
A Deep Ensemble Method for Multi-Agent Reinforcement Learning:
A Case Study on Air Traffic Control

Supriyo Ghosh,1 Sean Laguna,1 Shiau Hong Lim,1 Laura Wynter,1 Hasan Poonawala 2

1 IBM Research AI, Singapore 018983
2 Amazon Web Services (AWS), United Kingdom

supriyog@ibm.com, {slaguna,shonglim,lwynter}@sg.ibm.com, hasanp1987@gmail.com

Abstract

Reinforcement learning (RL), a promising framework for
data-driven decision making in an uncertain environment,
has successfully been applied in many real-world operation
and control problems. However, the application of RL in a
large-scale decentralized multi-agent environment remains a
challenging problem due to the partial observability and lim-
ited communications between agents. In this paper, we de-
velop a model-based kernel RL approach and a model-free
deep RL approach for learning a decentralized, shared policy
among homogeneous agents. By leveraging the strengths of
both these methods, we further propose a novel deep ensem-
ble multi-agent reinforcement learning (MARL) method that
efficiently learns to arbitrate between the decisions of the lo-
cal kernel-based RL model and the wider-reaching deep RL
model. We validate the proposed deep ensemble method on
a highly challenging real-world air traffic control problem,
where the goal is to provide effective guidance to aircraft to
avoid air traffic congestion, conflicting situations, and to im-
prove arrival timeliness, by dynamically recommending ad-
justments of aircraft speeds in real-time. Extensive empirical
results from an open-source air traffic management simula-
tion model, developed by Eurocontrol and built on a real-
world data set including thousands of aircrafts, demonstrate
that our proposed deep ensemble MARL method significantly
outperforms three state-of-the-art benchmark approaches.

Introduction
Reinforcement learning (RL), formulated under the frame-
work of Markov decision process (MDP), experienced a
surge in popularity when deep models demonstrated supe-
rior performance on game play, particularly on Atari suites
and on the game of Go (Silver et al. 2016). In many practical
sequential decision making problem, multiple agents share
a common environment with the goal of maximizing their
individual long-term rewards which can effectively be mod-
eled using cooperative multi-agent reinforcement learning
(MARL) model (Zhang, Yang, and Başar 2019). Coopera-
tive MARL has been used successfully in solving real-world
applications ranging from taxi fleet optimization (Lin et al.
2018), to distributed traffic light management (Chu et al.
2019) to autonomous driving (Shalev-Shwartz, Shammah,
and Shashua 2016). While cooperative MARL enjoys a rich

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

research history (Hernandez-Leal, Kartal, and Taylor 2019),
learning in a large-scale decentralized multi-agent environ-
ment remains a challenging problem due to partial observ-
ability and limited communications between agents. More-
over, solving a cooperative MARL problem as a centralized
single-RL problem is intractable since the complexity of the
problem increases exponentially with the number of agents
due to the joint action or state space. While a straightforward
workaround is to consider the agents independently, such
as through independent Q-learning (Tan 1993), that leads
generally to unstable learning and non-stationarity problem
(Matignon, Laurent, and Le Fort-Piat 2012). A popular ap-
proach to tackle this non-stationarity issue is to perform cen-
tralized learning with decentralized execution (Lowe et al.
2017). In a similar vein, we consider the problem of learning
a decentralized, shared policy among homogeneous agents,
as done in Gupta, Egorov, and Kochenderfer (2017).

In this paper, we develop two complementary RL method-
ologies to learn a shared policy by leveraging experience
samples collected from all the agents: (i) a model-based ker-
nel RL approach employing an agent-centric state represen-
tation that captures local information in the neighborhood;
and (ii) a model-free deep MARL model that takes into con-
sideration additional wider-reaching state information. The
Kernel-based method is expected to perform well during ex-
ecution if an encountered state has a dense neighborhood
of training experience samples, but it extrapolates poorly. In
contrast, a deep MARL method is more flexible and able to
generalize well, but is prone to various pathologies and can
be brittle, even in regions of dense training data. Therefore,
we propose a novel general purpose deep ensemble MARL
method wherein we train a separate deep neural network to
leverage the pre-trained kernel and deep MARL policies to
obtain our final ensemble policy. As a result of that, our en-
semble learner can effectively capture the multi-agent in-
teractions during training and efficiently learns to arbitrate
between the decisions of these two pre-trained policies dur-
ing execution; thus leveraging strengths of both these model-
based and model-free methods.

We validate the efficacy of proposed deep ensemble
MARL method on a highly challenging real-world appli-
cation of augmenting the capabilities of human air traffic
controllers. The passenger demand of airlines is growing
rapidly with global passenger demand is expected to be dou-

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

468

bling in the next two decades (IATA 2019). In 2018, the
world’s airlines served 4.3 billion passengers over roughly
22,000 routes, an increase of 1,300 routes and more than
200 million journeys from the previous year alone. With the
increase in passenger demand for air travel as well as new
forms of urban aircraft, from air taxis to drones, the den-
sification of air traffic will require more sophisticated tech-
nologies, including intelligent automated real-time decision
support tools for air traffic controllers. In air traffic control,
multiple aircrafts need to coordinate in a highly dynamic and
stochastic environment, and the decisions taken by one air-
craft impact the outcome of that and other aircraft in the
future. We model this inherently sequential decision mak-
ing problem involving multiple actors influencing each other
into the MARL framework with the goal of minimizing the
combined cumulative long-term effect of conflicts, conges-
tion, delays and fuel costs, by dynamically recommending
adjustments of aircraft speeds in real-time. To that end, our
key contributions are as follows:

• We model the air traffic control problem using a MARL
framework which, different from existing approaches,
seeks to minimize the combined cumulative long-term
effect of conflicts, congestion, delays and fuel costs.

• We design a kernel based approach employing agent-
centric local observation information and a deep MARL
model with extended richer state information.

• We develop a novel ensemble learner that leverages the
pre-trained policies from the kernel and deep MARL
techniques to efficiently arbitrate the complex boundary
between the effectiveness of these two methods.

