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Abstract

Law enforcement agencies in dense urban environments,
faced with a wide range of incidents to handle and limited
manpower, are turning to data-driven Al to inform their polic-
ing strategy. In this paper we present a patrol scheduling sys-
tem called GRAND-VISION: Ground Response Allocation
and Deployment - Visualization, Simulation, and Optimiza-
tion. The system employs deep learning to generate incident
sets that are used to train a patrol schedule that can accommo-
date varying manpower, break times, manual pre-allocations,
and a variety of spatio-temporal demand features. The com-
plexity of the scenario results in a system with real world
applicability, which we demonstrate through simulation on
historical data obtained from a large urban law enforcement
agency.

Introduction

Public security organizations around the world are focusing
on law enforcement based on the concept of “Reactive to
Proactive”. Some measurement concepts, such as “Visible
Security”, which focuses on prediction (i.e. shortening ar-
rival time to crime scene) and prevention (i.e. smart patrol)
have been explored and conceptualized. With the aging of
society and increasingly limited human resources, the solu-
tion to this challenge revolves around the use of technology
to establish an efficient crime prediction, prevention and re-
sponse schedule.

In this paper, we present a data-driven Al planning sys-
tem, currently on trial with a local law enforcement agency
(LEA) called GRAND-VISION that performs daily de-
ployment scheduling of law enforcement agents. GRAND-
VISION is an abbreviated name for Ground Response Al-
location and Deployment - Visualization, Simulation, and
Optimization. It harnesses historical incident data and other
factors such as demographics and public holidays to predict
the occurrence of incidents over time and space with high
accuracy on a daily basis. Based on such prediction, as well
as the daily supply of agent resources and other inputs, the
system generates hourly deployment schedules that provide
the best response to incidents, taking breaks and other con-
straints into consideration.
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Executing a deployment schedule on a daily basis allows
law enforcement to be tailored to the demand characteristics
of a given day, and makes it harder for criminals to antic-
ipate where law enforcement agents will be. When special
events occur, a daily deployment can accommodate manual
pre-allocation of resources to areas determined by a com-
mander, likewise, if break times need to be changed, or,
manpower is short on a given day, it can be accommodated
intelligently. This last point is particularly pertinent during
the COVID-19 pandemic, when law enforcement manpower
may be stretched thin due to the need to self-isolate after
exposure, or to assist in contact tracing and enforcement of
quarantine measures.

This paper builds upon the work in (Chase et al. 2019),
but improves it in a number of significant ways. The con-
tributions of this paper are as follows. Firstly, the agent al-
location optimization model is revised to make the alloca-
tion of an agent to a location more intuitive while enforc-
ing the ‘greedy dispatch’ principle and reducing the size of
the model, removing the need for the Iterated Local Search
heuristic. Secondly, we introduce a shift scheduling model
that incorporates the very important aspect of break times
while preserving the manpower needs determined by the
agent allocation. Break times introduce significant complex-
ity since we need to ensure that break times are always cov-
ered. Thirdly, we propose an improved incident prediction
model that employs deep learning to break down patrol re-
gion boundaries, allowing for more accurately predicted in-
cident counts, and takes a holistic approach to incident gen-
eration rather than requiring multiple models for predicting
additional parameters. Lastly, we generate experimental re-
sults via dispatch simulation using up-to-date historical data
from a real LEA to demonstrate the superiority of our pro-
posed approach over current practice and its ability to adapt
to reduced manpower supply.

Related Work

There is a large body of work on incident prediction for
the purpose of effective law enforcement. Traditional meth-
ods include simple aggregation of historical demand (e.g.
(Malleson and Andresen 2015)), spatial (but not temporal)
hot spot identification (such as (Levine 2017)), and risk ter-
rain modeling (e.g. (Caplan, Kennedy, and Miller 2011)).
More recently, (Mukhopadhyay et al. 2016) learns demand



on a continuous time spatial grid, but only burglary incidents
are modeled, with generated incidents used to design police
deployment. Neural networks (deep learning) have been ap-
plied to forecast crimes. In (Wang et al. 2017) for example,
the authors adapted ST-ResNet (Zhang, Zheng, and Qi 2017)
to collectively predict crime distribution over the Los Ange-
les area. They pre-process the raw crime data via regulariza-
tion in both space and time to enhance predictable signals
and then apply hierarchical structures of residual convolu-
tional units to train multi-factor crime prediction models.

