in Π do
6: π ← πo . get resp. RL policy
7: ŝ← GetAbstractState(s, og, F )
8: done← ŝ ∈ β(og)) . check terminal state
9: while not done do

10: a← π(ŝ) . get action
11: s′ ← env.step(a) . take step in env
12: r ← R(s, a, s′) . get step reward
13: ŝ′ ← GetAbstractState(s, og, F )
14: done← ŝ′ ∈ β(og) . check terminal next state
15: if done then
16: r = r + tR . add terminal reward
17: end if
18: π.update(ŝ, a, ŝ′, r) . update policy
19: s, ŝ← s′, ŝ′

20: end while
21: end for
22: end for
23: return πo, ∀o ∈ O

policy, perform that action, observe the next state s′ and re-
ward. If s′ is a terminal state for the ground operator og ,
then we add a terminal reward tR (line 16) before updating
the policy/q-value (line 18). In our experiments, we employ
tabular q-learning over the propositional state space for up-
dating the values and consequently, the policy. We repeat
the process for fixed budget of episodes for our evaluation
but various other stopping criteria can also be used.

Empirical Evaluation
We aim to empirically answer the following questions.
Q1: Sample Efficiency: Do the abstractions induced in

RePReL improve sample efficiency?
Q2: Transfer: Do these abstractions allow for effective

transfer?
Q3: Generalization: Does RePReL efficiently generalize

to varying number of objects?
We evaluate RePReL on the following 4 environments.3

1. Craft World: This is a Minecraft inspired multitask grid-
world from Andreas, Klein, and Levine (2017). It has some
raw materials and three work locations. Tasks are: 1. get
wood and iron, 2. make sticks, 3. make axe, 4. mine gem.
These tasks can be viewed as curriculum learning since they
are incremental. To mine the gem, agent needs axe, and an
axe can be obtained by visiting the tool-shed with a stick
and iron. Stick is obtained by first collecting wood and then
visiting the workbench.
2. Office World: This is a multitask grid-based environment
from Illanes et al. (2020). It has inaccessible and accessible

3refer appendix for code, environment details and visuals.

537



Domain D-FOCI statements Operators Set of relevant state predicates

CraftsWorld

{agent-at(L1), move(Dir)} +1−→ agent-at(L2)

pickup(X) {agent-at(L1), at(X, L), with-agent(X),
move(Dir)}

{agent-at(L1), move(Dir)}−→ R

{with-agent(Y), require(X, Y)} +1−→ require(X, Y)
pickup(X):with-agent(X)−→ Ro
pickup(X):{agent-at(L1), at(X, L), with-agent(X)}

−→ with-agent(X)

build(X) {agent-at(L1), with-agent(X), build-at(X, L),
require(X, Y), with-agent(Y), move(Dir)}

build(X): {agent-at(L1), build-at(X, L), require(X,Y),
with-agent(Y)} +1−→ with-agent(X)

build(X): with-agent(X)−→ Ro

OfficeWorld

{agent-at(L1), move(Dir)} +1−→ agent-at(L2)

pickup(X) {agent-at(L1), at(X, L), with-agent(X),
move(Dir)}

{agent-at(L1), move(Dir)}−→ R
pickup(X): {agent-at(L1), at(X, L), with-agent(X)}

+1−→ with-agent(X)
pickup(X): with-agent(X)−→ Ro
deliver(X): {agent-at(L1), with-agent(X), office(L),

deliver(X) {agent-at(L1), with-agent(X), office(L),
move(Dir), delivered(X)}delivered(X)} +1−→ delivered(X)

deliver(X): delivered(X)−→ Ro

Taxi

{taxi-at(L1), move(Dir)} +1−→ taxi-at(L2)

pickup(P) {taxi-at(L1), at(P,L), in-taxi(P), move(Dir)}{taxi-at(L1), move(Dir)}−→ R
pickup(P):
{taxi-at(L1), at(P, L), in-taxi(P)} +1−→ in-taxi(P)

pickup(P): in-taxi(P)−→ Ro

drop(P) {taxi-at(L1), in-taxi(P), dest(P,L),
at-dest(P), move(Dir)}

drop(P): {taxi-at(L1), in-taxi(P), dest(P,L),
at-dest(P)} +1−→ at-dest(P)