• We conduct extensive experiments by leveraging an
open-source air traffic simulator, developed by Euro-
control and built on a real-world data set consisting
of thousands of aircrafts, and empirically demonstrate
that our proposed ensemble learner significantly outper-
forms three state-of-the-art benchmarks: (a) a baseline
approach; (b) a local search approach; and (c) a MARL
model from Brittain and Wei (2019).

Related Work
Multi-agent reinforcement learning: There is a substan-
tial literature on cooperative MARL, where multiple agents
jointly learn a policy to optimize a cumulative future ex-
pected reward (Bu et al. 2008). We refer to the recent sur-
vey papers by Hernandez-Leal, Kartal, and Taylor (2019)
and Zhang, Yang, and Başar (2019) for the details of exist-
ing research on cooperative MARL. As the joint action and
state space in cooperative MARL grow exponentially with
the number of agents, a straightforward approach to tackle
this scalability issue is through independent Q-learning (Tan
1993), which leads to unstable learning and non-stationarity
issues (Matignon, Laurent, and Le Fort-Piat 2012). Sev-
eral approaches have been proposed to address this prob-
lem, including training with other agents’ policy parame-
ters (Tesauro 2004), using explicit communication (Foer-
ster et al. 2016), opponent modeling (Billings et al. 1998),
and through centralized learning with decentralized execu-

tion (Lowe et al. 2017). In the similar direction of Gupta,
Egorov, and Kochenderfer (2017), we consider learning a
decentralized, shared policy among homogeneous agents,
where the policy parameters are updated using experience
transition samples from all the agents.
Ensemble reinforcement learning: While several works
have proposed ensemble methods for (single-agent) RL, we
are unaware of such in the MARL domain. Existing methods
for single-agent ensemble RL rely on either (a) averaging
the Q-values from multiple target networks so as to improve
stability during the learning process (Anschel, Baram, and
Shimkin 2017; Chen et al. 2018) or (b) performing policy-
level aggregation during testing through mechanisms such as
majority voting or Boltzmann multiplication (Wiering and
Van Hasselt 2008; Hans and Udluft 2010). The former can-
not, however, take advantage of kernel-based methods, and
the latter is not suitable when there are multi-agent inter-
actions. In a similar spirit to our approach, but in a single-
agent RL setting, Peng et al. (2018) designed an ensem-
ble method for personalized medical recommendations that
learns probabilistic weights for a deep RL and a kernel pol-
icy. In that work, the discounted return for an ensemble pol-
icy can be computed using off-policy evaluation with a fixed
set of patient treatment trajectory data. In our multi-agent
setting, however, switching policies across agents according
to a probabilistic weight would drastically deteriorate per-
formance. In contrast, our ensemble method involves train-
ing a separate master deep neural network to handle the ef-
fects of multi-agent interactions during training by taking
advantage of a real-world simulator.
Automation of air traffic control: The automation of air
traffic control was addressed more than a decade ago by
Wollkind, Valasek, and Ioerger (2004), who provide an in-
cremental bargaining process between two aircrafts so as
to choose a solution that is Pareto optimal. Farley and
Erzberger (2007) propose an auto-resolver that iteratively
computes candidate air traffic trajectories until a suitable tra-
jectory is found that satisfies all of the conflicts. Tumer and
Agogino (2007) design a comprehensive reward function,
but do so independently by considering a fixed geographi-
cal location as an agent due to computational limitations. In
addition, their learning process did not include state transi-
tion dynamics. Recently, Brittain and Wei (2019) addressed
the problem of ATC automation using MARL framework.
However, they limited their model to handling only potential
aircraft conflict resolution, which reduces significantly the
complexity of their model. However, as discussed in Tumer
and Agogino (2007), air traffic congestion and arrival time-
liness are important factors, and conflict resolution in the ab-
sence of those considerations will typically lead to unrealis-
tic solutions such as excessive arrival delays. Therefore, we
consider a compact reward function combining the penal-
ties for conflict, congestion, arrival delays and fuel cost, and
show that our proposed MARL solutions scale gracefully to
handle wide-area flight zones with thousands of aircraft.

Motivation: Air Traffic Control
We model the decision making problem of the air traffic con-
trol (ATC) in the framework of decentralized multi-agent re-

469

inforcement learning (MARL), where each aircraft is repre-
sented as an agent. In this section, we begin with a formal
definition of the decentralized MARL framework, and then
provide the details of different components of the MARL
framework for the ATC problem.

A standard reinforcement learning (RL) problem is typ-
ically defined with respect to a Markov Decision Process
(MDP), given by a tuple 〈S,A, P,R, γ〉, where S denotes
the set of all possible states in the environment,A represents
the set of permissible actions for the agent, P : S × A →
P(S) denotes the transition function providing the next-state
distribution after executing action a ∈ A in state s ∈ S,
R : S × A → R denotes a reward function providing
the expected immediate reward for executing a in s, and
γ ∈ [0, 1] is a discount factor. A (potentially randomized)
policy π : S → P(A) specifies the action to take in each
state s ∈ S. The Q-value of a state-action pair (s, a) with
respect to a policy π is given by the expected total reward
after executing a in s and following π,

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
.

The goal of the agent is to learn a policy π∗ to maximize
Q(s, a) for all (s, a). In finite-state MDP, algorithms such as
tabular Q-learning (Watkins and Dayan 1992) can be shown
to asymptotically learn the optimal Q function. For large or
continuous state spaces, the design of state features plays an
important role and some form of function approximation is
typically needed.

Analogous to Gupta, Egorov, and Kochenderfer (2017),
we propose learning a decentralized, shared policy among
multiple homogeneous agents to solve a cooperative multi-
agent decision problem. This approach can be seen as
solving a multi-agent cooperative Markov game, where all
agents share and update the same policy (i.e., πθ) simulta-
neously using experience samples from all the active agents.
The game is defined by N agents with their correspond-
ing actions A1,A2, ...,AN . Let S denote the global state
space and O1,O2, ...,ON represent local observations of
the agents. In each time step, the agents execute their ac-
tions based on the current policy and local observations pro-
ducing the next state depending on the transition function
T : S × A1 × A2 × ... × AN → S . After the transition,
each agent i receives a local observation oi : S → Oi and a
reward ri : Oi ×Ai → R.

We now provide the details of the MARL components
(i.e., state space, action space and reward function) for each
aircraft agent of the ATC problem.