Optimization has been applied to law enforcement re-
source deployment, such as deploying security officers to
patrol rail stations (Lau, Yuan, and Gunawan 2016) and po-
lice cars to respond to crime incidents (Mukhopadhyay et al.
2016). In (Saisubramanian, Varakantham, and Lau 2015), a
risk-based approach was used for deploying ambulances that
improved response times. In (Wang et al. 2020), the authors
applied integer programming to solve a police patrol prob-
lem with the objective of maximizing the police visibility
rate to improve public safety and the additional constraint
of response time guarantee. Many of these problems may
also be modeled as a multi-agent task allocation problem.
For example, (Amador, Okamoto, and Zivan 2014) allocates
security agents to incidents as they occur.

Overall Approach - Data-Driven Optimized
Deployment Scheduling

In the problem setting we consider, illustrated in Fig. 1,
emergency incidents occur and are reported to a central dis-
patcher. The dispatcher notes the start time of each incident
and assigns the nearest available agent to attend. Incidents
may be classified as either urgent or non-urgent, with differ-
ent response time targets associated with each. Some inci-
dents require more than one agent to attend, and they must
remain in attendance until the service time of the incident
is complete, whereupon they return to the region they have
been assigned to patrol. To ensure that as many incidents are
attended within the target time as possible, we propose a sys-
tem that designs a deployment schedule that assigns agents
to patrol locations throughout their shift.

In this section we outline our overall approach that gen-
erates deployment schedules by combining incident gener-
ation, allocation, scheduling, and simulation. First, the In-
cident Generator produces sets of synthetic incidents, with
each set corresponding to one scenario of the shift being
planned for. Second, the Optimizer uses these incidents to
identify the sectors that the available agents must be de-
ployed to, with the output being the number of agents re-
quired in each sector on a 2-hourly basis. Third, the number
of agents required in each sector is mapped to the set of ac-
tual agents by the Scheduler on an hourly basis, which aims
to minimize the amount of movement agents are required to
do while accounting for breaks. Finally a set of generated
test incidents is used to evaluate the scheduled deployment
using a dispatch Simulator. The description of each of the
four components, as illustrated in Fig. 2, is detailed in the
following sections.
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Figure 1: Agents patrol their assigned patrol regions. When
an incident occurs, the nearest agent is assigned to attend,
with the aim of meeting the response time QoS require-
ments.
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Figure 2: The GRAND-VISION deployment generation
process.

Deep Learning-driven Incident Generation

Our partner LEA has provided us with a large set of incident
data, containing details of incident timing, urgency, location
(in lat-long coordinates), duration, and type, as well as the
nature of the response, including the responding agents, and
their response times. We combine this with other data such
as demographics and land use features. However, one partic-
ular challenge we face compared to other works, is the spar-
sity of the dataset, particularly for some serious, but rare,
incident types. Thus, for precise daily prediction, account-
ing for random ‘noise’ in the incident occurrence is a high
priority.

To generate an effective deployment plan, we develop an
incident generation method that can generate sets of realistic
emergency incidents. A generative method was introduced
in (Chase et al. 2019) but we address a shortcoming with the
previous method through the application of Deep Learning.
The prior work used statistical methods, namely, a Gaussian
Process (GP) model, to predict incident counts by patrol re-
gion and time period. The predicted counts were rounded
to the nearest integer and additional parameter distributions
were learned for values such as priority and agent demand.
However, the GP requires that each region be considered as
an independent distribution, but in reality, they are part of a
larger area and the region boundaries introduce significant
noise. Suppose we have a uniform probability distribution
over the area of a square. The square produces one incident
every hour. Now suppose we cut the square up into 4 parts so
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Figure 3: Example of the consequences of predicting by re-
gions atomically.
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Figure 4: Comparing the error over 12 weeks of data, the
noise introduced by region boundaries results in inferior per-
formance predicting overall counts for the GP model.

that the incident can happen anywhere in the square. If we
simulate this over a few timestamps, we will get something
like the individual grid graphs in Fig. 3.