drop(P): at-dest(P)−→ Ro

BoxWorld

{neighbor(Dir,C), agent-at(L2), move(D)}

pick key(K) {neighbor(Dir,C), agent-at(L1),
direction(K, Dir2), own(K), move(D)}

+1−→ agent-at(L1)
{neighbor(Dir,C), agent-at(L1), move(D)}−→ R
pick key(K): own(K)−→ Ro
pick key(K): {agent-at(L1), direction(K, Dir2),

own(K)} +1−→ own(K)

unlock(L) {neighbor(Dir,C), agent-at(L1),
direction(L, Dir2), open(L),move(D)}

unlock(L): open(L)−→ Ro
unlock(L): {agent-at(L1), direction(L, Dir2),

open(L)} +1−→ open(L)

Table 1: D-FOCI statments and relevant state predicates for all the domains

locations. The 4 tasks include: 1. deliver mail to office, 2.
deliver coffee to office, 3. deliver mail and coffee, and 4.
visit locations A, B, C, D.
3. Extended Taxi World: We extend the Taxi domain by
Dietterich (2000) with three passengers and the relational
representation as shown in the earlier example. The taxi can
be hired by one passenger at a time. Task 1 is to drop one
passenger (p1), Task 2 is to drop two passengers (p1, p2),
and Task 3 is to drop all three passengers (p1, p2, and p3) to
their respective destinations in that order. This domain has
higher complexity than previous domains. In both the Craft
and Office World, every object except player has a fixed lo-
cation. Here, along with the player/taxi location, the passen-
ger pick-up and drop locations are also randomly sampled at
the beginning of each episode from R, G, B, or Y .
4. Relational Box World: This environment is inspired by
Box World from Zambaldi et al. (2019). There are 4 types
of objects: lock, key, gem, wall with an associated color. A
lock can be opened with a key of the same color and the
player has to open a lock to reach the key inside that box.

The player is equipped with sensors on each of its 8 direc-
tions (NE,E, S, ...), which detects the relative direction of
the objects. Unlike the image representation, in our setting,
the complete grid is not visible to the agent. The goal, in
each task, is to collect the gem. Task 1 has a lock containing
the gem, the agent is initialized with the key to open the lock.
In Task 2 agent has to first collect the key and then open the
lock to collect the gem. Finally, Task 3 requires the agent to
open two locks in sequence to reach the gem. This is a com-
binatorially complex domain, with 18 possible colors. The
color and the location of the locks and keys are sampled at
the beginning of each episode.

For each of these domains, the operators and the relevant
state variables are shown in the Table. 1
[Q1] Sample Efficiency: To evaluate the effect of RePReL
abstractions, we compare it against the seq variant of the
Taskable RL. We pick this variant for two reasons: 1. seq
variant performed best in all their experiments, 2. We aim
to evaluate the effectiveness of abstractions and thus do not
learn the meta-controller introduced by the partially ordered

538



(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 4

Figure 3: Comparing learning curves of RePReL, trl, and hrl in Craft World environment. Results with transfer (w/ T) are
indicated by dashed lines. Task 1 is to get wood and iron, Task 2 is make stick, Task 3 is make axe, Task 4 is mine gem.

(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 4

Figure 4: Comparing learning curves of RePReL, trl, and hrl in Office World environment. Transfer results (w/ T) are indicated
by dashed lines. Task 1 is deliver mail, Task 2 is deliver coffee, Task 3 is deliver mail and coffee, and Task 4 is visit A, B, C, D.
Note that the RePReL with and without transfer curves in Task 2 are overlapping.

(a) Task 1 (b) Task 2 (c) Task 3

Figure 5: Comparing learning curves of RePReL, trl, and hrl in the Extended Taxi World. Task 1 is to drop passenger p1, Task
2 is to drop p1 and p2, Task 3 is to drop p1, p2, p3.

(a) Task 1 (b) Task 2 (c) Task 3

Figure 6: Comparing learning curves of RePReL and trl with and without transfer in Box World environment. Goal in all the
tasks is to collect the gem, we increase the number of objects to reach the gem in each task.