STATE SPACE: To have a rich yet compact representation,
we include the following information in the local observa-
tion of an aircraft agent:
• Local information: the aircraft’s geographical location

(i.e., latitude and longitude), velocity, direction, distance
to the destination and timeliness of the journey with re-
spect to the scheduled arrival time; and

• Neighbors’ information: For the N nearest aircrafts
within a given radius, the relative distance and relative
velocity of the aircraft.

Figure 1 illustrates the state representation. Defined this
way, the state space remains of constant size as the num-
ber of agents increases. We further extend the state space for
the Deep MARL so as to enable a richer representation of
the domain. For the deep MARL, the state space includes
additional two sets of 3×3 grid image information, a coarse
grid that covers a large area and a fine grid that covers a
smaller area around the aircraft. Each cell is identified by a
Geo-hash encoding and the cell size, governed by the pre-
cision of the Geo-hash, contains the information about the
number of aircraft present in that cell.

Neighborhood
Radius (1000 KM)

Conflicting
Radius (10 KM)

Congestion
Radius (300 KM)

Figure 1: State representation used to model en-route ATC.

ACTION SPACE: Our model uses an analogous action
space to that of Brittain and Wei (2019), which allows for
aircraft speed increase, decrease or no change. Specifically,
at every time step, each agent decides whether to maintain,
increase, or decrease the aircraft speed by δ meters/second1,
bounded by a minimum and maximum speed. That is,

At = {max(vmin, (vt−1−δ)), vt−1,min(vmax, (vt−1+δ))}.

REWARD FUNCTION: The reward includes the following
four components:
• Conflict cost: To ensure a separation distance, if the

relative distance between two aircraft is less than a
threshold, a high penalty cost is imposed. It should be
noted that aircrafts are equipped with automated colli-
sion avoidance systems (FAA 2017); thus, a conflict does
not lead to collision. However, as conflict resolution is a
costly operation in practice, a high penalty cost is set for
reducing the number of conflicts;

• Congestion cost: To avoid congestion, if the number
of aircraft within a given congestion radius exceeds a
threshold, a penalty is imposed;

• Lateness cost: To minimize the delays, a penalty is
imposed if the aircraft is behind schedule, where the
penalty is proportional to the delay; and

• Fuel cost: The fuel cost penalty is defined as a quadratic
function of the deviation of speed from the optimal speed
for that type of aircraft, as shown in Figure 2.

1The value of δ is set to 10 metres/second in the experiments.

470

−150 −100 −50 0 50 100 150
Difference from Optimal Speed (m/s)

−80

−60

−40

−20

0

Fu
el

 C
os

t P
en

al
ty

Fuel_Penalty

Figure 2: Fuel cost penalty function

Formally, the reward for an agent i at time t is:

rit=α·I(oit,Rs)+β·I(oit,Rc,Nc)+γ·max(0, d̃it−dit)+δ·F (vit−vi0)

The value of I(oit, R
s) is set to 1 if the relative distance

from the nearest aircraft is less than the separation radius
Rs according to the current observation oit, and otherwise
it is set to 0. The value of I(oit, R

c, N c) is set to 1 if the
number of aircraft within the congestion radius Rc exceeds
the threshold value N c, and 0 otherwise. Let d̃it denote the
expected distance to travel by aircraft i at time t according
to the given schedule and dit denote the actual distance trav-
eled; then max(0, d̃it − dit) characterizes the amount of de-
lay at time t. F (vit − vi0) represents the quadratic fuel cost
function depending on the deviation of current speed from
the optimal speed vi0, which is shown in Figure 2. Finally,
α, β, γ and δ denote the weights for conflict, congestion, de-
lay and fuel cost penalties, respectively.

Solution Methodology
In this section, we provide three methodologies for solving a
decentralized MARL problem: (a) a kernel based approach
employing agent-centric local observation information; (b)
a deep MARL model with richer state information; and (c) a
deep ensemble approach to leverage the pre-trained policies
from the kernel and deep MARL approaches.

Kernel Based RL
Kernel Based RL [KBRL] (Ormoneit and Sen 2002) is a Q-
value approximation scheme which has the benefit of hav-
ing strong theoretical properties. In particular, KBRL algo-
rithms can be proven to converge to a unique fixed point
and the approximation error can be bounded asymptotically.
KBRL is a model-based approach relying on a set of sample
transitions S ≡ {sak, rak , ŝak|k = 1, 2, ..., na} associated with
each action a ∈ A. These experience transition samples are
collected from all the agents by simulating the environment
with a particular behavioral (e.g., random or greedy) policy.
The complexity of KBRL increases with the number of sam-
ple transitions and the size of the state space, thereby limit-
ing its applicability in practice. KBRL was thus extended
to achieve better scalability through a modification known
as Kernel Based Stochastic Factorization [KBSF] (Barreto,
Precup, and Pineau 2016). In contrast to KBRL wherein
each sample transition gives rise to a state, KBSF generates
a set of representative states and uses stochastic factorization
to reduce the size of the transition matrix.

Algorithm 1: SOLVEKBSF()
1 Inputs: Sa = {sak, rak , ŝak|k = 1, 2, ..., na}∀a ∈ A;
2 S̄ = {s̄1, ..., s̄m} . m representative states

3 Outputs: Q∗ matrix of size |S̄| × A;
4 Define Gaussian kernel κ̄τ̄ and κaτ using Equation 1;
5 for each a ∈ A do
6 Compute matrix Da : daij = κ̄τ̄ (ŝai , s̄j) ;
7 Compute matrix Ka : kaij = κaτ (s̄i, s

a
j) ;

8 Compute reward ra : rai =
∑
j k

a
ijr

a
j ;

9 Compute transition probabilities: P a = KaDa ;

10 Solve MDP {S̄,A, P a, ra, γ = .99} and obtain Q∗;
11 return Q∗

The KBSF algorithm is outlined in Algorithm 1. For the
KBSF method, we first collect n transitions (st, at, rt, st+1)
by simulating a random policy. We then compute m repre-
sentative states, S̄ = {s̄1, ..., s̄m} from n transitions using
k-means clustering. Next, we define a Gaussian kernel, κ̄ to
build the components of the transition matrix of the MDP:

k̄τ̄ (s, s′)= φ̄

(
||s− s′||

τ̄

)
; κ̄τ̄ (s, s̄i)=

k̄τ̄ (s, s̄i)∑m
j=1 k̄τ̄ (s, s̄j)