Each grid represents a quarter on the square and can look
like a time series from a purely random process. This is anal-
ogous to the counts in each region and fitting a machine
learning model on this would be only learning the noise
rather than the true distribution. Even if it were possible to
accurately model the noise, the average counts in each grid
would be around 0.25, which would be rounded down to
0, and instead of 1 incident being generated between the 4
grids, 0 would be generated.

Incident Count Prediction

Rather than attempting to predict the counts at the micro
level and assigning parameters accordingly, we break down
the region boundaries and apply Ridge Regression to learn
the incident counts at the macro level. Comparing the pre-
dicted total count from the regression to the aggregated
counts produced by the GP model, we find an improvement
in the comparative Mean Absolute Error (MAE) metric, as
shown in Fig. 4.

A Generative Deep Learning Model

The previous generation method in (Chase et al. 2019) ap-
plied separate models to predict the additional parameters
of service time, agent demand, start time (in minutes), and
priority, given the patrol region and start hour of an inci-
dent predicted by the GP. However, by using a Generative
Adversarial neural Network (GAN), we can output all vari-
ables at once. This eases maintenance as only a single model
must be generated with new data, and can train on multiple
years of data, something that is not possible with the com-
putationally expensive GP method. Specifically, we employ
a Wasserstein-Conditional GAN (WCGAN) that is able to
produce distributions conditioned on types of day (of which
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we identify 5 types: weekdays, weekends, and 3 categories
of public holiday). Unlike the GP model, the WCGAN pre-
dicts the latitude and longitude coordinates of incidents,
which allows us to place incidents more precisely. For the
purposes of incident generation, the Ridge Regression pre-
dicts the total number of incidents for the entire geographic
area, and each incident to be generated is sampled from the
WCGAN model. To produce an input for the deployment
optimization, the lat-long of the generated incidents are as-
signed to the region whose centroid point is closest to them.
Thus, we achieve region-level incident generation without
the noise issues of region-level prediction. To take full ad-
vantage of the temporal data available, we consider a version
of the WCGAN model that incorporates additional longer-
term information, such as day of the year, week of the year,
and the cyclic nature of these time periods.

Prediction Performance

The fine-grained spatial generation requires a novel metric
to properly evaluate its performance. We employ a match-
ing method, where an incident is considered correctly pre-
dicted if it occurs within a specified distance and time of an
unmatched incident in the test set. We define recall as the
proportion of actual incidents that are correctly matched,
and precision as the proportion of predicted incidents that
match an actual incident. Combining the two, we evaluate
the model’s performance using the F1 score metric. To com-
pare with the GP model, we assign a lat-long value to each
GP-generated incident by distributing incidents uniformly
within their region. For each day of test data we gener-
ated multiple incident samples and evaluated the average F1
score across all samples. Using a matching distance of 2km
and 12 minutes (guaranteeing a successful response to an ur-
gent incident), we compare the GP, GAN, GAN with addi-
tional temporal factors (labelled ‘GAN time’), and a random
baseline generation algorithm. We plot the average perfor-
mance for different sample sizes in Fig. 5 and find that both
GAN models outperform the GP method, with the ‘GAN
time’ model achieving slightly better performance due to its
additional temporal knowledge. Fig. 6 compares the ‘GAN
time’ model with the GP, showing the box plots for each
sample size. In addition to a better average performance, the
GAN scores have a much smaller range, indicating a greater
consistency in performance over the GP.

