
Automated Production Scheduling for Artificial Teeth Manufacturing

Felix Winter,1 Christoph Mrkvicka,2 Nysret Musliu,1 Jakob Preininger1

1Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien,
Vienna, Austria

2MCP GmbH, Canovagasse 7, 1010 Vienna, Austria
winter@dbai.tuwien.ac.at, christoph.mrkvicka@mcp-alfa.com, musliu@dbai.tuwien.ac.at, jpreinin@dbai.tuwien.ac.at

Abstract

In industrial artificial teeth manufacturing, nowadays a high
level of automation is required to produce a large quantity
of teeth in short production cycles. As a large variety of dif-
ferent product shapes and colors have to be processed on a
single machine, the creation of efficient production schedules
becomes a very challenging task. Due to the complexity of the
problem and several cost minimization objectives that need to
be considered, usually there is a large potential to improve the
currently manually created schedules with automated solution
methods.
In this paper, we formally specify and solve a novel challeng-
ing real-life machine batch scheduling problem from the area
of artificial teeth manufacturing. Additionally, we provide a
collection of real-life benchmark instances that can be used to
evaluate solution methods for the problem.
To efficiently solve the problem, we propose an innovative
construction heuristic and a metaheuristic approach as well
as an exact method using constraint programming (CP). An
extensive experimental evaluation shows that exact techniques
can efficiently solve small scheduling scenarios and provide
optimal solutions for four instances. Furthermore, we show
that the proposed metaheuristic approach is able to reach opti-
mal results for several small instances and can find high quality
solutions also for large real-life benchmark instances.

Introduction
Modern-day production sites for artificial teeth manufactur-
ing use an automated production process to produce large
quantities of teeth in a variety of different shapes and colors.
To efficiently handle large-scale production, batches of prod-
uct moulds are usually simultaneously processed on a single
machine. As resource constraints have to be respected and
different machine programs need to be utilized for varying
product families, creating cost-efficient batches becomes a
very challenging task in practice.

Currently, in the application we investigate schedules are
usually manually created to minimize job tardiness as well
as costs caused by setup times and overproduction. However,
due to the complexity of the problem and the multiple cost
objectives that should be minimized, there is a large potential
to save costs by using automated scheduling solutions.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A variety of batch scheduling problems, which share the
goal to efficiently schedule batches of jobs onto machines,
have been the subject of intensive study in the past. (Potts
and Kovalyov 2000) provided an overview and categorization
of earlier NP-hard batch scheduling variants for several sin-
gle machine and parallel machine environments. Since then
researchers studied further problem variants and investigated
innovative solution methods for many real-life scheduling
problems that arise from different application domains.

For example, a recent publication by (Polyakovskiy, Thiru-
vady, and M’Hallah 2020) studied a just-in-time batch
scheduling problem that aims to minimize tardiness as well
as earliness objectives and was shown to be NP-hard in (Hazır
and Kedad-Sidhoum 2014). The authors propose a matheuris-
tic approach which integrates evolutionary algorithms with
mixed integer programming (MIP). Furthermore, novel prac-
tical single machine scheduling problems from the industry
have been investigated recently. (Zhao et al. 2020) for ex-
ample investigate a batch scheduling problem from the steel
industry which considers sequence-dependent setup times, re-
lease times and due time constraints where batches of jobs are
predetermined in advance. In their paper, (Zhao et al. 2020)
propose a MIP model and a two-stage decomposition ap-
proach as solution methods. Recently, (Tang and Beck 2020)
further investigated a complex two-phase batch scheduling
problem from the composites manufacturing industry which
they approach using CP, heuristics, and hybrid techniques.
Further NP-hard single machine scheduling problem variants
that do not include batching decisions but aim to minimize tar-
diness and setup time similarly as it is done in artificial teeth
manufacturing, have been investigated for example by (Niu
et al. 2019) and by (de Weerdt, Baart, and He 2020).

In this work we introduce for the first time the artificial
teeth scheduling problem (ATSP), which is a novel single
machine batch scheduling variant that appears in real-life
production plants of the artificial teeth manufacturing area.
While the single machine batch scheduling problem variants
that have been investigated recently in literature are given a
predetermined set of jobs as part of the input, instances of
the ATSP include customer demands but do not specify any
job information. Therefore, novel solution methods are re-
quired that do not only design cost-efficient batches, but also
create jobs that efficiently fulfill all customer demands. Ad-
ditionally, approaches to the ATSP have to consider several

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

500

constraints which impose restrictions on feasible schedules
and need to further optimize multiple cost objectives includ-
ing an objective that aims to minimize the waste caused by
overproduction.

The following list summarizes the main contributions of
this paper:
• We introduce and formally define a novel challenging real-

life machine scheduling problem from the area of artificial
teeth manufacturing. Further, we provide a collection of
12 instances that contain challenging real-life scheduling
scenarios.1

• We propose a construction heuristic that can quickly pro-
duce schedules to real-life problems. This method was
developed with practitioners to automatize the manual
planning process and serves as a baseline approach.

• We propose a CP model that can be utilized with state-of-
the-art solvers as an exact method. Using this approach
we provide optimal solutions for four of the benchmark
instances.

• We develop a metaheuristic approach using local search
which includes 7 innovative neighborhood operators and
is able to provide high-quality solutions for large real-life
scheduling scenarios.