(1)

where ‖.‖ measures the distance under a Euclidean norm,
φ̄(x) = exp(−x2), and τ̄ denotes the kernel width. Using
the Gaussian kernel from Equation (1), we define: (a) Da

a matrix of size n × m with kernel width τ̄ ; Da : daij =
κ̄τ̄ (ŝai , s̄j) and (b) Ka a matrix of size m × n with kernel
width τ ; Ka : kaij = κaτ (s̄i, s

a
j). The reward function is

computed as ra : rai =
∑
j k

a
ijr

a
j and the transition proba-

bility matrix is defined as P a = KaDa. The MDP is solved
by Policy Iteration (Howard 1960) to obtain the optimal Q∗
values for the representative state-action pairs. Finally, dur-
ing the validation phase, we compute the policy π̄(s) for any
given state s using Equation (2).

Q̄(s,a)=
m∑
i=1

κ̄τ̄ (s,s̄i)Q
∗(s̄i,a); π̄(s)=argmax

a
Q̄(s,a). (2)

Deep MARL
To solve the Q-learning problem with a much larger state-
space, Mnih et al. (2015) proposed using a neural network
approximator which they termed deep Q-learning, or DQN.
DQN uses a parameter θ learnt using gradient descent on
the loss function: Lθ = E

[
(yDQN − Q(s, a; θ))2

]
, where

yDQN = r + γmaxa′ Q(s′, a′; θ−) is the target value. Nu-
merous methods have since then been proposed for RL with
neural network approximators, including those based on pol-
icy gradient (Mnih et al. 2016). The Proximal Policy Opti-
mization (PPO) (Schulman et al. 2017) in particular was in-
troduced to overcome the shortcomings of approaches based
on policy gradient. PPO has been shown to offer better per-
formance than both DQN and advantage actor-critic (A2C)
(Mnih et al. 2016). PPO as its name implies, seeks to find a
proximal policy, and as such to avoid large policy updates.

471

Let θ denote the parameters of the policy network at time t
and rt(θ) represent the ratio πθ(at|st)

πθold (at|st) . The PPO loss func-
tion is given by equation (3), where ε is a hyperparameter
that determines the bound for rt(θ) and At := Rt − V (st)
is an estimator of the advantage function at time t.

LCLIP(θ)=Et
[
min(rt(θ)At, clip(rt(θ),1−ε,1+ε)At)

]
(3)

We employ the PPO method for learning a shared de-
centralized MARL policy by leveraging experience samples
from all the active agents. We begin the training process by
initializing the policy parameters θ to θ0. In each episode k,
the environment is reset to an initial state s0. Let Nt denote
the number of active agents at time t. In each time step t, all
active agents sample an action using the current policy pa-
rameters θk. The joint action at = (a1

t , ..., a
Nt
t) is then exe-

cuted and the immediate rewards are observed along with the
subsequent state. The Nt sample transitions are also stored
in a replay buffer D. After accumulating the samples for an
episode, M rounds of update are performed with a mini-
batch of transitions sampled from buffer D using stochastic
gradient descent (SGD) on the loss function of equation (3).

Deep Ensemble MARL
The KBSF has the advantage of its theoretical convergence
and asymptotic bounds for the model learnt from experience
training samples. We expect KBSF to perform very well dur-
ing execution if the encountered state lies in a region with
dense training examples. However, this is only feasible if the
dimension of the state-space remains small. We can there-
fore afford a relatively compact state representation that in-
cludes only a local view of the global state space. With a
deep MARL policy we can afford to employ a more ambi-
tious state representation. However, a trained deep RL pol-
icy may have pathologies due to non-linear function approx-
imation and can be brittle in certain state regions. We there-
fore propose an ensemble learner that is able to combine
these two approaches across the highly complex boundary
between them. Unfortunately, a hybrid (simultaneous) train-
ing of the Deep MARL neural network with KBSF, and with
the ensemble network, would not be readily feasible since
we do not have a gradient of the KBSF method to leverage
in the gradient descent step of the neural network training.
Therefore, we develop a novel ensemble learning approach
wherein we train a separate deep neural network to leverage
the pre-trained KBSF and Deep MARL policies to obtain
our final ensemble policy. The action space consists of two
actions: choose the KBSF policy or choose that of the deep
MARL, and we employ the same set of features used in the
KBSF method to represent the state space. The architecture
of our deep ensemble method is shown in Figure 3.

The key steps of our proposed deep ensemble MARL are
provided in Algorithm 2. We begin by loading the trained
kernel model K̃ and the trained deep MARL policy π̃ pa-
rameterized by θ̃. Let θ denote the parameters of the policy
network of our ensemble MARL initialized to θ0. In each
episode k, we reset the environment to an initial state s0 with
a new agent scenario. At each time step t, all active agents,

s

1

2

N

Hidden
Layers

Policy
[0,1]

Kernel
Model

Deep RL
Model

Environment/
Simulator

⇡d(s)
<latexit sha1_base64="JS/q7EiXtHNxgHMKOCh8cK3xfhM=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2AdinZbLYNTbJrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nitAWiXmsugHWlDNJW4YZTruJolgEnHaC8e3M7zxRpVksH8wkob7AQ8kiRrCxUrefsEFY1eeDcsWtuXOgVeLlpAI5moPyVz+MSSqoNIRjrXuemxg/w8owwum01E81TTAZ4yHtWSqxoNrP5vdO0ZlVQhTFypY0aK7+nsiw0HoiAtspsBnpZW8m/uf1UhNd+xmTSWqoJItFUcqRidHseRQyRYnhE0swUczeisgIK0yMjahkQ/CWX14l7XrNu6jV7y8rjZs8jiKcwClUwYMraMAdNKEFBDg8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AGPkj4o=</latexit>