Optimization of Agent Allocation with
Variable Manpower

The Optimizer phase of the deployment algorithm performs
an allocation of on-duty agents to locations to minimize the
risk of failing an incident response, and we extract the num-
ber of agents required per location to serve as input to the
Scheduler. Agents are allocated to patrol sectors and are as-
signed to respond to sets of training incidents according to
the principle that the nearest available agent is dispatched
(‘greedy dispatch’). Given that the problem is a mixed in-
teger problem (MIP), we aim to achieve the responsiveness
necessary for an algorithm run daily, by splitting the input
incidents into 2-hour blocks. The optimization problem is
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Figure 5: 4-way method comparison between GP, two GAN
variants, and a baseline random algorithm.
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Figure 6: Box plots of GAN (left) vs GP (right) match-
ing performance. GAN achieves better average performance
with a narrower spread of values.

solved for each 2-hour block independently, giving the al-
location required in a faster time. The response time mini-
mization model is based on Sample Average Approximation
(SAA), which produces a single solution that yields the best
expected risk across all generated incident scenarios.

The notation used in the formulation is defined in Table 1.
The objective function, given in equation (1) minimizes re-
sponse time failures, and a constraint is introduced to fix the
total number of agents to the supply required by the shift (2).

The full optimization model is given in (1)-(17). (2)-
(4) control the mandatory limits on agent allocation to
regions. (5) guarantees pre-allocation requests are hon-
oured. (6) ensures that the demand of each incident is sat-
isfied. (7)-(14) enforce greedy dispatch ensuring that the ar-
rival time of an agent is the minimum of all available agents,
using the first agent to become available if all are occupied
at the incident start time. (15)-(16) establish the end time of
an incident, in tandem with the established arrival times, and
finally, (17) identifies if an incident is a success or failure.

2
min ZL (1)

Es |R~3|

s.t.
D U= Yo 2
i,

Indices:

i Agent index from set Z
q,r Incident indices from set R s and their location {%,1"
s Scenario index from set S
Decision Variables:
A Binary variable indicating if the response time
target was met for request r, scenario s
yl Binary variable indicating if agent ¢ is
assigned to location [
Yis Binary variable indicating if agent ¢ serves incident r

in scenario s

Derived Variables:

on Time when incident r is first attended in scenario s
ey Ending time for incident r, scenario s
& s Latest ey, for all incidents attended by 4 before

attending r
Binary indicator if ¢ completes ¢ only after r starts
Vis Binary indicator if A}’ holds for

i for any g before r

q,m
0,8

Parameters:

Tyi ;» Travel time from location of agent ¢ to location
of incident r
dy Number of agents required by incident r, scenario s
¢",T.  Priority class of incident r and the response
time QoS target for that priority
tr Start time of incident r, scenario s
ge Service time of incident r, scenario s
Yimaz  The maximum number of agents to be allocated
for each scenario
M An arbitrary large value

Table 1: Key notations used in optimization model.
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Handling Break Times at the Optimizer Phase

The mapping of break times to agents is performed at the
scheduling stage. To facilitate this, at the Optimizer stage
we perform the allocation using a modified agent supply cal-
culated by determining the minimum number of agents that
are on duty at any time during each 2-hour period (i.e. the
maximum number of agents on break at any given time).
Thus, if the value of Y4, is 15, but during a given 2-hour
period, there are up to 3 agents whose break times overlap
with each other at some point, we solve the model for that
2-hour period using Y4, = 12. This ensures that the de-
mand forwarded to the Scheduler never exceeds the number
of active agents available for allocation.

Smoothing the Solution by Re-Allocating
Redundant Agents

If the incidents in a 2-hour period are sparse, not all agents
may be allocated to respond to an incident and the allocation
result for these agents may not be meaningful. Therefore, we
only use the agent allocations from the optimization where
the agent is actually deployed to an incident. For the remain-
der, we compare the solution from each 2-hour period to the
one after in turn, and allocate agents to minimize the differ-
ence (using the Cosine distance) between each pair of solu-
tions. This helps the Scheduler find a better quality solution.
Where there are no differences, but spare agents remain due
to disparity in supply caused by breaks, we assign the spare
agents to unoccupied sectors to increase robustness to unan-
ticipated random demand.