539



plans. We set a budget on number of steps for learning in
each task and evaluate the performance of RePReL against
Taskable RL (trl) and option-based Hierarchical RL (hrl).

Fig. 3 presents the performance of RePReL and the base-
lines in Craft World environment with 50K steps budget
(consider only the solid lines in the plots, they are without
transfer (w/o T)). All the Figures report aggregated results
over 5 runs. Here, trl and hrl have 8 distinct options, one for
each location in the domain. RePReL has two policies; one
for each operator shown in Tab. 1. RePReL significantly
outperforms the baselines in all the tasks.

Figure 4 compares the learning curves of RePReL with
trl and hrl agents in Office World with 30K budget. While
trl and hrl use 7 different options for traveling to each loca-
tion in the domain, our RePReL framework uses only two
options; one each for pickup and deliver operator. We define
a common operator for pickup and visit operation as they
do not have any preconditions and have the same effects.
Fig. 4a shows that RePReL achieves the optimal reward for
Task 1 in less than 10K steps, while the baseline methods
trl and hrl do not achieve optimality even after 30K steps.
Similarly in all the other tasks, we see that RePReL con-
sistently outperforms trl and hrl by converging to the op-
timal policy in less than 15K steps. Hence, we answer Q1
affirmatively in that RePReL abstractions help in statisti-
cally significantly outperforming the state-of-the-art hybrid
planner-RL architecture, Taskable RL.
[Q2] Transfer: To evaluate the transfer, we modify the
RePReL learning algorithm. Specifically, the RL policies
are not initialized with 0 (line 1 in Algorithm 1), and in-
stead, we transfer the learned policies from Task 1 to Task
2, refine the policy on Task 2, transfer it to Task 3, and so
on, in increasing order. We present the agent performance
with transfer (w/ T) in the plots with dashed lines. We use
the same budget as previous set of experiments.

Our experiments (Fig. 3 and 4) clearly demonstrate that
transferring the RePReL policies across different tasks has
a distinct advantage in terms of sample efficiency. This ad-
vantage is more pronounced in tasks that are closely related
to prior tasks. For e.g., in Craft World, tasks are incremen-
tal in nature and consequently, the significant advantage of
RePReL w/ T over RePReL and other baselines in Tasks
2, 3 and 4 can be clearly observed. In Office World, the Task
4 is independent of Task 1, 2, and 3, and thus, the gain due
to transfer is not significant. Yet, RePReL w/ T converges
faster than trl w/ T due to the state abstractions. This allows
us to answer Q2 affirmatively.

The significant advantage of RePReL over trl in Craft
World when compared to the Office World, is due to the fact
that Craft World has more objects (11 vs 9). We hypothe-
size and verify next that the advantage of state abstraction is
more apparent in the relational domains where the number
of objects is higher and effective transfer requires general-
ization across objects.
[Q3] Generalization: We present, in Fig. 5, the comparison
of the RePReL with baselines in the Extended Taxi World.
Here, both trl and hrl use 4 options for each location R,
G, B, and Y , while RePReL uses only two options, one
for each operator: pickup and drop a passenger. The results

clearly show that RePReL consistently outperforms both
the baselines. RePReL with transfer can perform Task 2 and
3 seamlessly without any additional learning. This demon-
strates the generalization capability of the RePReL agent
across different passengers.

Our experiments in Relational Box World domain are
presented in Fig. 6. Here, we use two subtask policies for
both the trl and RePReL: one for opening lock and an-
other for collecting key or gem. Since the locations of the
lock and key are not fixed, we cannot use different options
for each location in taskable RL. Each learning agent is pro-
vided a budget of 1.5M training steps in each task. We see
that RePReL is significantly more efficient than trl, in all
the three tasks. Here, Task 2 involves opening one box (i.e.
collecting key and opening lock) to reach the gem and Task
3 requires opening two boxes. It can be clearly observed that
RePReL w/ T is able to generalize across number of objects
when going from Task 2 to Task 3. These transfer results in
Extended Taxi World and Relational Box World allows us to
answer Q3 affirmatively in that RePReL allows for gener-
alizing across varying number of objects and is best suited
for relational domains.