⇡k(s)
<latexit sha1_base64="4tyNDWeZ8Xc/127JWYtNClgTxDw=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWcLsZJIMmZ1dZ3qFsOQnvHhQxKu/482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvp35rSeujYjUA05i7od0qMRAMIpWandj0RuXzXmvWHIr7hxklXgZKUGGeq/41e1HLAm5QiapMR3PjdFPqUbBJJ8WuonhMWVjOuQdSxUNufHT+b1TcmaVPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi49lOh4gS5YotFg0QSjMjsedIXmjOUE0so08LeStiIasrQRlSwIXjLL6+SZrXiXVSq95el2k0WRx5O4BTK4MEV1OAO6tAABhKe4RXenEfnxXl3PhatOSebOYY/cD5/AG6Vj5E=</latexit>

⇡e(s)
<latexit sha1_base64="kIrtdr1AExqkyDHaO/GJVMJEmHM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWcLspDcZMju7zswKIeQnvHhQxKu/482/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOldjfhPSzr816x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifze6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMyeJ32ukBkxtoQyxe2thA2poszYiAo2BG/55VXSrFa8i0r1/rJUu8niyMMJnEIZPLiCGtxBHRrAQMAzvMKb8+i8OO/Ox6I152Qzx/AHzucPZWuPiw==</latexit>

ae(s)
<latexit sha1_base64="vCLQE/eZEMyHtzj/Q7FTqlkU+YI=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWcLspDcZM7uzzMwKIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjppapYthgUkjVDqhGwWNsGG4EthOFNAoEtoLR7cxvPaHSXMYPZpygH9FBzEPOqLFSk/awrM97xZJbcecgq8TLSAky1HvFr25fsjTC2DBBte54bmL8CVWGM4HTQjfVmFA2ogPsWBrTCLU/mV87JWdW6ZNQKluxIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jj5PUYMwWi8JUECPJ7HXS5wqZEWNLKFPc3krYkCrKjA2oYEPwll9eJc1qxbuoVO8vS7WbLI48nMAplMGDK6jBHdShAQwe4Rle4c2Rzovz7nwsWnNONnMMf+B8/gDU046j</latexit>

Figure 3: Architecture of the deep ensemble MARL method.

Nt sample actions using the current ensemble policy param-
eters θk. If the sampled action ait for agent i is 0, then we
choose an action ãit recommended by the KBSF policy and
otherwise, the action ãit is sampled using the deep MARL
policy π̃(θ̃). We execute the joint action ãt = (ã1

t , ..., ã
Nt
t)

in the environment and the agents obtain the immediate re-
wards along with the data from the next state. TheNt transi-
tions (sit, a

i
t, r

i
t, s

i
t+1) are stored in a replay buffer D. Once

all the samples are generated for an episode, we perform M
rounds of update to the current policy parameters θk with a
minibatch of transitions sampled from buffer D to optimize
the loss function (3).

Experimental Design
In this section, we describe implementation issues concern-
ing the simulator as well as our experiment setup.

Air Traffic Simulator
We employ an open source air traffic simulator developed
by Eurocontrol for training and evaluation (Gurtner et al.
2017). The simulator was developed as part of the Enhanced
Large Scale Aeronautical Telecommunication Network de-
ployment (ELSA) consortium funded by the Single Euro-
pean Sky Air Traffic Management Research (SESAR) pro-
gram2. The training and testing scenarios make use of air-
craft schedule data from a region of airspace in southern Eu-
rope. The ELSA Agent-Based Model (ELSA-ABM) simula-
tor allows for simulating any number of aircraft within a set
of adjacent sectors. The path of an aircraft f is defined by a
sequence of navigation points Pf = {pf1 , p

f
2 , ..., p

f
n} where

each point pfi ∈ Pf is represented by a tuple 〈li, ti, si〉. The
location li is specified by a latitude, longitude, and altitude
value, ti represents the scheduled time to reach the naviga-
tion point and si represents the expected speed between the
point pfi and pfi+1. At each time-step, the simulator updates
positions of an active aircraft using the Haversine distance
according to current location, speed and other parameters
(e.g., wind speed) that may affect the aircraft’s movement.

2The open-source ELSA ABM simulator codes are accessed
from https://github.com/ELSA-Project/ELSA-ABM

472

Algorithm 2: SOLVEENSEMBLEMARL()
1 Initialize replay buffer D to capacity C;
2 Initialize policy parameters to θ0;
3 Load trained kernel model K̃ = (S̃, Q̃, κ̃τ , µ̃, σ̃);
4 Load trained deep MARL model and policy π̃(θ̃);
5 for k = 1 to max iterations do
6 Reset environment to state s0 with a schedule Pk;
7 for t = 1 to T do
8 for i = 1 to Nt do
9 Sample action ait according to current

observation sit and policy π(θk);
10 if ait == 0 then
11 Compute action ãit using kernel

parameters K̃ in equation (2);
12 else
13 Sample action ãit using trained deep

RL policy π̃(θ̃) for observation sit;

14 Execute the joint action ãt = (ã1
t , ..., ã

Nt
t) in

simulator and get the next state st+1;
15 for i = 1 to Nt do
16 Store transition (sit, a

i
t, r

i
t, s

i
t+1) in D;

17 for m = 1 to M do
18 Sample a minibatch of transitions from D ;
19 Update policy parameters θk to maximize the

PPO objective function (3);

Message Passing Architecture
Due to heavy computational requirements, the ELSA-ABM
simulator is written in ‘C’ language and computes in-
memory updates of all aircraft data. However, it does not
provide an easy interface for an RL agent to interact with
it as an environment. Therefore, we designed and built an
adapter for the simulator to allow an external RL agent to
extract the aircraft’s state and to submit actions via a pre-
defined set of definitions. To do so, we designed a two-way
message passing system between the simulator and an RL
agent using the Nanomsg Next Generation (NNG) library.
At each time step, the simulator collects all necessary state
and reward information for all active aircrafts and sends it as
serialized data to the agent who in turn sends the set of ac-
tions to execute to all active aircrafts (refer to Figure 4(a)).