Agent Scheduling with Fine-Grained Break
Time Support

The optimization phase result defines the number of agents
required in each region at each 2-hour period. This is fol-
lowed by the scheduling stage which maps this allocation to
the list of agents on duty, taking into account their respec-
tive break times. The aim of the Scheduler is to ensure that
all required sectors have agent coverage so that the demand
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Variable
i Agent index
j Location index
t Time index, member of set T, default length 1 hour
u Time index, member of set U, where || =4 - [T,
default length 15 minutes
yf j Binary variable: indicates assignment of agent ¢
to location j in time ¢
;&;11 j,  Binary variable: indicates ¢ moves
from location j; to j2 from time ¢ — 1 to time ¢
Ty 2 Parameter: Time to travel from location j; to j2

dt Parameter: number of agents required in

J
location j in time ¢

b, Binary parameter: if agent ¢ is on break
during time period wu, true, else false
rmee Parameter: sets the default maximum number

of agents per sector to improve balancing.
Is overruled by d} if it is larger

Table 2: Key notations used in scheduling model.

is met. The Scheduler employs an MIP to minimize the to-
tal travel time between sectors at the end of each time pe-
riod. Unlike the Optimizer, the Scheduler assigns agents on
a 1-hour basis, with break times supported down to a gran-
ularity of 15 minute intervals. This allows break times to be
adequately covered without agents being clustered together
unnecessarily.

The reader may be concerned whether Constraint Pro-
gramming (CP) could be used instead of an MIP. In our
past attempts at solving the constrained scheduling prob-
lem with a CP model (using the CP Optimizer), the run time
took much longer than expected compared with the follow-
ing MIP model, and hence we chose the latter instead.

We summarize the notations used in our MIP model in
Table 2. The MIP formulation for the scheduling problem is
given in (18)-(23).

i S S s
i g1 joF#jr t>0
s.t.
> uy = i 19
ilbi £1
Z yz(jij/ﬁl) < max(d;u/‘l)’Lma:v) Vi, u (20)
ilbi, £1
Syl =1 Vit @D
J
Vi Tig S 1200505, Vijinjat>0 (22
yf,gll + yf,jz > 2‘%’2;11,% Vi’jl’jQ’t >0 (23)

The objective function (18) minimizes the sum of time
spent travelling between sectors by all agents across all time
periods. The travel time for not changing sector is taken to
be 0. (19) ensures that each location can meet its demands.
Break times are met by using a more fine-grained set of
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Figure 7: Partitioning heuristic for scalability. The Scheduler
takes the allocation solution from the Optimizer and assigns
actual agents to required locations.

time periods to determine if an agent is on break during that
time. Agents are allocated on a 1-hourly basis, but are not
counted towards meeting demand during the time they are
on break. Formulating the constraint this way enables a 1-
hour demand period to be covered by more than 1 agent as
long as their non-overlapping break periods cover the full
time window. (20) works in the same manner but sets an up-
per limit on the number of agents allocated to a sector to
prevent clustering of any spare agents, using a default max-
imum value unless the required demand determined by the
Optimizer is higher than the default. (21) ensures that each
agent is assigned to exactly 1 location. (22) and (23) define
xf_ll ;> Which takes value 1 when y! . and yf ; take value
1 ’(%n’dicating that agent ¢ goes from ’ljocation 71 to location
72 at the crossover from time ¢ — 1 to time ¢). If only one of
the assignment values is 1, the indicator is 0 and the travel
time for that pair is not counted.

Ensuring Scalability with a Partitioning Heuristic

Like the Optimizer, the Scheduler is an MIP and suffers from
scalability issues because, whilst the model appears simple
in writing, constraints (22)-(23) can have a very large num-
ber of permutations. Strictly partitioning at the 2-hour level
is not useful for the scheduling model due to the dependence
of later solutions on earlier plans. Instead, we implement a
partitioning heuristic that divides the set of time periods into
a subset (e.g. of 2 1-hour periods) but takes the values of
yfoj in each partition to be input parameters rather than deci-
sion variables. The value of these parameters is determined
by the solution for that time period in the previous partition,
with the only exception being for the first time period, which
is solved in the normal fashion. The partition approach is il-
lustrated in Fig. 7. Solving smaller problems in sequence is
much faster than one large problem, and the partition can
achieve a good travel time performance because earlier allo-
cations are considered.