• We evaluate all of our methods empirically, and show
that the metaheuristic and exact approach can successfully
improve the baseline results.
In the remainder of the paper we first provide the formal

specification of the ATSP, before we later propose the solu-
tion methods and present experimental results.

Problem Definition
To efficiently produce a large number of artificial teeth, many
teeth are usually processed simultaneously in batches. There-
fore, each job in a production schedule uses a number of
different product moulds to produce teeth. Such a mould
essentially produces a certain tooth shape and is associated
to a product line so that all moulds that belong to the same
line form a family of related shapes. However, a job in the
schedule needs to additionally decide which color should be
applied to each of the produced teeth and therefore the final
tooth product type is determined not only by its product line
but also by the applied color.

Each job is further configured by a length- and production
program parameter. The length parameter sets the number of
production cycles of the job that determines the total number
of produced teeth. Note that each cycle produces the same
teeth using the moulds which are assigned to the job. The pro-
duction program parameter determines how many moulds are
simultaneously processed by the job, which mould types are
compatible, and the processing time of a single production
cycle. As every production program requires a fixed amount
of moulds to be processed per cycle, it might be necessary to
produce more teeth than necessary in some job cycles. Usu-
ally this cannot be completely avoided, therefore one of the

1The instances are publicly available online:
https://www.dbai.tuwien.ac.at/staff/winter/atsp.zip

M1 × 5, L1

M2 × 2, L1

M3 × 3, L2

J1: P1

M1 × 4, L1

M2 × 2, L1

M3 × 4, L2

J2: P1

M4 × 4, L3

M4 × 4, L3

M5 × 4, L4

J3: P2

t1 t2 t3 t4 t5 t6

Figure 1: A small example schedule for the ATSP.

problem’s goals is to minimize the amount of waste caused
by excessively produced teeth. Consecutively scheduled jobs
may either use different production programs or share the
same program with a different set of mould and or color as-
signments. In any case a setup time is required between jobs,
however if different production programs are used a longer
setup time is required.

Finally, the main goal of the ATSP is to create a schedule
that fulfills all given customer demands by creating jobs in a
way that the makespan, total tardiness, and produced waste
is minimized. Figure 1 further illustrates the problem, by
visualizing a schedule with three jobs for a small example
instance.

The figure shows three jobs J1, J2, and J3 being sched-
uled on the horizontal time line. Time points t1, t3, and t5
indicate the starting times of each job, whereas timepoints
t2, t4, and t6 denote the corresponding job end times (in this
case the total makespan is t6-t1). Jobs J1 and J2 both use
the production program P1, whereas job J3 uses a different
program P2. Note that the setup time between jobs J1 and J2
(visualized by the lengths of the horizontal arrows between
jobs) is much smaller than it is between J2 and J3, as J1 and
J2 both use program P1, but J2 and J3 use different programs.
Furthermore, the horizontal length of the jobs indicates the
number of assigned production cycles. Therefore, J2 uses
more cycles than J1.

As the production program defines the total number of
assigned moulds, we can see in Figure 1 that J1 and J2 both
use a total of 10 moulds, whereas J3 uses a total of 12 moulds.
Mould types M1, M2, and M3 are in this case compatible
only with program P1, and mould types M4 and M5 are
associated to P2. We can further see in the figure, that each
mould type is associated to a certain product line (e.g. M3
corresponds to line L2), and that the same mould type may be
used with different colorings within the same job (e.g. in J3
mould type M4 is used in white color and gray color). Note
that any two colors may only be used within the same job if
they are compatible. Which pairs of colors are compatible is
specified as part of the problem’s input.

We now provide the full formal specification of the ATSP
in the following sections. For simplicity we make use of the
Iverson bracket notation2.

Input Parameters
The following parameters describe instances of the problem:

2[P] = 1, if P = true and [P] = 0 if P = false

501

Description Parameter

Set of colors C
Set of programs P
Set of mould types M
Set of product lines L
Set of demands D
Setup time between identical programs sj ∈ N
Setup time between different programs sp ∈ N
Max product types per job w ∈ N>0

Min cycles per job cmin ∈ N>0

Max cycles per job cmax ∈ N>0

Number of available moulds per type am ∈ N ∀m ∈ M
Number of mould slots per program amp ∈ N ∀p ∈ P
Cycle time per program tp ∈ N>0 ∀p ∈ P
Admissible program per mould type pm ∈ P ∀m ∈ M
Product line of each mould type lm ∈ L ∀m ∈ M
Requested mould type per demand dmd ∈ M ∀d ∈ D
Requested mould quantity per demand dqd ∈ N>0 ∀d ∈ D
Due date of each demand ddd ∈ N ∀d ∈ D
Requested color for each demand dcd ∈ C ∀d ∈ D
Set of compatible colors per color compc ∈ 2C ∀c ∈ C

Table 1: Input parameters of the ATSP

Variables
We define the following variables for the ATSP:

• Number of assigned jobs: j ∈ N J = {1, . . . , j}

• Program assigned to each job: jpi ∈ P ∀i ∈ J

• Length of each job (i.e. the number of cycles):

jli ∈ N>0 ∀i ∈ J

• The number of mould types (with color) assigned to each
job:

jmi,m,c ∈ N ∀i ∈ J,m ∈M, c ∈ C

• The total mould types (with color) produced by each job:

totaljmi,m,c = jmi,m,c · jli ∀i ∈ J,m ∈M, c ∈ C

Constraints
Several constraints impose restrictions on feasible schedules:
• The number of assigned moulds to each job must be equal

to the number of mould slots of the job’s program:∑
m∈M

∑
c∈C

jmi,m,c = am(jpi)
∀i ∈ J

• The number of scheduled moulds per job must not exceed
mould availability:∑

c∈C
jmi,m,c ≤ am ∀i ∈ J,m ∈M

• The number of different product types within a single job
must be less than or equal to the allowed maximum:∑

c∈C

∑
l∈L

∑
m∈M

([lm = l] · [jmi,m,c > 0]) ≤ w ∀i ∈ J

• All demands need to be fulfilled:∑
d∈D

[dmd = m ∧ dcd = c] · dqd ≤
∑
i∈J

totaljmi,m,c ∀m ∈M, c ∈ C

• Job moulds must be compatible with the job’s program:∑
c∈C

jmi,m,c · [jpi 6= pm] = 0 ∀i ∈ J,m ∈M

• A single job must not use incompatible colors: ∑
m∈M

jmi,m,c1
> 0

 ≤
 ∑

m∈M
jmi,m,c2

= 0


∀i ∈ J, c1 ∈ C, c2 ∈ (C \ compc1

)

Objective Function
For the formal definition of the objective function we intro-
duce the following auxiliary variables:
• The processing time for each job: jti ∈ N>0 ∀i ∈ J

• The finishing time for each job: jei ∈ N>0 ∀i ∈ J

• The finishing job for each demand (after completion the
demand is fulfilled): djd ∈ J ∀d ∈ D

Several constraints set the values of the auxiliary variables:
• Set the job processing times: jti = jli · t(jpi) ∀i ∈ J

• Set job finishing times:

jei = jt1 +
i∑

k=2

(jtk + sj + [jpk 6= jpk−1] · (sp− sj)) ∀i ∈ J

• Set demand finishing jobs:
djd∑
i=1

totaljmi,m,c ≥
∑

d′∈D′
dqd′ ∀d ∈ D where m = dmd,

c = dcd, D
′
= {d′ ∈ D|ddd′ ≤ ddd ∧ dmd′ = m ∧ dcd′ = c}

Using these auxiliary variables, the objective function aims
to minimize three solution objectives:

1. The last job should be finished early to minimize the total
makespan of the schedule: ms = jej

2. The number of excessively produced moulds which are
not consumed by any demand are considered to be waste
and should be minimized:

waste =
∑
i∈J

∑
m∈M

∑
c∈C

totaljmi,m,c −
∑
d∈D

dqd

3. The total tardiness of all demands in the schedule should
be mimized:

tard =
∑
d∈D

max(0, je(djd) − ddd)

Finally, we aggregate all three objectives in a normalized
weighted sum where the objectives marked with * denote
the costs of a given reference solution and w1−3 are weight
parameters:

minimize
w1 ·ms

ms∗
+

w2 · waste

waste∗
+

w3 · tard
tard∗

Parameters w1−3 are then used to configure the relative im-
portance of the three individual objectives. In practice, the
weight parameters and reference solution costs can be config-
ured according to the practical use case.

To evaluate the methods proposed in this paper with the set
of real-life benchmark instances, we decided to set w1−3 = 1
as in the particular practical scheduling scenarios all three
objectives are considered to be of similar importance. Fur-
thermore, we use the construction heuristic approach that we
propose in the next section, to generate all reference solution
costs. As this method was developed in collaboration with
domain experts to automatize the manual planning process,
it represents a baseline for the quality of current practical
results.

502

Algorithm 1: A construction heuristic for the ATSP
fn CreateSchedule

schedule = Initialize empty schedule
sorted demands = sort demands by due date
while sorted demands.Count() > 0 do

d = sorted demands.GetNext()

program = p(dmd)

length = d dqdam
e

length = min{cmax,max{length, cmin}}
j = Create new job j

Update used moulds of j to fulfill d
Remove d from sorted demands

for d′ ∈ sorted demands do
if j has no more unused moulds left then

exit loop

if d′ is compatible with job j then
Update used moulds of j to fulfill d′

Update sorted demands

while j has free remaining mould slots do
Update j to use any available mould

schedule.AppendJob(j)

return schedule

Construction Heuristic Approach
In this section we propose a construction heuristic to quickly
build solution schedules for instances of the ATSP.

The main idea is to consecutively create jobs by greedily
fulfilling the demands which are ordered by their due dates.
In other words, the next job is configured to fulfill the next
most urgent demand as quickly as possible, using feasible
mould type and color assignments.

Algorithm 1 presents the detailed procedure of the con-
struction heuristic.

The algorithm first initializes an empty schedule and sorts
the list of demands by their due date. Afterwards, the proce-
dure creates jobs to fulfill demands in a loop until the list of
sorted demands is empty. Within the outer while loop, the al-
gorithm selects the next most urgent demand, and determines
which program the job needs to use to fulfill the demand. Fur-
thermore, the number of job cycles that are required to fulfill
the demand is calculated based on the number of available
moulds per cycle, as well as the minimum and maximum
job length. The job is then created, and the number of used
moulds within the job is updated accordingly. Additionally,
the algorithm removes the processed demand from the list of
remaining demands.