Experimental Settings
The aircraft schedule data covers one 24-hour day and in-
cludes, for 1668 aircraft, the source, destination and depar-
ture time, a set of navigation points with their correspond-
ing geographical locations and the expected arrival time and
speed of each aircraft at each navigation point. From this
set, we generate 1000 training and 30 test scenarios by in-
troducing random delay from -30 to +30 minutes to the air-
craft’s departure time. The 24-hour period is subdivided into

360 time steps, each lasting 4 minutes. We consider 9 state
features for both KBSF and ensemble MARL approaches,
whereas deep MARL states consists of 44 features. The
conflict, congestion and neighborhood radii are defined as
10, 300 and 1000 kilometers, respectively. Penalties are set
to -1000 for each conflict, -100 for congestion. The delay
penalty for an aircraft is set to -1 for every kilometer it is
behind of its expected location. The fuel cost penalty fol-
lows the quadratic function illustrated in Figure 2, which
is centered at the average expected speed for each aircraft.
Three fuel cost scenarios are considered, high, medium and
low with a penalty weight factor 5, 2.5 and 1, respectively.
Figure 2 illustrates the medium fuel cost scenario. The low,
medium and high fuel cost settings are referred as “LowFC”,
“MediumFC” and “HighFC”, respectively. We compare our
ensemble method with the following three benchmark ap-
proaches:
Baseline: The schedule provided by our data set gives the
expected speed between each pair of subsequent navigation
points. A baseline is thus derived by simulating the aircraft
using those speeds. As our cost function is centered around
the baseline schedule speed (thus, the fuel cost plus delay
penalty is always lowest for the baseline approach), we com-
pare our approaches against this baseline schedule.
Local search: We employ a myopic best improvement based
local search approach. In each time step, each active aircraft
chooses its best action (the action with the highest global
reward) assuming that other agents will maintain the same
speed from the previous time step.
DDMARL: We employ the deep distributed MARL method
from Brittain and Wei (2019) as a benchmark approach. For
a fair comparison, we adopt their state space information and
consider our reward function and action definition to imple-
ment this benchmark approach.

Empirical Results
In this section, we provide the performance comparison re-
sults3 of our proposed ensemble method against other ap-
proaches during both the training and evaluation phases.

Hyperparameter Settings: For the training process,
600,000 experience transition samples were generated us-
ing a random policy for the KBSF method. These samples
gave rise to 1000 representative states using K-means clus-
tering. We perform a grid search on a validation set from
0.001 to 1000 to identify the optimal kernel width. For both
deep and ensemble MARL PPO method, we use neural net-
work with 2 hidden layers, each consisting of 256 hidden
units with tanh nonlinearity at the first hidden layer. We
set the default parameter values as follows: the discount-
ing factor γ = 0.99, minibatch size b = 128, learning rate
lr = 0.0005 and clip parameter ε = 0.3. In addition, we use
a mean standard deviation filter to normalize the state fea-
tures. We train the deep MARL and DDMARL for 1 million

3The experiments were performed on an Ubuntu 16.04 virtual
machine with 8-core CPU, 64 GB of RAM, and a single Nvidia
Tesla P100 GPU. The distributed Ray framework and RLlib (Liang
et al. 2017) were used for the PPO method.

473

learner

request environment
config

respond environment
config

send actions;
request state data

respond state data

learner data
features

environment
data

simulator

t+=1

(a)

0 40K 80K 120
K
160

K
200

K
240

K
280

K
320

K
360

K
400

K
440

K

#Iterations

−320
−300
−280
−260
−240
−220
−200
−180
−160

Re
wa

rd
/A
irc

ra
ft

PPO_highFC
PPO_mediumFC
PPO_lowFC
DDMARL_highFC
DDMARL_mediumFC
DDMARL_lowFC

(b)

0 40K 80K 120
K
160

K
200

K
240

K
280

K
320

K
360

K
400

K
440

K

#Iterations

−320
−300
−280
−260
−240
−220
−200
−180
−160

Re
wa

rd
/A
irc

ra
ft

PPO_highFC
PPO_mediumFC
PPO_lowFC
DDMARL_highFC
DDMARL_mediumFC

DDMARL_lowFC
Ensemble_highFC
Ensemble_mediumFC
Ensemble_lowFC

(c)

Figure 4: (a) Message passing architecture built to interface between the ATC simulator and an external RL agent; (b) Training performance
of DDMARL vs. PPO Deep MARL; and (c) Training performance of Deep Ensemble MARL vs. DDMARL and PPO.

iterations which on an average takes 36 hours on the GPU.
The ensemble approach is trained for 0.5 million iterations.

Training Performance Comparison

Figure 4(b) illustrates the training performance of deep
MARL PPO and the benchmark approach DDMARL for the
three fuel cost settings. The Y-axis represents the expected
reward per aircraft-agent and the X-axis denotes the iteration
number. While the PPO performs slightly better for low fuel
cost setting, the DDMARL achieves a better training per-
formance in case of hight fuel cost. Figure 4(c) illustrates
the training performance of our proposed deep Ensemble
method against the best training performance achieved by
the PPO and DDMARL for the three fuel cost settings. In
all three settings, our deep Ensemble method outperforms
the best training reward attained by both the DDMARL and
the PPO approach. We note that the Ensemble method does
have the advantage that it starts with two pre-trained poli-
cies as its “actions” (although learning to properly exploit
both policies is still non-trivial), and therefore, Figure 4(c)
does not provide a comparison of training computation times
across the methods. The computation time needed to train
the ensemble method (including 1 million iterations for deep
MARL and 0.5 million iterations for ensemble method) is
around 1.5 times higher than training the DDMARL method.
For all the settings, the Ensemble learner parameters ini-
tially overfit to the initial training scenarios. This leads to
the somewhat surprising early peak in the training perfor-
mance within first few iterations. Then, as model training
continues, the learner is exposed to other, different training
scenarios which help to stabilize the learning process. This
initial overfitting effect can be easily confirmed experimen-
tally by running the policies obtained at the early reward
peak in the training phase to the test data and observing that
those policies perform less well than the ones obtained after
more extensive training, in spite of the slightly lower training
phase reward of the latter. The key findings from Figure 4(c)
are two-fold: (i) The slower convergence of the Ensemble
method after the initial peak leads to a more robust solution
than that of the initial peak and it offers better testing perfor-
mance; and (ii) The average reward after convergence of the
ensemble method outperforms that of DDMARL.