Additional Operational Considerations During
COVID-19

The LEA conducting the trial for the GRAND-VISION sys-
tem currently adopts a hierarchical system of command and
control, with each agent operating within the wider geo-
graphic area reporting to a commander in charge of a smaller
home cluster of 2-5 patrol locations. The goal of this work
is to achieve better emergency response by creating a more
fluid structure, with agents able to patrol multiple regions in
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the course of a shift. However, the current COVID-19 pan-
demic has resulted in a proliferation of safe distancing mea-
sures, with one consideration of our partner agency being to
limit the amount of time agents spend outside of their home
cluster, limiting interactions between team members where
possible. To accommodate this temporary situation, we use
a ‘dummy’ time period to manually allocate each agent to
a region in their home cluster before the shift starts, thus
each agent will start as close to home as possible. We then
examine two alternative methods of discouraging deploy-
ments outside the home cluster, and compare them to the
unrestricted scheduling model for travel time performance.
We choose not to introduce a constraint on individual travel
times, which could be added to the scheduling model in (18)-
(23) as follows:

t—1
4,J1,72

T

J1,j2 ¥

S Tmax Visji1 # j2,t >0, (24)

where T},,,x denotes the chosen upper time limit per jour-
ney. This method may not be effective in achieving the in-
tended result while introducing the possibility of infeasibil-
ity, which is an undesirable outcome. Therefore, the first
method we test is to quadratically penalise longer journeys
by squaring the travel time value in the objective function.
Thus (18) is re-written as:

; 2 t—1
min 3>, D, D T sl

i J1 JeFg1 t>0

(25)

The drawback of this method is that it assumes a scenario
in which the regions within a home cluster are closer than
regions outside, which may not be true if regions are not uni-
form in size, as is the case in our scenario. Thus we consider
the second method, which is to apply a penalty coefficient to
the travel time, but only when the destination region is out-
side the home cluster for a particular agent. The objective
function is re-formulated as follows:

: Jorp. o t—1
nm ZZ Z Z“i Tj.52%i jy o+

i J1 joFj1 t>0

(26)

ag ? is the penalty for travelling to a destination outside the
home cluster, and follows the rule:

J2 _
.

where C; denotes the set of patrol regions that constitute
agent 7’s home cluster. We use a penalty of at least 60 min-
utes for this problem as it is comfortably larger than any
individual journey, but the value should be calibrated for the
timing values of the geographic area in question. A study
of parameter tuning for the penalty coefficient is left as an
extension for further work.

1, forjs €C;
60, otherwise,
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Figure 9: Histogram comparison of the distribution of travel
times for alternative methods of travel restriction.

This last formulation incentivizes the deployment of
agents to their own cluster, but does not prevent their de-
ployment elsewhere when required. To evaluate the impact
of each method on the travelling time required for the de-
ployment schedule, we create a new deployment plan for
each method over 180 days. For the quadratic time method
and the penalty coefficient method, we calculate the actual
travel time of the resulting schedule, to allow direct com-
parison with the unmodified method. We compare the time
series performance of each method in Fig. 8 and plot a his-
togram of the travel times in Fig. 9. The unmodified solu-
tion serves as a baseline, as it will always provide the op-
timal performance (though when using generated incidents
for training there will be day-to-day variation). The alterna-
tive methods do not have significantly inferior performance
against the baseline. However, these results do not determine
which method is best of themselves, as the resulting deploy-
ment plan for a less time-efficient method may be prefer-
able from an operational perspective. Thus, they can be used
by the partner agency to make an informed policy decision,
leaving room for the experience of the field commanders,
that can be implemented for the field trial.