We also employed two relational RL baselines: Q-tree
(Džeroski, De Raedt, and Driessens 2001) and Gradient
Boosted Q-Learning (Das et al. 2020). However, with the
number of time-steps that we used for the other planner-
based methods, these RRL methods could not converge to
an optimal policy. We hypothesize that this is due to the fact
that they learn on fixed goal domains while our domains
have varying goals. Investigating the extension of RRL to
goal-directed methods is an interesting future direction.

Discussion and Future Work

It is important to note that taskable RL learns a dif-
ferent policy for each goal location R,G,B, Y i.e.
πR(s), πG(s), πB(s), πY (s), while RePReL learns policy
for pickup and drop operators i.e. πpickup(s), πdrop(s).
These policies are equivalent (i.e., the action selected by
trl would be same as RePReL), the difference lies in the
way state s is represented. Taskable RL uses the complete
state representation while RePReL generates abstract state
representations. Another significant difference in RePReL
learning algorithm proposed here is that the Taskable RL
updates all the subtask policies for every step in the environ-
ment, while RePReL only updates the active subtask policy
for each step. With these observations, our empirical results
should make stronger cases for sample efficiency and gener-
alization abilities for RePReL.

While our empirical evaluation of RePReL is quite suc-
cessful, there are several interesting future avenues to pur-
sue. First is combining the planner with Deep RL frame-
works to handle hybrid (discrete-continuous) domains. More
expressive propositional and relational representations can
be explored at the RL level. Another direction is to allow for
rich human interaction during learning (in a preference elic-
itation manner). Finally, scaling up the evaluation to more
real-world domains is an interesting future direction.

540



Acknowledgements
HK & SN gratefully acknowledge the support of ARO
award W911NF2010224. SN acknowledges AFOSR award
FA9550-18-1-0462. PT acknowledges support of DARPA
contract N66001-17-2-4030 and NSF grant IIS-1619433.
AM gratefully acknowledge the travel grant from RBCD-
SAI. Any opinions, findings, conclusion or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the view of the ARO, AFOSR,
NSF, DARPA or the US government. We sincerely thank
Illanes et al. (2020) for sharing the Taskable RL code for
baselines.

References
Abel, D.; Arumugam, D.; Lehnert, L.; and Littman, M. 2018. State
abstractions for lifelong reinforcement learning. In ICML, vol-
ume 80, 10–19.

Andre, D.; and Russell, S. J. 2002. State Abstraction for Pro-
grammable Reinforcement Learning Agents. In AAAI, 119–125.

Andreas, J.; Klein, D.; and Levine, S. 2017. Modular multitask
reinforcement learning with policy sketches. In ICML, volume 70,
166–175.

Brafman, R. I.; and Tennenholtz, M. 2002. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement learning.
JMLR 3: 213–231.

Das, S.; Natarajan, S.; Roy, K.; Parr, R.; and Kersting, K. 2020.
Fitted Q-Learning for Relational Domains. CoRR abs/2006.05595.

Dietterich, T. G. 2000. State abstraction in MAXQ hierarchical
reinforcement learning. In NeurIPS, 994–1000.

Džeroski, S.; De Raedt, L.; and Driessens, K. 2001. Relational
reinforcement learning. Machine learning 43(1/2): 7–52.

Eppe, M.; Nguyen, P. D. H.; and Wermter, S. 2019. From Se-
mantics to Execution: Integrating Action Planning With Reinforce-
ment Learning for Robotic Causal Problem-Solving. Frontiers in
Robotics and AI 6: 123.

Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate policy iter-
ation with a policy language bias: Solving relational Markov deci-
sion processes. JAIR 25: 75–118.

Finzi, A.; and Lukasiewicz, T. 2006. Adaptive Multi-agent Pro-
gramming in GTGolog. In KI, volume 4314, 389–403.

Georgievski, I.; and Aiello, M. 2015. HTN planning: Overview,
comparison, and beyond. Artificial Intelligence 222: 124–156.

Getoor, L.; and Taskar, B. 2007. Introduction to Statistical Rela-
tional Learning. The MIT Press.

Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence notions and
model minimization in Markov decision processes. Artificial Intel-
ligence 147(1-2): 163–223.

Grounds, M.; and Kudenko, D. 2005. Combining reinforcement
learning with symbolic planning. In AAMAS III, volume 4865, 75–
86.

Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003. Gen-
eralizing plans to new environments in relational MDPs. In IJCAI,
1003–1010.

Guestrin, C.; Patrascu, R.; and Schuurmans, D. 2002. Algorithm-
directed exploration for model-based reinforcement learning in fac-
tored MDPs. In ICML, 235–242.

Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. A. 2020. Sym-
bolic Plans as High-Level Instructions for Reinforcement Learning.
ICAPS 540–550.

Jiang, Y.; Yang, F.; Zhang, S.; and Stone, P. 2019. Task-Motion
Planning with Reinforcement Learning for Adaptable Mobile Ser-
vice Robots. In IROS, 7529–7534.

Konidaris, G. 2019. On the necessity of abstraction. Current Opin-
ion in Behavioral Sciences 29: 1–7.

Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenenbaum, J.
2016. Hierarchical deep reinforcement learning: Integrating tem-
poral abstraction and intrinsic motivation. In NeurIPS, 3675–3683.

Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic program in-
duction. Science 350(6266): 1332–1338.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a Unified
Theory of State Abstraction for MDPs. In ISAIM, volume 4, 5.

Lyu, D.; Yang, F.; Liu, B.; and Gustafson, S. 2019. SDRL: Inter-
pretable and data-efficient deep reinforcement learning leveraging
symbolic planning. In AAAI, 2970–2977.

Natarajan, S.; Tadepalli, P.; Dietterich, T. G.; and Fern, A. 2008.
Learning first-order probabilistic models with combining rules.
Ann. Math. Artif. Intell. 54(1-3): 223–256.

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999. SHOP:
Simple hierarchical ordered planner. In IJCAI, 968–975.

Price, B.; and Boutilier, C. 2001. Imitation and reinforcement
learning in agents with heterogeneous actions. In Conference of
the Canadian Society for Computational Studies of Intelligence,
volume 2056, 111–120.

Raedt, L. D.; Kersting, K.; Natarajan, S.; and Poole, D. 2016.
Statistical relational artificial intelligence: Logic, probability, and
computation. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning 10(2): 1–189.

Ravindran, B.; and Barto, A. G. 2003. SMDP Homomorphisms:
An Algebraic Approach to Abstraction in Semi Markov Decision
Processes. In IJCAI, 1011–1018.

Sanner, S.; and Boutilier, C. 2009. Practical solution techniques for
first-order MDPs. Artificial Intelligence 173(5-6): 748–788.

Silver, D.; Hubert, T.; et al. 2018. A general reinforcement learn-
ing algorithm that masters chess, shogi, and Go through self-play.
Science 362(6419): 1140–1144.

Sorg, J.; and Singh, S. 2009. Transfer via soft homomorphisms. In
AAMAS, 741–748.

Sutton, R. S.; Precup, D.; and Singh, S. P. 1998. Intra-Option
Learning about Temporally Abstract Actions. In ICML, 556–564.

Tadepalli, P.; , R.; and Driessens, K. 2004. Relational reinforce-
ment learning: An overview. In ICML workshop on relational re-
inforcement learning, 1–9.

Walsh, T. J.; Li, L.; and Littman, M. L. 2006. Transferring state
abstractions between MDPs. In ICML Workshop on Structural
Knowledge Transfer for Machine Learning.

Yang, F.; Lyu, D.; Liu, B.; and Gustafson, S. 2018. PEORL: Inte-
grating symbolic planning and hierarchical reinforcement learning
for robust decision-making. IJCAI 4860–4866.

Zambaldi, V.; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.;
Babuschkin, I.; Tuyls, K.; Reichert, D.; Lillicrap, T.; Lockhart, E.;
Shanahan, M.; Langston, V.; Pascanu, R.; Botvinick, M.; Vinyals,
O.; and Battaglia, P. 2019. Deep reinforcement learning with rela-
tional inductive biases. In ICLR.

541