Ba
se

lin
e

Lo
ca

lSe
ar

ch
DD

MA
RL PP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

Lo
ca

lSe
ar

ch
DD

MA
RL PP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

Lo
ca

lSe
ar

ch
DD

MA
RL PP
O

Ke
rn

el
En

se
mble

−220

−210

−200

−190

−180

−170

−160

Re
wa

rd
/A

irc
ra

ft

 High FC Medium FC Low FC

Figure 5: Performance comparison on 30 testing scenarios.

Performance Comparison on Test Data Sets
We evaluate the performance of our deep Ensemble method
against the three benchmark approaches on 30 test scenarios.
Figure 5 depicts the average reward per aircraft agent for our
proposed method, the component PPO and Kernel methods,
as well as for baseline approaches for the 3 fuel cost set-
tings. The red “I”-shaped indicators provide the standard er-
ror of the expected reward. In the case of a high fuel cost,
the baseline schedule provides a near optimal solution as
deviating from the scheduled speed incurs a significant fuel
cost-related penalty. The reward associated with the base-
line schedule is quite close to the solution of DDMARL.
By myopically improving the baseline schedule, the local
search method managed to achieve a 5.5% gain over the
baseline. Both PPO and our proposed Ensemble method pro-
vide around 3.6% expected reward gain over the baseline.

The medium fuel cost scenario can be considered the
most realistic of the three fuel cost settings as it is gener-
ated using a polynomial function that replicates the deviation
from optimal speed vs. fuel consumption curve of Airbus
(shown in Figure 2). In this setting, the proposed Ensemble
method significantly outperforms the other approaches. On
average, DDMARL, local search, PPO and Kernel provide
6.2%, 8.9%, 7% and 9.2% gain in the expected reward over
the baseline, respectively. The Ensemble method provides a
12.1% improvement beyond the baseline.

For low fuel costs, the KBSF approach is able to signif-

474

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

20

30

40

50

60

Co
nf

lic
tP

en
al

ty
/A

irc
ra

ft
 High FC Medium FC Low FC

(a)

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

70

80

90

100

110

120

130

140

Co
ng

es
tio

nP
en

al
ty

/A
irc

ra
ft

 High FC Medium FC Low FC

(b)

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

LS
ea

rch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

0

10

20

30

40

50

Pe
na

lty
/A

irc
ra

ft

 High FC Medium FC Low FC
FuelCost DelayCost

(c)

Figure 6: Performance on test data for reward components: (a) conflicting penalty; (b) congestion penalty; and (c) fuel cost and delay penalty.

icantly outperform PPO and all other approaches. In this
case, the deep Ensemble method is able to match the per-
formance of the KBSF approach. The average performance
gain of DDMARL, local search, PPO, and Kernel over base-
line are 10.3%, 10.1%, 11.3%, 18.3%, respectively, while
our proposed Ensemble method beats the baseline by 18.8%.

Figure 6 illustrates the performance of each method on
each component of the reward function: the conflict, con-
gestion, fuel cost and delay penalty. These plots demon-
strate that unlike other approaches (e.g., kernel, ppo or lo-
cal search), the ensemble approach does not go to extreme
end to optimize an individual component of the reward func-
tion and thus, able to maintain the best trade-off over reward
components so as to maximize the overall combined reward
value (as shown in Figure 5).

Figure 7 illustrates the distribution of the actions taken for
the three fuel cost settings. As expected, when the fuel cost
is high, the action distribution of all approaches is skewed
towards the baseline, since there is little appetite for speed
deviation in this case. In the low fuel cost scenario, the distri-
bution is skewed towards speedup, which has the benefit of
reducing delays and hence increasing reward. Notice, how-
ever, that the local search method is always skewed towards
the baseline schedule and thus performs poorly especially
in the low-cost case. Our deep Ensemble method succeeds
in leveraging the best of both worlds from the fine-grained
localized KBSF policies and the more global PPO policies;
indeed the Ensemble method gains more from the speedup
action than does PPO, whilst not going to the extreme in
proposing only speedup actions as is the case with the KBSF.
We observe that the ensemble classifier output is skewed to-
wards deep MARL for high fuel cost, whereas the output is
mostly skewed towards KBRL actions for low fuel cost set-
ting. In case of medium fuel cost, almost 70% of ensemble
actions arise from deep MARL.

In a nutshell, the empirical results demonstrate that our
ensemble method can efficiently learn to arbitrate between
the Kernel and deep MARL policies. The performance of
the Ensemble method was further validated using the reward
function of Brittain and Wei (2019), which takes into ac-
count only a conflict cost. Notably, the Ensemble method (by
leveraging power of KBSF method) outperforms DDMARL
on their own reduced reward function by 17% .

Ba
se

lin
e

Lo
ca

lSe
ar

ch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

Lo
ca

lSe
ar

ch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

Ba
se

lin
e

Lo
ca

lSe
ar

ch
DD

MA
RLPP
O

Ke
rn

el
En

se
mble

0

20

40

60

80

100

Ac
tio

n
Di

st
rib

ut
io

n

 High FC Medium FC Low FC

Slowdown MaintainSpeed Speedup

Figure 7: Action distribution on 30 testing scenarios.

Conclusions
In this paper, we propose a novel deep ensemble method that
can efficient learn the multi-agent interactions during train-
ing so as to efficiently arbitrate between the decisions of
a pre-trained local model-based kernel policy and a wider-
reaching model-free deep MARL policy. We further demon-
strate that the complexity of the air traffic control problem
can be concisely and accurately captured by learning an effi-
cient deep ensemble policy within a MARL framework. Ex-
perimental results on a real-world simulation model demon-
strate the feasibility of using MARL for partially automat-
ing the problem of real-time en-route air traffic control as
well as the benefits of our proposed deep ensemble method.
Thus, this work marks a solid step into using reinforce-
ment learning, and MARL in particular, for large-scale op-
erational control. In future, we see the potential for utiliz-
ing our proposed deep ensemble MARL method to com-
bine power of multiple complementary MARL approaches.
From an application perspective, we acknowledge that the
proposed MARL-based automation is more suitable for en-
route aircraft management problem, than the take off and
landing problems. Moreover, it will be important to extend
the action space with additional controls, including heading
and altitude changes, for operational deployment. In both of
these extensions, we see that constrained RL has a role to
play, to enable taking into account explicitly the complex
business rules that govern those expanded control actions.