Evaluation by Simulation

To produce our experimental results we train the deep learn-
ing model on a full year’s real incident data, provided by
our partner LEA. We execute all experiments through our
deployment system, shown in Fig. 10. To find a robust so-
lution that does not require a large scenario set for the SAA
model, we generate 5 candidate plans with identical settings
but different generated training incidents which, along with
a simple greedy strategy (assign one agent per region), are
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Figure 10: Example schedule output screen with agent loca-
tions colour-coded on an hourly basis.

evaluated on one month of real test data via dispatch sim-
ulation. For each 2-hour period in the 12-hour shifts (shifts
are split at 8am and 8pm into day and night shifts), the de-
ployment plan with the best average performance is used.
Once the best deployment in each 2-hour period is found,
the resulting combined solution is evaluated across a set of
7 months of test data (for confidentiality reasons we present
test results using synthetic, rather than historical, incidents).
We evaluate on a geographic area consisting of 13 patrol re-
gions, with a default supply of 13 agents, a typical problem
size for our LEA.

Dispatch Simulator

We use a dispatch simulator to evaluate the performance of
deployment plans against test incidents. The simulation han-
dles test incidents (synthetic or real) in chronological order.
The behaviour of each agent is modelled according to the
individual deployment determined by the shift plan. When
an incident occurs, the available agent with the shortest re-
sponse time is dispatched without reference to future inci-
dents. If no agent is available, the first agent to become avail-
able is assigned. For urgent incidents we define success as
the first responder arriving within 15 minutes, while the tar-
get is 30 minutes for non-urgent cases.

Performance Against Current Practice

We evaluate the performance of our solution against cur-
rent practice. We calculate the monthly average failure rate
(‘risk’) and compare it to the current practice performance,
which is a static plan that does not vary by day. For day
shifts we have a 1-hour training session and three 30-min
breaks and for night shifts there are two 45-minute breaks
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Figure 11: Monthly averages and daily distributions of fail-
ure rates on shifts and day types, GRAND-VISION vs cur-
rent practice.
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Figure 12: Failure rate sensitivity analysis giving insight into
the potential to reassign manpower in emergencies without
compromising performance.

and a 45-minute training session. In Fig. 11 we plot the fail-
ure rate performance on all day types for both day and night
shifts, and show the distribution of daily risks. While the
current practice can occasionally perform better on a given
day, the monthly averages and distribution of daily failures
is strongly in favour of the GRAND-VISION planner.

Performance with Reduced Agent Supply

The default agent supply is intended to provide good per-
formance in most circumstances outside of the worst case.
Given the global COVID-19 pandemic, law enforcement
agents may be redeployed to assist in enforcement of stay-
home notices, or to perform contact tracing, or may them-
selves be placed in quarantine due to the ubiquity of the
virus. In eventualities such as this, an agency would bene-
fit from insights into the level of manpower reduction they
can tolerate without performance dropping to unacceptable
levels. In Fig. 12 we perform a sensitivity analysis on the
agent supply, simulating the monthly average performance
for 13, 9, and 5 agents. We find that while a 5 agent supply
yields an unacceptable increase in failure rates (even when
the agents do not have break times), 9 agents can perform
acceptably if required to, without losing time for training or
breaks. Using the system in this way allows agencies to bet-
ter utilize their manpower in an informed way, even when an
unanticipated scenario like the pandemic occurs.

The GRAND-VISION System

The GRAND-VISION system is implemented in Python
based on the Django framework for database integration,
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and linked to a web-based frontend app. A central backend
server process handles requests received from the frontend.
A planning worker process polls the database for pending
deployment tasks. The planning worker executes the process
given in Fig. 2, taking the incidents generated by the Incident
Generator, which is a separate dedicated Flask app running
TensorFlow. The predicted travel time from one location to
another is provided by another dedicated service which is
linked to a travel time prediction model not described in this
paper. By adopting this modular service structure, new meth-
ods, such as enhanced incident prediction or travel time pre-
diction, can be easily integrated for future system extension.
The Optimizer and Scheduler modules use the Python API
of the IBM CPLEX solver.