The newly created job is at this point likely to be only
partially filled with moulds, and the selected program may
require further moulds to be attached to this job. The inner for
loop therefore goes over the complete list of sorted demands
to look for other demands that could be fulfilled by this job.
Thereby, for each demand it has to be checked if the required
mould is still available in the job and the demanded product
is compatible to the other already scheduled products so
that no hard constraint would get violated. If the demand
is compatible, the heuristic updates the remaining demand
quantity as well as the assigned job moulds accordingly.

After the for loop, it can still be the case that free mould

slots are left in the job, as no more compatible demands exist.
In this case the algorithm simply fills any remaining unused
mould slots by using any available mould types. The outer
while loop ends by appending the newly created job at the end
of the schedule. The overall job creating procedure continues
until no more demands are left and afterwards the schedule
is returned.

Constraint Modeling Approach
In this section we propose a CP formulation for the ATSP
using the input parameters from Table 1.

Model Variables
The model we propose uses several arrays of decision vari-
ables, where the length of many arrays is dependent on the
maximum number of jobs that can be scheduled. The prob-
lem instances do not set any restrictions on the number of
jobs, however an arbitrary number of jobs can lead to an
unnecessary blow up of the variables in the model. Therefore,
we set the maximum number of possible jobs based on a user
defined model parameter max jobs and in the following re-
fer to the set of possible job ids as J = {1, . . . ,max jobs}.
In practice the construction heuristic can be used to find rea-
sonable values for the max jobs parameter by simply taking
the number of heuristically constructed jobs or increasing the
number by a low value. We define the following variables:
• jpi ∈ {0, . . . , |P |} ∀i ∈ J

• jli ∈ {cmin, . . . , cmax} ∀i ∈ J

• jmi,m,c ∈ {0, . . . ,max{amp|p ∈ P}} ∀i ∈ J,m ∈M, c ∈ C

• tjmi,m,c ∈ {0, . . . ,max{amp · cmax|p ∈ P}}
∀i ∈ J,m ∈M, c ∈ C

Variable arrays jp and jl determine the selected program,
as well as the number of selected cycles for each job. Note
that the domain of jp includes 0 to indicate that a job variable
should be ignored, allowing the formulation to use less then
the maximum number of jobs. Variable arrays jm and tjm
determine which moulds and colors are assigned to each job.
The upper bound of these variable domains is calculated by
the maximum number of possible program slots.

In addition to the mentioned variables, the model we pro-
pose uses a set of auxiliary variable arrays that are used in
the formulation of the cost objectives. To efficiently set the
domains of these auxiliary variables, we calculate several
lower and upper bounds based on the input parameters:
• lb end = cmin ·min{tp|p ∈ P}

• ub end = max jobs · cmax ·max{tp|p ∈ P}+ max jobs · sp

• ub time = max{tp|p ∈ P} · cmax

• ub waste = max{amp|p ∈ P} · cmax ·max jobs

• ub tardiness =
∑

d∈D max{0, ub end− ddd}

lb end and ub end define lower and upper bounds on the
job end times in the schedule based on the minimum and
maximum values regarding the number of cycles and cycle
processing times. ub time defines a bound on the maximum
job processing time, whereas ub waste and ub tardiness
provide upper bounds on the total waste and tardiness costs
based on the maximum number of scheduled moulds and the
maximum job end time. We then define auxiliary variables:

503

• jei ∈ {lb end, . . . , ub end} ∀i ∈ J

• jti ∈ {0, . . . , ub time} ∀i ∈ J

• ded ∈ J ∀d ∈ D

• ms ∈ {lb end, . . . , ub end} ∀d ∈ D

• waste ∈ {0, . . . , ub waste} ∀d ∈ D

• tard ∈ {0, . . . , ub tardiness} ∀d ∈ D

The je, jt, and de variable arrays capture the job end times,
job processing times, and demand end jobs. The ms, waste,
and tard variables capture the individual cost objectives.

Model Constraints
We use a high-level CP modeling notation to declare the con-
straints of the problem. Most parts of the model are directly
solvable with constraint programming solvers, however at
some points we implicitly make use of constraint reification
to express conditional sums and logical implications. Fur-
thermore, we implicitly utilize the element constraint to use
variables as indices for array access, and make use of the
maximum global constraint.

The following constraints are used in our formulation:
• We break symmetrical job assignments by aligning unused

jobs at the end of the schedule and setting the length of
unused jobs to the minimum domain value:

(jpi = 0)⇒ (jpi+1 = 0) ∀i ∈ {1, . . . ,max jobs− 1}

(jpi = 0)⇒ (jli = cmin) ∀i ∈ J

• Check that the amount of assigned job moulds is compati-
ble with the program (we set am0 = 0):∑

m∈M

∑
c∈C

jmi,m,c = am(jpi)
∀i ∈ J

• The amount of available moulds must not be exceeded:∑
c∈C

jmi,m,c ≤ am ∀i ∈ J,m ∈M

• The number of product types must not be larger than the
allowed maximum:

∑
c∈C

∑
l∈L

 ∑
m∈M

([lm = l]jmi,m,c) > 0

 ≤ w ∀i ∈ J

• Channel the tjm and jm variables:

tjmi,m,c = jmi,m,c · jli ∀i ∈ J,m ∈M, c ∈ C

As these constraints are bilinear, we additionally used an
alternative linearized version in our implementation. To
achieve the linearization we applied a binary encoding of
bilinear constraints as described by (Gupte et al. 2013).