475

References
Anschel, O.; Baram, N.; and Shimkin, N. 2017. Averaged-dqn:
Variance reduction and stabilization for deep reinforcement learn-
ing. In Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, 176–185. JMLR.

Barreto, A.; Precup, D.; and Pineau, J. 2016. Practical kernel-
based reinforcement learning. The Journal of Machine Learning
Research 17(1): 2372–2441.

Billings, D.; Papp, D.; Schaeffer, J.; and Szafron, D. 1998. Oppo-
nent modeling in poker. AAAI/IAAI 493: 499.

Brittain, M.; and Wei, P. 2019. Autonomous Air Traffic Controller:
A Deep Multi-Agent Reinforcement Learning Approach. ICML
Workshop Reinforcement Learning for Real Life, arXiv preprint
arXiv:1905.01303 .

Bu, L.; Babu, R.; De Schutter, B.; et al. 2008. A comprehensive
survey of multiagent reinforcement learning. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews)
38(2): 156–172.

Chen, X.-l.; Cao, L.; Li, C.-x.; Xu, Z.-x.; and Lai, J. 2018. Ensem-
ble network architecture for deep reinforcement learning. Mathe-
matical Problems in Engineering 2018.

Chu, T.; Wang, J.; Codecà, L.; and Li, Z. 2019. Multi-agent deep
reinforcement learning for large-scale traffic signal control. IEEE
Transactions on Intelligent Transportation Systems 21(3): 1086–
1095.

FAA, U. 2017. Introduction to TCAS II, Version 7.1.

Farley, T.; and Erzberger, H. 2007. Fast-time simulation evaluation
of a conflict resolution algorithm under high air traffic demand. In
7th USA/Europe ATM 2007 R&D Seminar.

Foerster, J. N.; Assael, Y. M.; de Freitas, N.; and Whiteson, S. 2016.
Learning to communicate to solve riddles with deep distributed re-
current q-networks. arXiv preprint arXiv:1602.02672 .

Gupta, J. K.; Egorov, M.; and Kochenderfer, M. 2017. Cooperative
multi-agent control using deep reinforcement learning. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems,
66–83. Springer.

Gurtner, G.; Bongiorno, C.; Ducci, M.; and Miccichè, S. 2017. An
empirically grounded agent based simulator for the air traffic man-
agement in the SESAR scenario. Journal of Air Transport Man-
agement 59: 26–43.

Hans, A.; and Udluft, S. 2010. Ensembles of neural networks for
robust reinforcement learning. In 2010 Ninth International Con-
ference on Machine Learning and Applications, 401–406. IEEE.

Hernandez-Leal, P.; Kartal, B.; and Taylor, M. E. 2019. A sur-
vey and critique of multiagent deep reinforcement learning. Au-
tonomous Agents and Multi-Agent Systems 33(6): 750–797.

Howard, R. A. 1960. Dynamic programming and markov pro-
cesses. John Wiley.

IATA. 2019. Healthy Passenger Demand Continues in 2018 with
Another Record Load Factor. IATA press release .

Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gonza-
lez, J.; Goldberg, K.; and Stoica, I. 2017. Ray rllib: A compos-
able and scalable reinforcement learning library. arXiv preprint
arXiv:1712.09381 .

Lin, K.; Zhao, R.; Xu, Z.; and Zhou, J. 2018. Efficient large-scale
fleet management via multi-agent deep reinforcement learning. In
Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 1774–1783.

Lowe, R.; WU, Y.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; and Mor-
datch, I. 2017. Multi-Agent Actor-Critic for Mixed Cooperative-
Competitive Environments. In Advances in Neural Information
Processing Systems 30, 6379–6390.

Matignon, L.; Laurent, G. J.; and Le Fort-Piat, N. 2012. Indepen-
dent reinforcement learners in cooperative markov games: a survey
regarding coordination problems. The Knowledge Engineering Re-
view 27(1): 1–31.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley,
T.; Silver, D.; and Kavukcuoglu, K. 2016. Asynchronous methods
for deep reinforcement learning. In International conference on
machine learning, 1928–1937.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep rein-
forcement learning. Nature 518(7540): 529.

Ormoneit, D.; and Sen, Ś. 2002. Kernel-based reinforcement learn-
ing. Machine learning 49(2-3): 161–178.

Peng, X.; Ding, Y.; Wihl, D.; Gottesman, O.; Komorowski, M.;
Lehman, L.-w. H.; Ross, A.; Faisal, A.; and Doshi-Velez, F. 2018.
Improving sepsis treatment strategies by combining deep and
kernel-based reinforcement learning. In AMIA Annual Symposium
Proceedings, volume 2018, 887. American Medical Informatics
Association.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov,
O. 2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 .

Shalev-Shwartz, S.; Shammah, S.; and Shashua, A. 2016. Safe,
multi-agent, reinforcement learning for autonomous driving. arXiv
preprint arXiv:1610.03295 .

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershel-
vam, V.; Lanctot, M.; et al. 2016. Mastering the game of Go with
deep neural networks and tree search. nature 529(7587): 484.

Tan, M. 1993. Multi-agent reinforcement learning: Independent
vs. cooperative agents. In Proceedings of the tenth international
conference on machine learning, 330–337.

Tesauro, G. 2004. Extending Q-learning to general adaptive multi-
agent systems. In Advances in neural information processing sys-
tems, 871–878.

Tumer, K.; and Agogino, A. 2007. Distributed agent-based air traf-
fic flow management. In Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems, 255.
ACM.

Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine learning
8(3-4): 279–292.

Wiering, M. A.; and Van Hasselt, H. 2008. Ensemble algorithms in
reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 38(4): 930–936.

Wollkind, S.; Valasek, J.; and Ioerger, T. 2004. Automated conflict
resolution for air traffic management using cooperative multiagent
negotiation. In AIAA Guidance, Navigation, and Control Confer-
ence and Exhibit, 4992.

Zhang, K.; Yang, Z.; and Başar, T. 2019. Multi-agent reinforcement
learning: A selective overview of theories and algorithms. arXiv
preprint arXiv:1911.10635 .

476