There are two types of users - Commander and Analyst.
The Analyst user has access to all the system features, in-
cluding the ability to generate deployment plans for all geo-
graphic areas under the agency, tune parameters such as the
number of training scenarios for the Optimizer, and upload
incident data for validation and updating the Incident Gen-
erator. The Commander can generate and view deployment
plans for their own area of responsibility only.

Development and Trial Experience

A number of challenges and insights have come through
working directly with our partner agency. Firstly and top-
ically, the COVID-19 pandemic has presented difficulties,
both in physically meeting with the client, and in executing
the field trial, as the agency was not inclined to introduce ex-
perimental plans during such a disruptive time. However, it
has presented some interesting research opportunities, such
as the methods of movement restriction discussed earlier. It
also allows us to investigate the influences of a pandemic
on emergency incident behaviour, as the incident prediction
model is based on pre-virus data. We will use the trial to
assess its accuracy under unprecedented conditions.

Secondly, when developing solutions, there are a number
of operational considerations to accommodate. At an early
stage of the project, we considered altering the shifts, but
the agency was concerned about the level of disruption to
their logistics and their patrol agents, who structure their
lives around the current shift pattern. This was a common
refrain during the project development, as ideas had to be
evaluated not just for their research merit, but for their op-
erational feasibility and the ability to ‘sell’ the ideas to the
commanders who are concerned with staff morale.

Thirdly, working with the agency from the start provided
valuable insights into what factors must be specifically tai-
lored compared to other use cases. Each LEA is different,
and the system usability and functionality could be devel-
oped in line with the experience of the agents who would
have to use it. In a real world problem, it is sometimes neces-
sary to recognise the limitations of automated planning and
scheduling, and know how to leave room for expert knowl-
edge (such as through provision for pre-allocations).

Reflection on Ethical Considerations

The application of Al to predictive policing in the US has
raised ethical concerns, as policing data can be influenced



by officer prejudices and corrupt behaviour during its collec-
tion (Richardson, Schultz, and Crawford 2019). When used
in a predictive system, this ‘dirty’ data amplifies discrimi-
natory practices, resulting in the targeting of marginalized
communities. Our system is deployed in a non-US country,
which results in a different ethical landscape, which we dis-
cuss here. Firstly, the racial community segregation visible
in US cities is not present in our partner country due to ex-
tensive public housing with allocation of flats via public bal-
lot, constrained by a government requirement that the racial
makeup of each estate must reflect the national demograph-
ics. Secondly, our data is limited to objective emergency call
records, thus there is less scope for pollution by corrupt po-
lice practices. However, if the tool is applied in other coun-
tries, care must be taken to ensure that the priority classi-
fication and level of response is not biased by the location
of an incident (e.g. in a deprived neighbourhood). The pre-
diction data also cannot capture unreported matters; com-
munities with low trust in law enforcement may be reluctant
to place a call. Thirdly, the LEA does not respond exclu-
sively to crimes per se, but also frequently to general inci-
dents including public assistance and medical emergencies.
This means the goal is to reduce response time rather than
crime incidence, so there is limited incentive for data ma-
nipulation to ‘improve’ crime statistics. Again, however, the
tool could be employed exclusively for criminal incidents,
in which case proper oversight would need to be applied to
ensure all incidents were properly responded to. This tool is
not immune to improper use by unprincipled governments.
Confidence in a lack of manipulation is supported by our
partner country’s international reputation for low levels of
corruption, and the trust the public has in the LEA, which
has an ethnically diverse staff. However, the fairness of the
system is dependent on the data used to predict demand, and
must be carefully selected, else oppressive regimes may tar-
get opposition for their own benefit.

Conclusion

This paper presents a practical system for generating agent
deployments for a real LEA, using generated incidents to
inform the creation of patrol schedules. The system is cur-
rently undergoing field trials with our partner agency, and fu-
ture work will present the results of the trial. The trial results
will also be used to guide the improvement of the deploy-
ment engine, particularly the Incident Generator, and the de-
velopment of a fully-featured travel time prediction module.
Other avenues for further work include parameter tuning of
the COVID-19 Scheduler considerations and improvements
to the scalability of the Optimizer module to support a more
robust set of incident inputs.
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