• Ensure that all demands are fulfilled:∑
d∈D

[dmd = m ∧ dcd = c]dqd ≤
∑
i∈J

tjmi,m,c∀m ∈M, c ∈
⋃

d∈D
dcd

• Moulds have to be compatible with the job’s program:

(jpi 6= pm)⇒ (jmi,m,c = 0) ∀i ∈ J,m ∈M, c ∈ C

• Only compatible colors may be assigned to the same job:

(
∑

m′∈M

jmi,m′,c1 > 0)⇒ (jmi,m,c2
= 0)

∀i ∈ J,m ∈M, c1 ∈ C, c2 ∈ C \ compc1

• Set the job time variables:

(jpi = p)⇒ (jti = jli · tp) ∀i ∈ J, p ∈ P

(jpi = 0)⇒ (jti = 0) ∀i ∈ J

• Set the job end time variables:

(jpi > 0)⇒(
jei = jt1 +

i∑
k=2

(jtk + sj + [jpk−1 6= jpk] · (sp− sj))

)
∀i ∈ J

(jpi = 0)⇒ (jei = 0) ∀i ∈ J

• Set demand end job variables:

jp(ded) > 0 ∀d ∈ D

ded∑
i=1

tjmi,(dmd),(dcd) ≥
∑

d′∈D′
dqd′ >

ded−1∑
i=1

tjmi,(dmd),(dcd)

∀d ∈ D,D
′
= {d′ ∈ D|ddd′ ≤ ddd ∧ dmd′ = dmd ∧ dcd′ = dcd}

• Set the makespan: ms = maximum(je)

• Set the total waste:

waste =
∑
i∈J

∑
m∈M

∑
c∈C

tjmi,m,c, −
∑
d∈D

dqd

• Set total tardiness: tard =
∑

d∈D maximum({0, je(ded)−ddd})

Model Objective Function
The objective function aggregates the ms, waste, and tard
variables in a normalized weighted sum the same way as we
have described it in the problem specification section.

Metaheuristic Approach
In this section, we propose a local search based metaheuristic
approach for the ATSP. We first describe the solution repre-
sentation, cost function, and the generation of initial solution.
Afterwards, we propose several search neighborhoods for the
problem, and describe how random neighborhood moves are
generated in each search iteration. Finally, we present our
neighborhood move acceptance criteria that is used to escape
local optima.

Solution Representation and Cost Function
In our metaheuristic approach we represent solutions simi-
larly as we did in the constraint model by using three variable
arrays to store the assigned programs for each job, the length
of each job, as well as the mould and color assignments
assigned for each job. Therefore, we need to provide a pa-
rameter max jobs that determines the length of these arrays
and thereby limits the maximum number of jobs.

To determine the costs of candidate solutions, we use the
previously defined normalized objective function but extend it
in a way that it additionally captures potential hard constraint
violations as follows:

cost(S) =
ms

ms∗
+

waste

waste∗
+

tard

tard∗
+ HC ·M

The function cost(S) calculates the costs of a candidate
solution S by adding the number of total hard constraints

504

violations HC multiplied by a big constant M to the normal-
ized objectives, where M should ideally be larger than the
worst case normalized objective costs. As we normalize our
objectives using a reference solution it suffices to set M to a
very large integer in practice.

To determine HC we further need to define for each hard
constraint how we actually count the number of violations.
Regarding mould availability, we can simply count the num-
ber of assigned moulds that are unavailable. For unfulfilled
demands, we count the number of missing moulds. If any
incompatible colorings are assigned to a job, we count the
total mould quantities that use any of the incompatible colors.
We further count any mould quantities that are incompatible
with the selected program. If the number of allowed product
types is exceeded in a job, we first calculate the mould quan-
tities for each product type assigned to the job. Afterwards,
we count the n lowest product type quantities as violations,
where n is the difference between the allowed maximum
number of product types and the actually number of assigned
product types. Finally, in case too many moulds are assigned
to a job we simply count the excessive mould quantities.

To generate an initial candidate solution for our meta-
heuristic approach we consider two options: We can either
start search from an empty schedule or use our construction
heuristic to produce an initial schedule.

Search Neighborhoods
In the following we propose seven search neighborhoods for
our local search approach:

1. Swap two jobs: Swaps the positions of two existing jobs.

2. Increment length: Increments the cycles of a job by 1.

3. Decrement length: Decrements the cycles of a job by 1.

4. Change single mould assignment: Changes a single as-
signed mould type and/or color to a different mould type
and/or color within the same job.

5. Delete last job: Deletes the last job in the schedule.

6. Append new job: Appends a new job at the end of the
current schedule. Move parameters define the job program,
as well as the mould quantities that should be used in the
newly created job.

7. Swap mould assignments between two jobs: Swaps a
single mould type and/or color assignment from a job with
a single mould and/or color assignment from another job.

Note that neighborhoods 2-6 would suffice to reach all pos-
sible solution. However, the additional swap neighborhoods
(1 and 7) have the advantage that they can swap mould as-
signments and reposition jobs without violating any demand
constraints in intermediate solutions.

We only allow the insertion and deletion of jobs at the end
of the schedule mainly for the purpose of an efficient move
generation. Note that the insertion of jobs is mainly motivated
to handle unfulfilled demand violations, while the deletion
of jobs is mainly motivated to lower the makespan and waste
objective. Therefore, the purpose of these neighborhoods
does not directly rely on the job position.

Algorithm 2: Move acceptance function
fn AcceptMove(cost(S), cost(S∗), T)

result = True

if cost(S) ≤ cost(S∗) then

p = e
−(cost(S∗)−cost(S))

T

if random() > p then
result = False

return result

Neighborhood Exploration
Exploring the complete neighborhood easily becomes compu-
tationally expensive, especially when dealing with large real-
life instances. Therefore, we do not explore the full neighbor-
hood in our approach, but instead randomly select a single
move out of the complete neighborhood in each iteration.

Which move is generated, is determined based on a random
selection procedure that is configured by parameters N1-N7.
Each parameter N1-N7 defines a real value between 0 and 1
that determines the probability to consider each of the seven
neighborhoods in a iteration. We determine in each iteration
a single random move in 3 steps: First, for each neighbor-
hood we randomly decide based on the associated parameter
whether or not it is considered for move generation. After-
wards, we randomly select one of the neighborhoods that
have been selected in the previous step. Finally, we uniformly
sample a single move from the chosen neighborhood.

Move Acceptance
Once a single random move has been generated, we evalu-
ate the change of the current solution’s quality that would
be caused by the move. Based on the result we then decide
whether or not the move should be applied to the current solu-
tion. We use a move acceptance function based on simulated
annealing (Kirkpatrick, Gelatt, and Vecchi 1983). The func-
tion ensures that a cost improving move is always accepted,
whereas a non-cost-improving move is only accepted with
a certain probability that depends on the change in solution
quality as well as a temperature value. We set the temperature
value at the beginning of local search to a user defined param-
eter. Afterwards, we use a geometrical cooling scheme that
decreases the temperature value after each search iteration by
multiplication with a user defined cooling rate parameter.

Algorithm 2 presents the full acceptance function, where
cost(S) is the cost of the current solution, cost(S∗) is the
cost after the application of the randomly generated move,
T is the current temperature value, and random() is a uni-
formly sampled real value between 0 and 1.

Computational Results
In this section we first describe the experimental environment
and parameter configuration before we later present and dis-
cuss computational results.3 All of our experiments as well as
the parameter tuning were conducted on a computing cluster

3Detailed results are publicly available online:
https://www.dbai.tuwien.ac.at/staff/winter/atsp.zip

505

Inst. C M D L P Vars CS

I 1 5 38 20 4 2 12649 14243
I 2 4 28 24 3 1 15475 17442
I 3 4 16 7 1 1 3242 4045
I 4 5 38 4 4 2 5849 6048
I 5 4 28 9 3 1 6840 7646
I 6 3 16 1 1 1 1247 1447
I 7 22 153 799 4 2 621749 583209
I 8 18 114 390 3 1 372409 337268
I 9 18 64 285 1 1 135664 149647
I 10 22 153 190 4 2 373599 302936
I 11 18 114 224 3 1 294675 253199
I 12 13 64 36 1 1 50463 45298

Table 2: Size parameters of the used benchmark instances.

with 10 identical nodes, each having 24 cores, an Intel(R)
Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB RAM.

We received 6 problem instances from our industry part-
ners that represent real-life scheduling scenarios as they ap-
peared at production sites of artificial teeth manufacturing.
Early experiments with these instances showed that all of
them have a very large search space, which makes it hard
for exact methods to reach results within reasonable runtime.
Therefore, we additionally generated 6 smaller instances by
randomly selecting 25% of the colors and mould types to-
gether with associated demands for each of the realistic in-
stances. Table 2 displays size parameters of all 12 benchmark
instances, where instances I1 - I6 form the small instance
set and instances I7 - I12 are the large real-life scheduling
scenarios.

Columns 2-6 from table 2 provide information about the
number of colors, mould types, demands, production lines
and programs. Furthermore, columns 7 and 8 display the
number of generated variables using the bilinear model.

In a first series of experiments, we used our construction
heuristic to produce reference solutions for all of the instances
(i.e. the aggregated normalized solution cost is always exactly
3 for the construction heuristic). Themax job parameter was
set for the constraint model to 50 and for the metaheuristic
approach to 500 (50 should clearly suffice for all benchmark
instances, however for the metaheuristic we could even use a
higher value without risking memory leaks).

To evaluate the metaheuristic approach we further have
to configure several parameters. Based on some manual tun-
ing attempts we selected a T value of 0.001 and a α value
of 0.999 and set all neighborhood probabilities to 1 as the
default. Starting from the default values, we further used
the state-of-the-art parameter tuning software SMAC (Lin-
dauer et al. 2017) to automatically tune all of the parameters
(Parameter value ranges were restricted to T ∈ [0.0001, 2],
α ∈ [0.9, 0.9999], and N1 − N7 ∈ [0, 1]). The tuning pro-
cess was then started with the metaheuristic that starts from
an initial reference solution and all 12 instances as the train-
ing set. We set the runtime limit for each individual run to 10
minutes and set the overall wallclock time limit to 4 days. The
resulting parameter configuration which we used for our final
experiments is as follows: T = 0.4735, α = 0.9274, N1 =

Inst. Cpx L Cpx B Grb L Grb B

I 1 2.96 4.66 2.54 2.53
I 2 2.01 3.24 1.96 2.01
I 3 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54
I 5 2.11 2.12 2.11 2.10
I 6 3.00 3.00 3.00 3.00

Inst. Gce L Gce B Chu L Chu B

I 1 - 37.53 579.59 -
I 2 - - 19.31 272.87
I 3 69.69 3.00 3.00 1123.83
I 4 37.87 37.87 99.09 619.50
I 5 43.85 45.11 10.32 -
I 6 3 3 3 3

Table 3: Summarized results for exact methods.

0.2042, N2 = 0.0407, N3 = 0.8522, N4 = 0.0632, N5 =
0.8630, N6 = 0.6250, and N7 = 0.3972.

To evaluate exact approaches that utilize the proposed bi-
linear and linearized CP model we implemented both models
using the modeling language MiniZinc (Nethercote et al.
2007), which provides interfaces to state-of-the-art CP and
MIP solvers (for the latter MiniZinc automatically converts
the constraint model into a MIP model).4

We then performed experiments with the MIP solvers
gurobi (Gurobi Optimization 2020) and cplex (Corporation
2019), as well as the CP solvers gecode (Gecode Team 2020)
and chuffed (Chu 2011). As chuffed is not able to handle
floating point objectives, we simply used non normalized
values in the objective for chuffed and normalized the final
objective in a post processing step.

For gecode and chuffed we further used a programmed
search strategy that first selects all jm variables based on a
smallest domain first heuristic where minimum values are
assigned first. For the remaining variables, we use the solvers
default search and further activated the free search parameter
for chuffed which allows the solver to alternate between the
given search strategy and its default one on each restart. For
all evaluated exact and metaheuristic methods we set a time
limit of 1 hour for each run. Numerical values have been
rounded to two decimal places in all final results. Table 3
summarizes the final results produced by exact methods.

Note that Table 3 only displays results for instances 1-6 (I
1-6), as none of the exact approaches were able to reach fea-
sible solutions within the time limit for instances 7-12. Each
row shows the final normalized objective value reached for
the corresponding instance with solvers cplex (Cpx), gurobi
(Grb), gecode (Gce), and chuffed (Chu) using the bilinear
channeling constraints (B) and the linearized channeling con-
straints (L). Best results for each row are formatted in bold
face and a - denotes that no solution could be found within
the time limit.

The results presented in Table 3 show that gurobi produces
overall the best results for all instances. All approaches are

4The models are publicly available online:
https://www.dbai.tuwien.ac.at/staff/winter/atsp minizinc.zip

506

Inst. Cpx L DB Cpx B DB Grb L DB Grb B DB

I 1 1.13 1.34 1.87 2.08
I 2 0.83 0.67 0.99 1.25
I 3 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54
I 5 1.29 1.12 1.38 1.63
I 6 3.00 3.00 3.00 3.00
I 7 0.47 0.47 0.50 0.49
I 8 0.15 0.14 0.15 0.14
I 9 0.58 0.56 0.58 0.59
I 10 0.53 0.51 0.53 0.51
I 11 0.34 0.34 0.34 0.32
I 12 1.02 0.96 0.96 0.96

Table 4: Final dual bounds achieved by MIP methods.

able to reach the best objective value of 3 for instance 6
which is equal to the reference solution cost. As instance
6 contains only a single demand (see Table 2) this is an
expected result. The results further show that the CP solvers
gecode and chuffed seem to be not competitive compared to
the MIP solvers for instances 1-5. We see that there are only
small differences between the bilinear and linearized models,
especially for gurobi. We assume this is due to the fact that
gurobi recently introduced improved techniques for bilinear
constraints.

Table 4 provides an overview on the best dual bounds (DB)
by the evaluated MIP solvers. The best dual bounds per row
are formatted in bold face.

We can see that for the large instances, most of the best
dual bounds can be obtained with the linearized model. For
small instances on the other hand the bilinear model with
gurobi produced the best results. This indicates that for large
problems linearizing the constraints can be helpful to quickly
obtain good dual bounds.

Table 5 summarizes results produced by the metaheuristic
approach starting from an empty schedule (LS) and starting
from an initial reference solution (LSC). Note that the pro-
posed method is not deterministic, as neighborhood moves
are randomly generated in each iteration. Therefore, these
results were obtained by 10 repetitive runs on each instance
and the table displays in addition to the overall best cost (B)
also the mean costs (M) and the standard deviation (S). The
best mean costs per instance are formatted in bold face and a
- denotes that no feasible solution was reached.

The results presented in Table 5 show that starting from an
initial schedule produces the best mean costs for all instances.
Furthermore, we can see that for the majority of the instances
starting from an empty solution cannot reach any feasible
solution within the runtime limit. This indicates that starting
from a construction heuristic is very effective to deliver robust
and good results especially for large instances.

Finally, Table 6 summarizes the overall best results pro-
duced with exact and metaheuristic methods.

We can see in the results that the exact methods could
prove optimality for instances 3,4, and 6 and that metaheuris-
tics could also reach optimal results in these cases. It seems
that overall the exact methods produce results of similar qual-

Inst. LS B LS M LS S LSC B LSC M LSC S

I 1 2.53 2.53 0.00 2.53 2.53 0.00
I 2 1.94 1.95 0.01 1.94 1.95 0.01
I 3 2.23 2.23 0.00 2.23 2.23 0.00
I 4 2.54 2.54 0.00 2.54 2.54 0.00
I 5 2.13 2.20 0.11 2.13 2.14 0.02
I 6 3.00 3.00 0.00 3.00 3.00 0.00
I 7 - - - 2.98 3.00 0.01
I 8 - - - 2.39 2.42 0.02
I 9 - - - 2.97 2.99 0.01
I 10 5.70 6.36 0.59 2.78 2.87 0.06
I 11 - - - 2.76 2.77 0.01
I 12 6.10 6.86 0.74 2.89 2.97 0.04

Table 5: Overview on computational results for local search.

Inst. LB Exact LS

I 1 2.08 2.53 2.53
I 2 1.25 1.96 1.94
I 3 2.23 2.23 2.23
I 4 2.54 2.54 2.54
I 5 1.63 2.10 2.13
I 6 3.00 3.00 3.00
I 7 0.50 - 2.98
I 8 0.15 - 2.39
I 9 0.59 - 2.97
I 10 0.53 - 2.78
I 11 0.34 - 2.76
I 12 1.02 - 2.89

Table 6: Overview on overall results.

ity compared to the metaheuristic approach on the smaller
instances. However, we can clearly see that the metaheuristic
performed better for the large instances.

Conclusion

In this paper we introduced a novel real-life single machine
batch scheduling problem that appears in artificial teeth man-
ufacturing. We further formally specified the problem and
provided a collection of benchmark instances which contain
real-life scheduling scenarios from the industry.

In collaboration with domain experts we developed a con-
struction heuristic that automatizes the existing manual plan-
ning process and used it to generate baseline solutions to the
benchmark instances. Additionally, we proposed a CP model
that we utilized as an exact approach and a metaheuristic
approach that we used to solve large practical instances.

Computational results showed that the exact approach is
able to prove four optimal results and produced the best
results for five small instances, whereas the metaheuristic
approach performed similarly on the small instances and
produced the best results for the large benchmark instances.

The investigation of a large neighborhood search approach
that hybridizes exact and heuristic methods to further improve
results for large instances could be a subject of future work.

507

Acknowledgments
The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development and the Christian
Doppler Research Association is gratefully acknowledged.

References
Chu, G. G. 2011. Improving Combinatorial Optimization.
Ph.D. thesis, Department of Computing and Information Sys-
tems, University of Melbourne.

Corporation, I. 2019. IBM ILOG CPLEX 12.10 User’s Man-
ual.

de Weerdt, M.; Baart, R.; and He, L. 2020. Single-machine
scheduling with release times, deadlines, setup times, and
rejection. European Journal of Operational Research .

Gecode Team. 2020. Gecode: Generic Constraint Develop-
ment Environment. URL http://www.gecode.org.

Gupte, A.; Ahmed, S.; Cheon, M. S.; and Dey, S. 2013. Solv-
ing Mixed Integer Bilinear Problems Using MILP Formula-
tions. SIAM Journal on Optimization 23(2): 721–744.

Gurobi Optimization, L. 2020. Gurobi Optimizer Reference
Manual. URL http://www.gurobi.com.

Hazır, Ö.; and Kedad-Sidhoum, S. 2014. Batch sizing and
just-in-time scheduling with common due date. Annals of
Operations Research 213(1): 187–202.

Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Opti-
mization by Simulated Annealing. Science 220(4598): 671–
680.

Lindauer, M.; Eggensperger, K.; Feurer, M.; Falkner, S.;
Biedenkapp, A.; and Hutter, F. 2017. SMAC v3: Algorithm
Configuration in Python. GitHub.

Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. MiniZinc: Towards a Standard
CP Modelling Language. In Bessière, C., ed., Principles
and Practice of Constraint Programming – CP 2007, Lecture
Notes in Computer Science, 529–543. Berlin, Heidelberg:
Springer. ISBN 978-3-540-74970-7.

Niu, S.; Song, S.; Ding, J.-Y.; Zhang, Y.; and Chiong, R. 2019.
Distributionally robust single machine scheduling with the
total tardiness criterion. Computers & Operations Research
101: 13–28.

Polyakovskiy, S.; Thiruvady, D.; and M’Hallah, R. 2020.
Just-in-time batch scheduling subject to batch size. In Pro-
ceedings of the 2020 Genetic and Evolutionary Computation
Conference, GECCO ’20, 228–235. New York, NY, USA:
Association for Computing Machinery.

Potts, C. N.; and Kovalyov, M. Y. 2000. Scheduling with
batching: A review. European Journal of Operational Re-
search 120(2): 228–249.

Tang, T. Y.; and Beck, J. C. 2020. CP and Hybrid Models for
Two-Stage Batching and Scheduling. In Integration of Con-
straint Programming, Artificial Intelligence, and Operations
Research, Lecture Notes in Computer Science, 431–446.

Zhao, Z.; Liu, S.; Zhou, M.; Guo, X.; and Qi, L. 2020. De-
composition Method for New Single-Machine Scheduling
Problems From Steel Production Systems. IEEE Transac-
tions on Automation Science and Engineering 17(3): 1376–
1387.

508

